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White noise driven PDE’s

Space time white noise ξ(t , x)

Eξ(t ′, x ′)ξ(t , x) = δ(t ′ − t)δ(x ′ − x)

I Interface growth φ(t , x) interface height (KPZ )

∂tφ = ∆φ+ (∇φ)2 + ξ

I Ginzburg-Landau (GL) model φ(t , x) magnetization

∂tφ = ∆φ− φ3 + ξ

I Fluctuating hydrodynamics φ = (φ1, φ2, φ3)

∂t ~φα = ∆φα + Mβγ
α ∂xφβ∂xφγ + ξα



ξ is very rough, are these non-linear equations well-posed?

I Given a realization ξ of noise, is there a φ(ξ) solving these
equations?

I How is φ(ξ) distributed? Is there a stationary state?

In general we need to renormalize the equations to make them
well posed.



Linear case

Linear equation x ∈ Td = (R/Z)d

∂tφ = ∆φ+ ξ

φ(0, x) = φ0(x)

solved by
φ(t , x) = (et∆φ0)(x) + η(t , x)

with

η(t) =

∫ t

0
e(t−s)∆ξ(s)ds



Free field

η(t , x) is a random field with covariance

Eη(t , x)η(t , y) = Ct (x , y)

where Ct (x , y) is the integral kernel of the operator∫ t

0
e2t∆dt = −1

2
1− e2t∆

∆

Ct (x , y) is singular in short scales:

Eη(t , x)η(t , y) � 1
|x − y |d−2 .

I η(t , x) is a.s. not a function in d ≥ 2
I ∇η(t , x) has same regularity as white noise for all d .



Integral equation

Consider nonlinear equation

∂tφ = ∆φ+ V (φ) + ξ, φ(0, x) = 0.

Rewrite it as integral equation

φ(t) =

∫ t

0
e(t−s)∆(V (φ(s)) + ξ(s))ds

= η(t) +

∫ t

0
e(t−s)∆V (φ(s))ds

where η(t , x) is the solution to the linear equation.

Fix a realization of the random field η(t , x) and try to solve this
fixed point problem in some (Banach) space of functions φ(t , x).



Perturbation theory

Study the solution iteratively:

φ(t) = η(t) +

∫ t

0
e(t−s)∆V (η(s))ds + . . . .

This fails:
I For KPZ equation

V (η(s)) = (∂xη(s, x))2

and ∂xη(s, x) = derivative of BM =∞ almost surely.
I For GL equation

V (η(s)) = η(s, x)3 =∞

almost surely if d ≥ 2.



Quantum Field Theory

Such divergencies are familiar from quantum field theory.

Formally the equation

∂tφ = ∆φ− φ3 + ξ

has a stationary measure

ν(dφ) ∝ e−
1
4

∫
Td φ(x)4dxµ(dφ)

where µ is a Gaussian measure with covariance

Eφ(x)φ(y) = −1
2 ∆−1(x , y) = C|x − y |2−d

For d < 4 ν can be constructed by renormalization.



Renormalization

Regularize

φε(x) := (ρε ∗ φ)(x), ρε(x) = ε−dρ(x/ε)

and renormalize

V (ε)(φε) := 1
4φ

4
ε + rεφ2

ε

Then
lim
ε→0

e−
∫

Λ V (ε)(φε(x))dxµ(dφ)

exists with

rε = m log ε d = 2
rε = m1ε

−1 + m2 log ε d = 3

Story of 1970’s.



Regularized dynamics

Consider a regularized equation

∂tφ = ∆φ+ Vε(φ) + ξε

where
I noise ξε(t) = ρε ∗ ξ(t) is smooth on scales ≤ ε
I Vε has ε-dependent terms added to V

Determine Vε so that solutions φε converge as ε→ 0 to some
distribution φ.



Renormalized dynamics

Renormalize:

(∂xφ)2 → (∂xφ)2 + aε−1

Mβγ
α ∂xφβ∂xφγ → Mβγ

α ∂xφβ∂xφγ + aαε−1 + bα log ε

φ3 → φ3 + φ

{
m log ε d = 2
m1ε

−1 + m2 log ε d = 3

Theorem. The following holds almost surely in ξ:
There exists T > 0 s.t. the regularized equation has a unique
solution φε(t , x) for t ≤ T and

φε → φ ∈ D′([0,T ]× Td )

where φ is independent of the cutoff function ρ.

Earlier proofs: Gubinelli, Imkeller, and Perkowski, Catellier and
Chouk, Hairer



Fixed point problem

Consider the fixed point problem

φ(t) = ηε(t) +

∫ t

0
e(t−s)∆Vε(φ(s))ds

For ε > 0 this has smooth solution φε at least for some time.

Problem: since the limit φ will a distribution its not clear how to
set this up as a Banach fixed point problem

Martin Hairer developed a nonlinear theory of distributions
"Regularity Structures" allowing to formulate and solve the
fixed point problem.

This can be compared to perturbative renormalization theory in
QFT.



Wilson RG

We prove this result using the "Wilsonian" approach to
renormalization

I Proceed scale by scale to derive effective equation on
that scale

I No new theory of distributions needed
I Standard contraction mapping theorem
I A general method to derive counterterms for subcritical

nonlinearities



Counter terms

Given a nonlinearity V (φ) how to find the counter terms ?

Why is this natural ?

Both questions can be answered by considering scale
dependent effective equations.



Dimensionless variables
Define space time scaling sµ

(sµφ)(t , x) := µ
d−2

2 φ(µ2t , µx).

This preserves the linear equation φ̇ = ∆φ+ ξ.

Define
ϕ := sεφ

Then equation

φ̇ = ∆φ+ ξε +

{
(∇ϕ)2 KPZ

ϕ3 + rϕ GL

becomes

ϕ̇ = ∆ϕ+ ξ1 +

{
ε

2−d
2 (∇ϕ)2 KPZ

ε4−dϕ3 + ε2rϕ GL



Subcritical nonlinearity

In dimensionless variables
I Noise is smooth (UV cutoff is 1)
I Nonlinearity is subcritical if d < 2 (KPZ), d < 4 (GL)

However
I ϕ is defined on [0, ε−2T ]× (ε−1T)d

I Need to control arbitrary large times and volumes as
ε→ 0



Fixed point problem

Write the PDE
ϕ̇ = ∆ϕ+ v(ϕ) + ξ1

as a fixed point problem

ϕ = G(v(ϕ) + ξ1)

with G = (∂t −∆)−1 i.e.

(Gf )(t) :=

∫ t

0
e(t−s)∆f (s)ds

Note: The noise ξ1 is a.s. smooth so this is a trivial problem for
times of O(1).



Scale by scale
The fixed point equation

ϕ = G(v(ϕ) + ξ1)

involves spatial scales ∈ [1, ε−1] and temporal scales ∈ [1, ε−2].
Fix L > 1 and split

G = G< + G>

where G< has scales ∈ [1,L] and G> has scales ∈ [L, ε−1].
Look for ϕ = ϕ< + ϕ> so that

ϕ< = G<(v(ϕ< + ϕ>) + ξ1) (1)
ϕ> = G>(v(ϕ< + ϕ>) + ξ1) (2)

(1) is easy to solve: it has time O(L2), noise is smooth and
nonlinearity is small. Get ϕ< as a function of ϕ>:

ϕ< = ϕ<(ϕ>).



Renormalized equation
Inserting ϕ<(ϕ>) to large scale equation (2) get

ϕ> = G>(v(ϕ> + ϕ<(ϕ>)) + ξ1)

Rescale ϕ>(t , x) = L
2−d

2 ϕ′(L−2t ,L−1x). Get a renormalized
equation for ϕ′:

ϕ′ = G(v ′(ϕ′) + ξ1)

This is of the same form as the original equation except that
I ϕ′(t , x) has cutoff ε replaced by Lε
I The nonlinearity has changed to v ′.
I The map R : v → v ′ := Rv is renormalization map

Iterating this we obtain a sequence of Rnv and equations

ϕ = G(Rnv(ϕ) + ξ1).

This ϕ describes solution of original PDE on scales ≥ Lnε.



Effective equation

Upshot: solving the PDE⇔ study the iteration Rnv .
Start with

v = v ε =

{
ε

1
2 (∇ϕ)2 KPZ d=1
ε4−dϕ3 GL d

+ countertermsε

Define the effective equation for scales ≥ µ

v εµ := Rlog(µ/ε)v ε

Try to fix the counter terms so that for all µ the limit

vµ := lim
ε→0

v εµ

exists.



RG map

RG map R acts in a space of v , the nonlinear term in the PDE.

v is a map from functions ϕ(t , x) defined on space time to a
functions v(ϕ)(t , x) defined on space time.

R is a composition of translation

v(ϕ)→ v ′(ϕ) = v(ϕ+ ψ)

and scaling:
(Sv)(ϕ) = L2s−1v ′ ◦ s

where
(sϕ)(t , x) := L

2−d
2 ϕ(L−2t ,L−1x).

and ψ is solved from the short time problem

ψ = G<(v(ϕ+ ψ) + ξ1).



Linearized RG
Consider Rv to linear order in v : Rv = Lv +O(v2)
Scaling operator

Sv := L2s−1v ◦ s

has local eigenfunctions v(ϕ)(t , x) = ϕ(t , x)k , (∇ϕ(t , x))k . . . :

Sϕk = Lαkϕk , αk = 2− (k − 1)d−2
2

S(∇ϕ)k = Lβk (∇ϕ)k , βk = 2− k+1
2 d = 1

αk > 0 expanding (relevant), αk < 0 contracting (irrelevant).

To leading order in v , ψ = G<ξ1 and get

Lnϕk = Lαk (ϕ+ ηn)k

Ln(∇ϕ)k = Lβk (∇ϕ+∇ηL−n )k

ηL−n is the free field with UV cutoff L−n



Linearized RG

For KPZ in linear approximation effective equation becomes

v εµ = µ
1
2 (∇ϕ+∇ηε/µ)2

This has no limit as ε→ 0:

E(∇ηε/µ)2 ∼ ε−1

For GL one gets
v εµ = µ4−d (ϕ+ ηε/µ)3

This has no limit since

E(ηε/µ)2 ∼
{

log ε−1 d = 2
ε−1 d = 3



Counterterms
Why did this happen?

I KPZ nonlinearity (∇ϕ)2 is relevant with exponent 1
2 but has

size ε
1
2 which reproduces under iteration.

I However R produces a more relevant term, constant in ϕ
with exponent 3

2 and size ε
1
2 .

I This expands under iteration to (µ
ε )

3
2 ε

1
2 = O(ε−1).

Solution: add a constant to the original KPZ equation

φ̇ = ∆φ+ (∇φ)2 − E(∇ηε)2 + ξε.

Then the effective equation becomes

v εµ = µ
1
2 [(∇ϕ)2 + 2∇ϕ∇ηε/µ+ : (∇ηε/µ)2 :]

where
: (∇ηε/µ)2 := (∇ηε/µ)2 − E(∇ηε/µ)2)



Counterterms

For the GL equation R produces a relevant linear term in ϕ with
exponent = 2.

Defining the renormalized GL equation

φ̇ = ∆φ+ φ3 − 3(Eη2
ε )φ+ ξε.

the effective equation becomes

v εµ = µ4−d [ϕ3 + 3ϕ2ηε/µ + 3ϕ : η2
ε/µ : + : η3

ε/µ :]

The limits

lim
ε→0

: (∇ηε/µ(t , x))2 : = : (∇η(t , x))2 :

lim
ε→0

: ηε/µ(t , x)k : = : η(t , x)k :

are distribution valued random fields.



Nonlinear corrections: GLd=2
Denote the linear approximation by

uεµ = µ2 : (ϕ+ ηε/µ)3 :

and write
v εµ = uεµ + w ε

µ.

Since Luεµ = uεLµ we get

w ε
Lµ = Lw ε

µ +O(µ4).

In d = 2 ‖L‖ = L2 and so

‖w ε
Lµ‖ ≤ L2‖w ε

µ‖+ Cµ4.

Since 2 < 4 the inductive bound

‖w ε
µ‖ ≤ µ2+δ, δ > 0

iterates for µ ≤ µ0.

This becomes a proof once we work in a suitable Banach
space of v ’s. Thus normal ordering suffices to make the PDE
well posed.



Nonlinear corrections: GLd=3

Now
uεµ = µ : (ϕ+ ηε/µ)3 :

and ‖L‖ = L5/2 so that

‖w ε
Lµ‖ ≤ L5/2‖w ε

µ‖+ Cµ2

5/2 > 2 =⇒ not good! We need to compute v εµ to second
order:

v εµ = uεµ + Uε
µ + w ε

µ.

If the second order term satisfied

‖Uε
µ‖ ≤ Cµ2

we would get
‖w ε

Lµ‖ ≤ L5/2‖w ε
µ‖+ Cµ3

and since 5/2 < 3 we would be done.



Nonlinear corrections: GLd=3, KPZ

However, ‖Uε
µ‖ diverges as log ε.

Uε
µ is a (nonlocal) polynomial in ϕ and ηε/µ. and need addition

log ε mass renormalization to have ε→ 0 limit.

In KPZ coupling constant is ε
1
2 and ‖L‖ = L3/2 =⇒ need to go

to 3rd order.

By miracle 2nd and 3rd order terms have vanishing relevant
terms. The random fields occurring in them have ε→ 0 limit
and no new renormalizations are needed.

This is not true for multicomponent KPZ: need a log ε counter
term for the random fields occurring in third order.



Noise

We assumed perturbative terms ‖uεµ‖ have the obvious bounds
in powers of µ.

This can not be true since they involve the random fields : ηk :,
: (∇η)2 : etc.

These noise fields belong to Wiener chaos of bounded order
and their covariance is in a suitable negative Sobolev space

Hypercontractivity implies good moment estimates for them.

Borel-Cantelli =⇒ a.s. ∃µ0 > s.t. ‖uεµ‖ has a good bound.

On that event the R is controlled by a simple application of
contraction mapping in a suitable Banach space.

The time of existence is µ2
0 and it is a.s. > 0.



Spaces

What is the domain and range of v εµ(ϕ)?

The random fields in the perturbative part V ε
µ are H−2

loc in time
and H−4

loc in space. We let v εµ take values in H−2,−4
loc .

Since ϕ represents the large scale part of the solution we can
take ϕ smooth:

ϕ ∈ C2,4([0, µ−2T ]× µ−1Td )

We prove
v εµ : C2,4 → H−2,−4

loc

is analytic in a ball of radius µ−α, α > 0.



Superrenormalizable equations

KPZd=1 and GLd<4 are superrenormalizable (subcritical): the
dimensionless strength of nonlinearity is small in short scales.

Sine-Gordon equation

∂tφ = ∆φ+ g sin(
√
βφ) + ξ

for β < 16π. After normal ordering dimensionless coupling is

ε2−
β

8π g.

Need to expand solution to order k − 1 where (2− β
8π )k > 2.

So k →∞ as β ↑ 16π.

It is a challenge to carry this out for all β < 16π. Hairer and
Shen have controlled β < 32π

3 .
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