Hydrodynamic spectrum and dynamical phase transition in one-dimensional bulk-driven particle gases

Alexandre LAZARESCU

CSSM, University of Luxembourg

CIRM, Marseille, January 2016

Statistical physics: bridging the gaps.

Statistical physics: bridging the gaps.

Statistical physics: bridging the gaps.

 $d_t P(C) =$

 $d_t \rho(x) =$

 $\sum_{C' \sim C} k(C, C') P(C') - k(C', C) P(C) \qquad -\nabla [F\sigma(\rho(x)) - D\nabla \rho(x) + \xi]$

Simple situation: one-dimensional conduit, two reservoirs ρ_a and ρ_b , a driving field V in the bulk, and interactions between the particles.

Simple situation: one-dimensional conduit, two reservoirs ρ_a and ρ_b , a driving field V in the bulk, and interactions between the particles.

Field and/or reservoir imbalance \Rightarrow macroscopic current of particles (related to microscopic production of entropy)

• Introduction

- I Model and formalism: current fluctuations in the open ASEP
- II Macroscopic Fluctuation Theory and hydrodynamic states
- III Generic dynamical phase transition

Conclusion

The open Asymmetric Simple Exclusion Process (ASEP):

- one-dimensional lattice of size L
- entry at the left with rate lpha and at the right with rate δ
- exit at the right with rate β and at the left with rate γ
- jumps in the bulk with rate p to the right and q the target site is free)

The open Asymmetric Simple Exclusion Process (ASEP):

- one-dimensional lattice of size L
- entry at the left with rate lpha and at the right with rate δ
- exit at the right with rate β and at the left with rate γ
- jumps in the bulk with rate p to the right and q the target site is free)

Totally Asymmetric case (TASEP): $q = \gamma = \delta = 0$

First invented to describe biological transport.

[C. T. MacDonald, J. H. Gibbs, A. C. Pipkin, Biopolymers, 1968]

Can be related to other statistical models, such as surface growth.

[M. Kardar, G. Parisi, Y.-C. Zhang, P. R. L., 1986]

Why the open ASEP ?

Why the open ASEP ?

• very simple, yet physically reasonable model

Why the open ASEP ?

- very simple, yet physically reasonable model
- related to many other problems (quantum spin chains, random directed polymer, ribosomes on m-RNA, cars on highway, random matrices, surface growth ...)

Why the open ASEP ?

- very simple, yet physically reasonable model
- related to many other problems (quantum spin chains, random directed polymer, ribosomes on m-RNA, cars on highway, random matrices, surface growth ...)
- integrable \Rightarrow analytical results

Why the open ASEP ?

- very simple, yet physically reasonable model
- related to many other problems (quantum spin chains, random directed polymer, ribosomes on m-RNA, cars on highway, random matrices, surface growth ...)
- integrable \Rightarrow analytical results

What in the open ASEP ?

Why the open ASEP ?

- very simple, yet physically reasonable model
- related to many other problems (quantum spin chains, random directed polymer, ribosomes on m-RNA, cars on highway, random matrices, surface growth ...)
- integrable \Rightarrow analytical results

What in the open ASEP ? The macroscopic current of particles, related to the entropy production (irreversibility).

I - Master equation

The probability vector $|P_t\rangle$ which contains the probabilities of observing a configuration C at time t obeys the master equation

$$rac{d}{dt}|P_t
angle=M|P_t
angle$$

with *M* being the sum of local matrices M_i (one for each bond $0 \le i \le L$) (in bases $\{0, 1\}$ and $\{00, 01, 10, 11\}$)

$$M_{0} = \begin{bmatrix} -\alpha & \gamma \\ \alpha & -\gamma \end{bmatrix} , M_{i} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -q & p & 0 \\ 0 & q & -p & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} , M_{L} = \begin{bmatrix} -\delta & \beta \\ \delta & -\beta \end{bmatrix}$$

I - Master equation

The probability vector $|P_t\rangle$ which contains the probabilities of observing a configuration C at time t obeys the master equation

$$|P_t\rangle \rightarrow |P^{\star}\rangle$$

with *M* being the sum of local matrices M_i (one for each bond $0 \le i \le L$) (in bases $\{0, 1\}$ and $\{00, 01, 10, 11\}$)

$$M_{0} = \begin{bmatrix} -\alpha & \gamma \\ \alpha & -\gamma \end{bmatrix} , M_{i} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -q & p & 0 \\ 0 & q & -p & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} , M_{L} = \begin{bmatrix} -\delta & \beta \\ \delta & -\beta \end{bmatrix}$$

I - Steady state

Exact solution: [B. Derrida, M. R. Evans, V. Hakim, V. Pasquier, 1993]

I - Steady state

Exact solution: [B. Derrida, M. R. Evans, V. Hakim, V. Pasquier, 1993]

Mean field equation: $J = (p - q)\rho(1 - \rho) - \frac{p + q}{2L}\nabla\rho$ with ρ_a , ρ_b .

For a given $J = (p - q)\rho_c(1 - \rho_c)$, we plot all the possible profiles $\rho(x)$:

I - Steady state

Exact solution: [B. Derrida, M. R. Evans, V. Hakim, V. Pasquier, 1993]

Mean field equation:
$$J = (p - q)\rho(1 - \rho) - \frac{p + q}{2L}\nabla\rho$$
 with ρ_a , ρ_b .

For a given $J = (p - q)\rho_c(1 - \rho_c)$, we plot all the possible profiles $\rho(x)$:

which gives us constraints on ρ_a and ρ_b .

I - Phase diagram of the steady state

Phase diagram of the system (with respect to $\rho_a(\alpha, \gamma, q)$ and $\rho_b(\beta, \delta, q)$):

In each case: $J = (p - q)\rho_c(1 - \rho_c)$.

Macroscopic fluctuation theory

[Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim; J. Stat. Phys, 2002]

For a diffusive particle gas, the large deviations $g(j, \rho)$ are locally Gaussian around the deterministic equation, i.e. :

 $j = \boldsymbol{F}\sigma(\rho) - \boldsymbol{D}\nabla\rho + \sqrt{\sigma(\rho)}\boldsymbol{\xi}$

But ASEP is not diffusive : $D \sim \frac{1}{L}$.

Macroscopic fluctuation theory

[Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim; J. Stat. Phys, 2002]

For a diffusive particle gas, the large deviations $g(j,\rho)$ are locally Gaussian around the deterministic equation, i.e. :

$$j = F\sigma(\rho) - D\nabla\rho + \sqrt{\sigma(\rho)}\xi$$

But ASEP is not diffusive : $D \sim \frac{1}{L}$.

• Weakly ASEP:
$$(p - q) = \frac{\nu}{L}$$

We get, for the total current j (through all bonds):

$$g(j,\rho) = \int_{0}^{1} \frac{\left[j - \nu\rho(1-\rho) + \frac{\rho+q}{2}\nabla\rho\right]^{2}}{2\rho(1-\rho)} dx$$

Minimising over $\rho \rightarrow g(j)$ and optimal profile.

Macroscopic fluctuation theory

[Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim; J. Stat. Phys, 2002]

For a diffusive particle gas, the large deviations $g(j,\rho)$ are locally Gaussian around the deterministic equation, i.e. :

$$j = F\sigma(\rho) - D\nabla\rho + \sqrt{\sigma(\rho)}\xi$$

But ASEP is not diffusive : $D \sim \frac{1}{L}$.

• Weakly ASEP:
$$(p - q) = \frac{\nu}{L}$$

We get, for the total current j (through all bonds):

$$g(j,\rho) = \int_0^1 \frac{\left[j - \nu\rho(1-\rho) + \frac{\rho+q}{2}\nabla\rho\right]^2}{2\rho(1-\rho)} dx$$

Minimising over $\rho \rightarrow g(j)$ and optimal profile.

• [T. Bodineau, B. Derrida, J. Stat. Phys, 2006] : taking $\nu \sim L$ gives correct results for the TASEP.

variations of $\rho = \pm$ steady state

II - LD/HD phases

$$g(j) = j \log\left(\frac{1-\rho_a}{\rho_a}\frac{\rho_c}{1-\rho_c}\right) + \rho_a - \rho_c$$

with $j = \rho_c (1 - \rho_c)$

II - Shock phase

$$g(j) = j \log \left(\frac{1-\rho_a}{\rho_a} \frac{\rho_b}{1-\rho_b} \frac{\rho_c^2}{(1-\rho_c)^2}\right) + \rho_a - \rho_b + 1 - 2\rho_c$$

with $j = \rho_c (1 - \rho_c)$

II - Anti-shock phase

$$g(j) = 2j \log\left(\frac{\rho_c}{1-\rho_c}\right) + 1 - 2\rho_c$$

with $j = \rho_c (1 - \rho_c)$

II - Phase diagram

(Work in progress)

$$g(j,\rho) = \int_{0}^{1} \frac{\left[j - \nu \rho (1-\rho) + \frac{1+q}{2} \nabla \rho\right]^2}{2\rho (1-\rho)} dx$$

We only looked at the most probable states. What about the others ?

For instance, in the LD phase:

For instance, in the LD phase:

For instance, in the LD phase:

 \rightarrow phase diagram for the gap:

 \rightarrow phase diagram for the gap:

Values for the gap consistent with [F. Essler, J. de Gier, J. Stat. Mech, 2006] and [A. Proeme, R. Blythe, M. Evans, J. Phys. A, 2011] (numerics).

 Naively applying MFT for j = ¹/₄ + ε, ε > 0, gives: g(j) ~ L ε².

- Naively applying MFT for j = ¹/₄ + ε, ε > 0, gives: g(j) ~ L ε².
- From exact results, we find in fact:

$$g(j) \sim L \ \varepsilon^{5/2} \ rac{32\sqrt{3}}{5\pi}.$$

- Naively applying MFT for j = ¹/₄ + ε, ε > 0, gives: g(j) ~ L ε².
- From exact results, we find in fact:

$$g(j) \sim \frac{L}{2} \varepsilon^{5/2} \frac{32\sqrt{3}}{5\pi}.$$

 \rightarrow the structure of fluctuating states for $j > \frac{1}{4}$ is not hydrodynamic.

- Naively applying MFT for j = ¹/₄ + ε, ε > 0, gives: g(j) ~ L ε².
- From exact results, we find in fact:

$$g(j) \sim L \varepsilon^{5/2} \frac{32\sqrt{3}}{5\pi}.$$

 \rightarrow the structure of fluctuating states for $j > \frac{1}{4}$ is not hydrodynamic.

Reason: the hydrodynamic current $j = F\sigma(\rho)$ is bounded from above.

(Soon to be submitted)

(Soon to be submitted)

If we generalise $p \rightarrow p_i e^{V(C')-V(C)}$, we can show:

• For $j \to +\infty$: Coulomb gas states, and $g(j) \sim L$.

(Soon to be submitted)

If we generalise $p \rightarrow p_i e^{V(C')-V(C)}$, we can show:

- For $j \to +\infty$: Coulomb gas states, and $g(j) \sim L$.
- For $j \to -\infty$: anti-shock states, and g(j) independent of L (at least if V has a finite range).

(Soon to be submitted)

If we generalise $p \rightarrow p_i e^{V(C')-V(C)}$, we can show:

• For
$$j \to +\infty$$
: Coulomb gas states, and $g(j) \sim L$.

• For $j \to -\infty$: anti-shock states, and g(j) independent of L (at least if V has a finite range).

 \rightarrow same transition between a hydrodynamic phase and a correlated phase.

(Soon to be submitted)

If we generalise $p \rightarrow p_i e^{V(C')-V(C)}$, we can show:

• For
$$j \to +\infty$$
: Coulomb gas states, and $g(j) \sim L$.

• For $j \to -\infty$: anti-shock states, and g(j) independent of L (at least if V has a finite range).

 \rightarrow same transition between a hydrodynamic phase and a correlated phase.

Consequence of the physical geometry of the model (sites vs. configurations).

Red area: Tracy-Widom distributions for current fluctuations in the infinite volume setting. Blue area: probably similar.

Red area: Tracy-Widom distributions for current fluctuations in the infinite volume setting. Blue area: probably similar.

$$ho \rightarrow \frac{1}{2} + \nabla h$$
,

 $\mathrm{d}_t \rho = -\nabla [(p-q)\rho(1-\rho) - D\nabla \rho + \xi] \to \mathrm{d}_t h = (p-q)(\nabla h)^2 - D\Delta h + \xi.$

Red area: Tracy-Widom distributions for current fluctuations in the infinite volume setting. Blue area: probably similar.

$$ho \rightarrow \frac{1}{2} + \nabla h$$

 $\mathbf{d}_t \rho = -\nabla [(\boldsymbol{p} - \boldsymbol{q})\rho(1 - \rho) - \boldsymbol{D}\nabla \rho + \xi] \to \mathbf{d}_t h = (\boldsymbol{p} - \boldsymbol{q})(\nabla h)^2 - \boldsymbol{D}\Delta h + \xi.$

Hairer and Quastel (Dec. 2015):

 $d_t h = f(\nabla h) - D\Delta h + \xi$ is the same if f is even.

• What is the structure of the MC phase and how general is it ?

- What is the structure of the MC phase and how general is it ?
- Is this generalisable to 2D systems ?

- What is the structure of the MC phase and how general is it ?
- Is this generalisable to 2D systems ?
- What is the driving term and the diffusion/noise in general ?

$$j = F\sigma(\rho) - D\nabla\rho + \sqrt{\sigma(\rho)}\xi$$

- What is the structure of the MC phase and how general is it ?
- Is this generalisable to 2D systems ?
- What is the driving term and the diffusion/noise in general ?

 $j = \mathcal{F}\sigma(\rho) - \mathcal{D}\nabla\rho + \sqrt{\sigma(\rho)}\xi$

- What is the structure of the MC phase and how general is it ?
- Is this generalisable to 2D systems ?
- What is the driving term and the diffusion/noise in general ?

$$j = f(\rho) - D\nabla \rho + \sqrt{\sigma(\rho)}\xi$$

- What is the structure of the MC phase and how general is it ?
- Is this generalisable to 2D systems ?
- What is the driving term and the diffusion/noise in general ?

$$j = f(\rho) - D\nabla \rho + \sqrt{\sigma(\rho)}\xi$$

The Physicist's Companion to Current Fluctuations: One-Dimensional Bulk-Driven Lattice Gases, J. Phys. A: Math. Theor. 48 503001 (2015) ; arXiv:1507.041

- What is the structure of the MC phase and how general is it ?
- Is this generalisable to 2D systems ?
- What is the driving term and the diffusion/noise in general ?

$$j = f(\rho) - D\nabla \rho + \sqrt{\sigma(\rho)}\xi$$

The Physicist's Companion to Current Fluctuations: One-Dimensional Bulk-Driven Lattice Gases, J. Phys. A: Math. Theor. 48 503001 (2015) ; arXiv:1507.041

Thank you !

Alexandre LAZARESCU Large deviations in one-dimensional bulk-driven particle gases

TASEP with Ising interaction.

TASEP with disordered potential.

