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The starting point
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Framework

ΛN ⊆ 1
NZ

d , lattice with mesh 1
N

η = configuration of particles

ηt(i) = number of particles at site i ∈ ΛN , at time t

η ∈ SΛN = configuration space

S =


{0, 1}
N
R
. . .
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Stochastic dynamics

ηt → stochastic Markovian evolution

Many degrees of freedom interacting

Harris graphical construction: ηt as a function of independent Poisson
processes
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Simple exclusion process
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Generator

The dynamics is encoded in the generator

LN f (η) =
∑
η′

c(η, η′)
[
f (η′)− f (η)

]
c(η, η′) = rate of transition from η to η′

η′ local modification of η
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Zero Range

η ∈ NΛN = configuration space

If one particle jumps from i to j we write η → ηi ,j

ηi ,j(k) =


η(i)− 1 if k = i
η(j) + 1 if k = j
η(k) if k 6= i , j

Rate of jump c(η, ηi ,j) = g(η(i))p(i , j)

g : N→ R+, g(0) = 0
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KMP model

η ∈ (R+)
ΛN ; η(i) = energy of an oscillator at i ∈ ΛN
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Boundary driven models

D. Gabrielli, University of L’Aquila Macroscopic Fluctuation Theory January 2016 10 / 69



Invariant measure

µN probability measure on the configuration space

PµN = Markovian probability measure on paths with initial condition
µN

µN is invariant if

PµN
(
ηt = η′

)
= µN(η′) ∀η′

Detailed balance ⇐⇒ reversibility

µN(η)c(η, η′) = µN(η′)c(η′, η)

Detailed balance =⇒ µN is invariant
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Large deviations

Law of large numbers

1

N

N∑
i=1

Xi → E(X1)

Central limit Theorem

1√
N

N∑
i=1

[Xi − E(Xi )]→ N (0, σ2)

Large deviations (Cramer Theorem)

P

(
1

N

N∑
i=1

Xi ∈ A

)
' e−N infx∈A I (x)

I (x) = Rate functional, I (x) ≥ 0 and I (E(X1)) = 0
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LDP formal statement

Sequence of random variables XN taking values on a Polish space M
satisfies LDP with speed α(N) and rate functional I : M → R+ ∩ {+∞} if

Upper bound

lim sup
N→+∞

1

α(N)
logP (XN ∈ C ) ≤ − inf

x∈C
I (x) ∀C closed

Lower bound

lim inf
N→+∞

1

α(N)
logP (XN ∈ O) ≥ − inf

x∈O
I (x) ∀O open

We write
P (XN ∼ x) ' e−α(N)I (x)
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Empirical measure

Coarse graining of a configuration of particles

Λ ⊆ Rd bounded domain

ΛN = Λ ∪ 1
NZ

d

η → πN(η) ∈M+ (Λ) positive measures on Λ

πN(η) =
1

Nd

∑
i∈ΛN

η(i)δi

∫
Λ
f dπN(η) =

1

Nd

∑
i∈ΛN

f (i)η(i)

A sequence of configurations is associated to a density profile ρ(x) if

πN(η)
N→+∞→ ρ(x)dx
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LDP and coarse graining

Exact microscopic structure of a stationary non equilibrium state is
difficult

Law of large numbers

lim
N→+∞

PµN

(∣∣∣∣∣
∫

[0,1]
f d πN(η)−

∫
[0,1]

f (x)ρ̄(x) d x

∣∣∣∣∣ ≥ ε
)

= 0

We are satisfied with the LDP asymptotics

PµN (πN(η) ∼ ρ(x)dx) ' e−N
dV (ρ)

We have V (ρ) ≥ 0 and V (ρ̄) = 0
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LDP and relative entropy

Relative entropy

H(νN |µN) =
∑
η

νN(η) log
νN(η)

µN(η)

Rate functional of large deviations is computed as a density of relative
entropy

h = lim
N→+∞

1

α(N)
H(νN |µN)

You have to find a suitable class of perturbations νxN and I (x) = h
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Contraction principle

XN satisfies a LDP on a metric space M with a rate functional I

f : M → M ′ continuous

f (XN) satisfies a LDP on M ′ with rate function

I ′(y) = inf
x : f (x)=y

I (x)
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LDP for product measures

1 dimensional SEP with equal sources at the boundaries is reversible
and has product invariant measure µαN
To compute LD the perturbations are still product =⇒ direct
computation

Law of large numbers πN(η)→ αdx in µαN probability

LDP rate functional

V α
SEP(ρ) =

∫
[0,1]

dx
[
f (ρ(x))− f (α)− f ′(α)(ρ(x)− α)

]
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Density of free energy

For SEP the density of free energy

f (ρ) = ρ log ρ+ (1− ρ) log(1− ρ)

Up to an affine term coincides with

f (ρ) = sup
λ

[ρλ− p(λ)]

where

p(λ) = lim
N→+∞

1

N
logEµαN

(
e
λ
∑

i∈ΛN
η(i)
)

(Gärtner–Ellis, pressure)
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LDP for zero range

Invariant measure always product even if not homogeneous

law of large numbers πN(η)→ ρ̄(x)dx in general not constant

Direct explicit computation of LD rate functional

VZR(ρ) =

∫
Λ
dx
[
f (ρ(x))− f (ρ̄(x))− f ′(ρ̄(x))(ρ(x)− ρ̄(x))

]
f and ρ̄(x) depend on the function g
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Non equilibrium SEP

When in contact with different reservoirs the 1-d boundary driven
SEP is not reversible

The invariant measure has combinatorial representations

The LD rate functional is not local

V (ρ) = sup
f
G(ρ, f )

The supremum is over functions satisfying f (0) = ρ− and f (1) = ρ+

determined by the sources

D. Gabrielli, University of L’Aquila Macroscopic Fluctuation Theory January 2016 21 / 69



LDP for non equilibrium KMP

1 dimensional non equilibrium boundary driven KMP is
macroscopically exactly solvable

LD rate functional for the invariant measure is

V (ρ) = inf
f
G(ρ, f )

where

G(ρ, f ) =

∫ 1

0
dx

[
ρ

f
− 1− log

ρ

f
− log

∇f
ρ+ − ρ−

]
The optimal f solves

f 2 ∆f

(∇f )2
− f = −ρ

G(ρ, f ) is a joint LDP rate functional =⇒ natural interpretation as
contraction over an hidden temperature profile f
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Current

(i , j) edge of the lattice

Ni ,j(t) = number of particles jumped from i to j up to time t

Net current across the edge (i , j)

Qi ,j(t) = Ni ,j(t)−Nj ,i (t)

antisymmetric
Qi ,j(t) = −Qj ,i (t)
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Empirical current

Empirical current is a vector valued measure on Λ× [0, t]

It is a function of a trajectory (ηs)s∈[0,t]

JN(η, s) =
1

Nd

∑
{i ,j}

(j − i)δ i+j
2

d Qi ,j(s)

ds

satisfies a discrete continuity equation

∂tπN(ηt) +∇ · JN(η, t) = 0
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Empirical current integrated

Let V (x , s) a smooth vector field

We have ∫ t

0

∫
Λ
JN(η, s) · V (s) dx ds

=
1

Nd

∑
`

V

(
i(`) + j(`)

2
, τ`

)
·
(
j(`)− i(`)

)
The sum is over all jumps in [0, t]

At time τ` one particle jumps from i(`) to j(`)
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LDP current 1-d open boundary ZR

Qi,i+1(t)
t satisfies LDP when t → +∞

Particles created at 0 contribute with + when die at 1

Particles created at 1 contribute with − when die at 0

0⇒1 with probability 1
N+1

1⇐0 with probability 1
N+1

At the left boundary effective Poisson of parameter α
N+1

At the right boundary effective Poisson of parameter β
N+1
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Large deviations

LDP for a Poisson process Γλt of parameter λ

P
(

Γλt
t
∼ x

)
' e−tΨ(x ,λ)

where
Ψ(x , λ) = x log

x

λ
+ λ− x

The current is exponentially close to the difference of two effective
independent Poisson

Qi ,i+1(t) ' Γ
α

N+1
t − Γ

β
N+1
t
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Contraction

P
(
Qi ,i+1(t)

t
∼ J

)
' e−tϕN(J)

where by contraction

ϕN(J) := inf
{x+−x−=J}

(
Ψ

(
x+,

α

N + 1

)
+ Ψ

(
x−,

β

N + 1

))
=

J

[
sinh−1

(
J(N + 1)

2
√
αβ

)
+ log

√
β

α

]
+

α + β

(N + 1)
−

√
J2 +

4αβ

(N + 1)2
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Scaling

Accelerating the rates by N2 (αN = αN2 and βN = βN2) we have

1

N
ϕN(NJ)→ Φ(J)

Φ(J) = J

[
sinh−1

(
J

2
√
αβ

)
+ log

√
β

α

]
+ α + β −

√
J2 + 4αβ .
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Freidlin–Wentzell theory

b Lipshitz vector field with an unique equilibrium point b(x̄) = 0,
globally attractive

diffusion process
dX ε

t = b(X ε
t )dt +

√
εd Wt

Invariant measure µε(dx) solves the corresponding partial differential
equation
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Large deviations

If b(x) = −∇U(x) the process is reversible

The invariant measure is

µε(dx) =
1

Zε
e−2ε−1U(x) dx

By Laplace Theorem we deduce a LDP when ε→ 0 with rate function
coinciding with 2U(x) up to a constant.

If the process is not reversible explicit computations are difficult
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Dynamic LDP

Trajectories (X ε(s))s∈[0,t] satisfy LDP when ε→ 0 with rate
functional (action of a Lagrangian)

I[0,t](x) =
1

2

∫ t

0
|ẋ(s)− b(x(s)|2 d s

Quasipotential

V (x) = inf
{y :y(−t)=x̄ ,y(0)=x}

I[−t,0](y)

The quasipotential coincides with the rate functional of the invariant
measure
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Minimization

Reversible case: simple minimizer, time reversal
Non reversible case: difficult problem, no time reversal symmetry
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Hamilton–Jacobi equation

The quasipotential V (x) solves the Hamilton–Jacobi equation

∇V (x) ·
[
∇V (x) + b(x)

]
= 0

Orthogonality condition
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Scaling limits

Diffusive rescaling LN → N2LN

The empirical measure satisfies law of large numbers
πN(ηt)→ ρ(x , t)dx

lim
N→+∞

PνN

(∣∣∣∣∣
∫

[0,1]
f d πN(ηt)−

∫
[0,1]

f (x)ρ(x , t) d x

∣∣∣∣∣ ≥ ε
)

= 0

ρ(x , t) solves 
∂tρ = ∇ · (D(ρ)∇ρ)
ρ(x , 0) = ρ0(x)
ρ(x , t) = ψ(x) x ∈ ∂Λ
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Examples

D(ρ) = Diffusion matrix, density dependent positive defined
symmetric matrix

SEP D(ρ) = I
Zero range D(ρ) = φ′(ρ)I, the function φ depends on the function g

KMP model D(ρ) = I
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Dynamic large deviations

Deterministic initial condition associated to a profile πN(η)→ ρ0(x)

Dynamic large deviations

Pρ0

(
πN(ηs) ∼ ρ(s),JN(η, s) ∼ j(s); s ∈ [0, t]

)
' e−N

dI[0,t](ρ,j)

If ρ(x , t) 6= ψ(x), x ∈ ∂Λ then I[0,t](ρ, j) = +∞
If ∂tρ+∇ · j 6= 0 then I[0,t](ρ, j) = +∞
The rate functional is computed from relative entropy of the paths
measure Pρ0

∣∣
[0,t]

and a suitable weak asymmetric perturbation PF
ρ0

∣∣
[0,t]
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Weakly asymmetric models

E : Λ→ Rd smooth vector field

When 1 particle jumps from i to j then η → ηi ,j and the work done
by the field is ∫

(i ,j)
E · dl = O

(
1

N

)
Perturbed rates

cE (η, ηi ,j) = c(η, ηi ,j)e
∫

(i,j) E ·dl = c(η, ηi ,j) + O

(
1

N

)
Weakly asymmetric model with generator LE having rates cE
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Scaling limits WA

Diffusive rescaling LEN → N2LEN
The empirical measure satisfies law of large numbers
πN(ηt)→ ρ(x , t)dx

ρ(x , t) solves
∂tρ = ∇ · (D(ρ)∇ρ)−∇ · (χ(ρ)E )
ρ(x , 0) = ρ0(x)
ρ(x , t) = ψ(x) x ∈ ∂Λ

χ(ρ) positive definite symmetric and density dependent mobility
matrix

Einstein relation
D(ρ) = χ(ρ)f ′′(ρ)
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Examples

SEP χ(ρ) = ρ(1− ρ)I
Zero range χ(ρ) = φ(ρ)I, the function φ depends on the function g

KMP model χ(ρ) = ρ2I
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Scaling limit empirical current

Empirical current satisfies law of large numbers

JN(η, t)→ j(x , t)dxdt

j(x , t) = −D(ρ(x , t))∇ρ(x , t) + χ(ρ(x , t))E (x , t) = J(ρ)

and ρ(x , t) is the solution of the hydrodynamic equation

D. Gabrielli, University of L’Aquila Macroscopic Fluctuation Theory January 2016 41 / 69



The principal formula

The suitable external field for computing LD is given by

j(x , t) = −D(ρ(x , t))∇ρ(x , t) + χ(ρ(x , t))F (x , t)

The rate function suitably weights the external field

I[0,t](ρ, j) =
1

4

∫ t

0

∫
Λ
F · χ(ρ)F dx dt

Principal formula

I[0,t](ρ, j) =
1

4

∫ t

0

∫
Λ

(j − J(ρ)) · χ−1(ρ) (j − J(ρ)) dx dt
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Lagrangian structure

Introduce the vector field

A(x , t) = A0(x)−
∫ t

0
j(x , s)ds

where ∇ · A0(x) = ρ0(x)

We have

j(x , t) = −∂tA(x , t) ρ(x , t) = ∇ · A(x , t)

The rate function becomes

I[0,t](ρ, j) =

∫ t

0
L(A, ∂sA) ds

The Lagrangian is

L(A, ∂tA) =
1

4

∫
Λ

(∂tA + J(∇ · A)) · χ−1(∇ · A) (∂tA + J(∇ · A)) dx

The constraint of the continuity equation disappears since it is
automatically satisfied (Schwartz theorem)
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Hamiltonian structure

The corresponding Hamiltonian is

H(A,B) = sup
ξ

{∫
Λ
B(x) · ξ(x) dx − L(A, ξ)

}
=

∫
Λ

[
B · χ−1(∇ · A)B − B · J(∇ · A)

]
dx

the Hamilton equations{
∂tA = 2χ(∇ · A)B − J(∇ · A)
∂tB = −∇

[
Tr
(
D(∇ · A)∇TB

)
− B · χ′(∇ · A)B

]
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Time reversal

Stationary process Pst(ηt = η′) = µN(η′) ∀t
θ = time reversal (θη)t = η−t

θη is still Markovian with generator L∗N with rates

c∗(η, η′) =
µN(η′)c(η′, η)

µN(η)

µN is still invariant for L∗N
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Time reversal again

By definition we have

Pst (πN(ηs) ' ρ(s) ,JN(η, s) ' j(s) ; s ∈ [t1, t2]) =

P∗st (πN(θηs) ' (θρ)(s) ,JN(θη, s) ' (θj)(s) ; s ∈ [−t2,−t1])

where (θρ)(x , s) = ρ(x ,−s) and (θj)(x , s) = −j(x ,−s)

By Markov property

Pst (πN(ηs) ' ρ(x , s)dx ,JN(η, s) ' j(x , s)dxds ; s ∈ [t1, t2])

' e−N
d [V (ρ(t1))+I[t1,t2](ρ,j)]
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Time reversal and large deviations

Time reversal symmetry at large deviations scale reads

V (ρ(t1)) + I[t1,t2](ρ, j) = V (ρ(t2)) + I∗[−t2,−t1](θρ,θj)

I∗ is the dynamic rate functional for the time reversed process

Assume I∗ has the same structure of the direct process

I∗[0,t](ρ, j) =

∫ t

0

∫
Λ

(j − J∗(ρ)) · χ−1(ρ) (j − J∗(ρ)) dx dt

J∗(ρ) is the typical current observed in the reversed process
associated to the density profile ρ
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Fluctuation dissipation and Hamilton–Jacobi

Take the time reversal relationship for LD in [−t, t], divide by 2t, take
the limit t → 0 =⇒ instantaneous relationships

Fluctuation dissipation

J(ρ) + J∗(ρ) = −2χ(ρ)∇δV
δρ

Hamilton–Jacobi equation∫
Λ
JS(ρ) · χ−1(ρ)JA(ρ) dx

Symmetric and antisymmetric part of the current{
JS(ρ) = J(ρ)+J∗(ρ)

2

JA(ρ) = J(ρ)−J∗(ρ)
2
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Projection to the density

Large deviations for fluctuations of the density alone

Pρ0 (πN(ηs) ∼ ρ(x , s)dx , s ∈ [0, t]) ∼ e−N
d I[0,t](ρ)

By contraction

I[0,t](ρ) = inf
{j :∇j=−∂sρ}

I[0,t](ρ, j)
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Dynamic LDP for the density

The minimum is obtained for gradient vector fields

I[0,t](ρ) =

∫ t

0

∫
Λ
∇H · χ(ρ)∇H dx ds

where H solves{
−∂sρ+∇ · (D(ρ)∇ρ) = ∇ · (χ(ρ)∇H)
H(x , s) = 0 x ∈ ∂Λ
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Quasipotential

Quasipotential
V (ρ) = inf

t
inf
ρ̂
I[−t,0](ρ̂)

The infimum is over time dependent density trajectories that satisfies
ρ̂(x ,−t) = ρ̄(x) and ρ̂(x , 0) = ρ(x)

ρ̄(x) is the stationary solution of the hydrodynamic equation{
∇ · (D(ρ̄)∇ρ̄) = 0
ρ̄(x) = ψ(x) x ∈ ∂Λ

The quasipotential coincides with the LDP rate functional for the
invariant measure
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Time reversal again

Time reversal symmetry for densities

V (ρ(t1)) + I[t1,t2](ρ) = V (ρ(t2)) + I ∗[−t2,−t1](θρ)

For a time dependent density trajectory ρ̂ satisfying ρ̂(−t) = ρ̄ and
ρ̂(0) = ρ we have

I[−t,0](ρ̂) = V (ρ)− V (ρ̄) + I ∗[0,t](θρ̂) ≥ V (ρ)

The minimizer ρ̂m solves

I ∗(θρ̂m) = 0

This means ρ̂m = θρ̂∗ where ρ̂∗ is the solution of the hydrodynamic
equation of the time reversed process with initial condition ρ(x)
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Examples

Equilibrium 1-d boundary driven SEP (Reversibility)

Reversibility: LN = L∗N , I = I ∗

Minimizer time reversal of hydrodynamic equation{
∂tρ = ∆ρ
ρ(0, t) = ρ(1, t) = α

J(ρ) = J∗(ρ) = −∇ρ
JS(ρ) = J(ρ), JA(ρ) = 0
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Equilibrium (non homogeneous)

Boundary sources and external field

Stationary solution hydrodynamics ∇ · J(ρ̄) = 0

Macroscopic equilibrium condition: J(ρ̄) = 0

Local rate functional

V (ρ) =

∫
[0,1]

dx
[
f (ρ(x))− f (ρ̄(x))− f ′(ρ̄(x))(ρ(x)− ρ̄(x))

]
This happens if J(ρ) = −D(ρ)∇ρ+χ(ρ)∇G for a suitable function G

J(ρ) = J∗(ρ)
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Zero Range

Always local rate functional but in general J(ρ̄) 6= 0, not reversible

We have {
J(ρ) = −φ′(ρ)∇ρ
J∗(ρ) = −φ′(ρ)∇ρ+ φ(ρ)E

The external field associated to the hydrodynamics of the time
reversed process is

E (x) = 2f ′′(ρ̄(x))∇ρ̄(x)
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Conditions for locality

The large deviations rate functional is local for any boundary
conditions and for any external field when D and χ are diagonal and

D(ρ)χ′′(ρ) = D ′(ρ)χ′(ρ)

On the d−dimensional torus when D(ρ) = D(ρI) and χ(ρ) = χ(ρ)I
and there is an external field

E (x) = −∇U(x) + Ẽ (x)

where ∇Ẽ (x) = 0 and ∇U(x) · Ẽ (x) = 0 for any x .

In this case in general no reversibility and{
J(ρ) = −D(ρ)∇ρ+ χ(ρ)(−∇U + Ẽ )

J∗(ρ) = −D(ρ)∇ρ+ χ(ρ)(−∇U − Ẽ )
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Non equilibrium 1-d SEP

Different boundary reservoirs, non reversible, non local rate functional

V (ρ) = sup
f

∫ 1

0
dx

[
ρ log

ρ

f
+ (1− ρ) log

(1− ρ)

(1− f )
+ log

∇f
ρ+ − ρ−

]
The sup is over increasing functions such that f (0) = ρ− and
f (1) = ρ+

The optimal f solves

f (1− f )
∆f

(∇f )2
+ f = ρ

We have J(ρ) = −∇ρ and J∗(ρ) = −∇ρ+ χ(ρ)E where

E (x) =
2∇f (x)

f (x)(1− f (x))
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Hamilton Jacobi

Hamilton–Jacobi equation can be rewritten as∫
Λ

[
∇δV
δρ
· χ(ρ)∇δV

δρ
− δV

δρ
∇ · J(ρ)

]
dx = 0

1-d SEP; we search for a solution of the form

δV

δρ
= log

ρ

1− ρ
− log

f

1− f

After some tricky integrations by parts H-J equation becomes∫ 1

0

(
· · ·
)δG
δf

dx = 0
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The solution

We use the functional

G(ρ, f ) =

∫ 1

0
dx

[
ρ log

ρ

f
+ (1− ρ) log

(1− ρ)

(1− f )
+ log

∇f
ρ+ − ρ−

]
Note that δG

δρ = log ρ
1−ρ − log f

1−f
We have that G(ρ, f [ρ]) solves the Hamilton–Jacobi equation when
f [ρ] is critical since

δG(ρ, f [ρ])

δρ
=
δG
δρ

= log
ρ

1− ρ
− log

f [ρ]

1− f [ρ]

Same computation if D(ρ) = 1 and χ(ρ) a second order polynomial
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Time averaged current

Average current on [0, t]

1

t

∫ t

0
JN(η, s) ds

LD for averaged current

Pρ0

(
1

t

∫ t

0
JN(η, s) ds ∼ J(x)dx

)
' e−N

d tΦt(J)

By contraction

Φt(J) =
1

t
inf

(ρ,j)∈At

I[0,t](ρ, j)

The infimum is over

At =

{
(ρ, j) : ∂sρ+∇ · j = 0 ,

1

t

∫ t

0
j(s)ds = J

}
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Long time behavior

When t → +∞ only divergence free J are relevant

For J divergence free tΦt(J) is subadditive

(t + s)Φt+s(J) ≤ tΦt(J) + sΦs(J)

Indeed if (ρ1, j1) ∈ At and (ρ2, j2) ∈ As then ρ1(0) = ρ1(t) = ρ2(0).
We can concatenate the trajectories getting an element of At+s

There exists
Φ(J) = lim

t→+∞
Φt(J) = inf

t
Φt(J)
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Independence from the initial condition

In principle Φ(J) depends on the initial condition ρ0

This dependence is irrelevant

Starting from a different initial condition ρ′0 you go in finite time to
ρ0 then at the end you come back to ρ′0 with an inverted current.
The finite transient is irrelevant on long times
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Convexity

If J = pJ1 + (1− p)J2 then

Φ(J) ≤ pΦ(J1) + (1− p)Φ(J2)

Let (ρ1, j1) ∈ Apt(J1) and (ρ2, j2) ∈ A(1−p)t(J2).

Since J1 and J2 are divergence free we can concatenate them into
(ρ, J) ∈ At(J)

Since

1

t
I[0,t](ρ, j) = p

1

pt
I[0,pt](ρ1, j1) + (1− p)

1

(1− p)t
I[pt,t](ρ2, j2)

Optimizing over (ρ1, j1) and (ρ2, j2) we get

Φt(J) ≤ pΦpt(J1) + (1− p)Φ(1−p)t(J2)

Take now the limit t → +∞
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Special paths

Since J is divergence free then a time independent path
(ρ, j) = (ρ(x), J(x)) ∈ At and

I[0,t](ρ, j) = t

∫
Λ

(J − J(ρ)) · χ−1(ρ) (J − J(ρ)) dx

Since we have independence from the initial condition we deduce

Φt(J) ≤ inf
ρ

∫
Λ

(J − J(ρ)) · χ−1(ρ) (J − J(ρ)) dx = U(J)

U(J) is the prediction for current fluctuations of the additivity
principle; not necessarily convex

We deduce Φ(J) ≤ U(J). When does equality hold?

D. Gabrielli, University of L’Aquila Macroscopic Fluctuation Theory January 2016 64 / 69



Dynamic phase transitions

When Φ(J) < U(J) we say that there is a dynamic phase transitions

Open systems, no external field D(ρ) = D(ρ)I and χ(ρ) = χ(ρ)I with

D(ρ)χ′′(ρ) ≤ D ′(ρ)χ′(ρ)

In this case Φ(J) = U(J), no phase transition

Follows by a joint convexity argument

1

t
I[0,t](ρ, j) ≥

∫
Λ

(J − J(ρ∗)) · χ−1(ρ∗) (J − J(ρ∗)) dx

where J = 1
t

∫ t
0 j(s)ds and ρ∗ = 1

t

∫ t
0 ρ(s)ds

This implies Φ(J) ≥ U(J) and the equality follows
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Periodic systems

A system in the d dimensional torus of side length 1 with constant
external field E

If D(ρ) = D(ρ)I and χ(ρ) = χ(ρ)I and

|J|2

χ(ρ)
+ |E |2χ(ρ)

is convex in ρ

The minimizer for computing U(J) is constant in space ρ̄

U(J) =
1

4

|J − χ(ρ̄)E |2

χ(ρ̄)

D. Gabrielli, University of L’Aquila Macroscopic Fluctuation Theory January 2016 66 / 69



Traveling waves

For special models on the torus it is possible to construct a periodic
traveling wave (ρ, j) = (ρ(x − vt), j(x − vt)) of period T such that

1

T
I[0,T ](ρ, j) < U(J)

Dynamic phase transition

WASEP for special values of the external field and current

KMP without external field for large enough currents
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An example

1 dimensional open boundary systems without external field, U(J) is
explicitely computed

Divergence free currents are constant

Zero range we known Φ(J) = U(J) and

U(J) = inf
ρ

∫ 1

0

(J + φ′(ρ(x))∇ρ(x))2

φ(ρ(x))
dx

Change of variables α(x) = φ(ρ(x)) =⇒ independence on g

U(J) = inf
α

∫ 1

0

(J +∇α(x))2

α(x)
dx

Euler-Lagrange equations =⇒ explicit solution

D. Gabrielli, University of L’Aquila Macroscopic Fluctuation Theory January 2016 68 / 69



Gallavotti–Cohen type symmetries

By a symmetry that holds at finite time we deduce

Φ(J)− Φ(−J) = −
∫

Λ
J · E dx +

∫
∂Λ

dσλ(x)J(x) · n(x)

When Φ = U this can be generalized.

J and J ′ divergence free and |J(x)|2 = |J ′(x)|2 for any x then

U(J)− U(J ′) =
1

2

[∫
Λ

(J ′ − J) · E dx +

∫
∂Λ

dσλ(J − J ′) · n
]
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