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Growth in biological systems

Different body parts in animals grow roughly at the same rate.



Proportionate growth in biology

I Proportionate growth is typical in animal kingdom.
Also some parts of plants, say leaves.

I Easier problem than development of animal from a single cell.

I Qualitatively different for previously studied models of
growth in physics.



Proportionate growth in biology

I Proportionate growth requires regulation, and/or
communication between different parts.

I Same food becomes different tissues in different parts of the
body.

I The standard biological answer only identifies different
chemical agents that achieve this. Variously called growth
factors, inhibitors, harmones....“the knife did it!”

I This growth is orchestrated by the genetic program encoded
in the animal’s DNA, which turns on and off the production of
different proteins, and controls which cells divide, and when.



This is undoubtedly correct, but a bit reminiscent of organized
placard displays.

A 1940’s picture of an organized placard display in China.

Can we find a simpler physical/ mathematical model that achieves
this function, ignoring chemical detail?

In the spirit of
d’ Archy Wentworth Thomson, “ on Growth and form”, (1917).
Von Neumann, “ Theory of self-reproducing automata”, (1966)



Growth Phenomena in Physics

Figure: Earlier sudied models of growth in physics: (a) A DLA cluster,
(b) Epsom salt crystals grown from solution, (c) An invasion percolation
cluster

In all these cases, inner parts do not grow further. Proportionate
growth is qualitatively different.
In fact, non-biological physical systems showing proportionate
growth are hard to find.



Pattern formation in Physics
Time-evolving complex spatio-temporal patterns.



Characterizing complex patterns

Simple dynamical rules can generate complex patterns.
A long string of binary digits 001001101001..., with update rule
x ′i = [xi−1 + xi+1](mod2), generates the Sierpinski gasket.

More complex patterns like the Mandelbrot set are specified by
simple rules, but are difficult to characterize in detail.

Figure: (a) The Sierpinski gasket (b) Mandelbrot set



Self-organization and sandpiles

In 1970’s, Haken, Prigogine introduced the idea of living systems
being ‘self-organized’.

In 1987, Bak et al realized that many natural systems are
self-organized to be at the edge of stability, and called these
Self-Organized Critical.

They proposed a sandpile model as prototype model of SOC.
Many earlier studies about the power-laws in distribution of
avalanche sizes.



Pattern formation and proportionate growth in
growing sandpiles

I A simple cellular automaton model showing proportionate
growth

I Analytically tractable, non-trivial beautiful patterns

I Robustness with respect to noise



Proportionate growth in sandpile patterns

Basic facts from biology:

I Food required for growth. Reaches different body parts.

I Cell-division occurs only if the cell has enough nutrients.

A well-studied model of threshold dynamics is the Abelian Sandpile
Model

Definition of ASM:

I Non-negative integer height zi at sites i of a square lattice

I Add rule: zi → zi + 1

I Relaxation rule : if zi > zc = 3, topple, and move one grain to
each neighbor.

Rule for forming patterns:
Add N particles at one site on a periodic background, and relax.
Generalization to other lattices, higher dimensions



Sandpile Model: toppling rules

Start with a stable configuration, and add a particle :

0 0 0 0 0

0 0 0 0 0

0 0 4 0 0

0 0 0 0 0

0 0 0 0 0

−→

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 0 1 0 0

0 0 0 0 0

−→

0 0 0 0 0

0 0 3 0 0

0 3 4 3 0

0 0 3 0 0

0 0 0 0 0

Finally, we get stable configuration:

0 0 1 0 0

0 2 1 2 0

1 1 0 1 1

0 2 1 2 0

0 0 1 0 0

.



Proportionate growth

Figure: Patterns formed on a square lattice with initial height 2 at all
sites. N = (a)4× 104 (b) 2× 105 (c) 4× 105. Color code 0, 1, 2, 3 =
R,B,G,Y

Diameter ∼
√
N.



Figure: Patterns produced by adding 400000 particles at the origin, on a
square lattice ASM, with initial state (a) all 0. Color code 0, 1, 2, 3 =
R,B,G,Y



Figure: (a) the F lattice (b) Pattern produced by adding 105 particles at
the origin, with initial state alternating columns of 1’s and 0’s.
Color code: B = 0,W = 1



Figure: Pattern produced by adding 2x105 particles at the origin, on the
F-lattice with initial background being checkerboard. Color code: 0 =R,
1=Y



Precise definition of Proportionate Growth

Let TN(~R) = the number of topplings at point ~R.

Define reduced coordinate ~r = ~R/Λ, Λ = diameter

Proportionate growth if scaling for large N:

For large N, TN(~R) ∼ Λaφ(~r), with Λ ∼ N1/b

A non-trivial φ(~r) defines proportionate growth, and the
asymptotic pattern.

The excess density of grains ∇2φ(~r) is bounded, for ~r 6= ~0 implies
a ≤ 2.



The Key Observation
S. Ostojic (2003).

I Proportionate growth.

I Periodic height pattern in each patch. [ignoring Transients]

Examples of periodic patterns in patches



The Main Result

In each patch with a periodic height pattern, we can only have

a = 2, and φ(x , y) is a quadratic function of x and y ,
Or
a = 1, and φ(x , y) is a linear function of x and y .

Proof:
Expand φ(x0 + ∆x , y0 + ∆y) in a Taylor series:
φ(x0 + ∆x , y0 + ∆y) = φ(x0, y0) +A∆x +B∆y + ..+K (∆x)3 + ..
Equivalently,
TN(X ,Y ) = . . .+ K (∆X )3/Λ3−a

For finite ∆X integer, T is also integer, and no proliferation of
defect lines ⇒ K = 0.
Same is true for all higher powers.
For a non-trivial dependence on x , y , if quadratic term is not zero,
a = 2. Else, a = 1. Independent of dimension.



The function φ(x , y) is a piece-wise linear (quadratic) function of
(x , y), but with an infinite number of pieces.



Dependence of the diameter Λ with N

This is much less constrained.

I If the initial background density is low enough everywhere,
Λ ∼ N1/d

I If many sites have large heights
Λ =∞ for finite N

I For an in-between set of periodic backgrounds
Λ ∼ Nα for 1/d < α ≤ 1

If Λ ∼ Nα, with α > 1/2
We construct an infinite family of periodic backgrounds on the
F-lattice that seem to have a different α for each member.



Patterns with fast-growing sandpiles

Directed traingular lattice with honeycomb background pattern

Diameter ∼ N

Figure: Directed triangular lattice. In the background configuration, filled
and unfilled circles denote z = 1 and 2. Here diameter ∼ N



Examples of patterns with fast-growing sandpiles

The ‘Bat-pattern’ on F-lattice
Here Λ ∼ Nα, α ≈ 0.55

Figure: Only the boundaries of patches are shown.



Quantitative characterization

Consider the case with a = 1, say the triangular lattice pattern.
The exact characterization of the patterns involves four steps:

I φ(ξ, η) is a piece-wise linear function, with rational slopes.
Parameterize as φP(ξ, η) = aP ξ + bP η + cP

I The allowed values of (aP , bP) for different patches form a
periodic hexagonal lattice.

I The condition that three patches meet at a point implies that
cP satisfies a Laplace equation on the adjacency graph of
patches.

I Exact solution of these equations gives the exact boundaries
of patches

For a = 2, the procedure is similar, but quadratic functions need
six parameters per patch.



Figure: Pattern produced by adding 2x105 particles at the origin, on the
F-lattice with initial background being checkerboard.

This pattern can be characterized exactly.



Pattern formation in a noisy background

In presence of noise, the function φ is no longer polynomial, but
the proprtionate growth still holds.

Figure: Pattern grown on the F-lattice with some heights 1 replaced by
0’s. (a) 1% sites changed, N=228,000 , (b) 10% changed, N= 896,000.



If some 0’s are also repalced by 1’s, the effect is more dramatic.

Figure: Pattern grown on the F-lattice with some heights flipped. (a) 1%
sites changed (b) 10% sites changed



At higher noise level, the details of the pattern are not easy to see,
but averaging over different realizations of noise brings out the
pattern clearly.

Figure: F-lattice, checkerboard with 20% sites flipped. N = 57000. (a)
single realization (b) averaged height over 105 realizations.



Figure: Averaged change in height with increasing noise strength
10%, 30%, 50% The color code for each pattern representing the height
values are shown in the colorbar.



If we apply a z → 1/z2 transformation to these figures, we get

Figure: Result of applying 1/z2 transformation. Note the nearly gridlike
pattern

This suggests that we can write the change in density as

∆ρ (x , y) ≈ A(ρ)g(x , y), (1)

Where ρ is the background density



This suggests that the simplest perturbation to the density field in
the high noise limit is a periodic perturbation in the z ′-coordinates.

g(x , y) = − cos
πx ′

2
cos

πy ′

2
, (2)

where x ′ = 2xy
(x2+y2)2

, and y ′ = x2−y2

(x2+y2)2
.

A pictorial representation of this function is given below.

Figure: Density pattern using the function g(x , y), compared to actual
pattern. The black lines are contours of constant density.



Figure: A zoom-in on the theoretical lowest -mode density perturbation
g(x , y).



Discrete Analytic Functions
Functions defined only on discrete points in the complex z− plane.

Discrete Cauchy-Riemann conditions:

F (z1)− F (z3)

z1 − z3
=

F (z2)− F (z4)

z2 − z4



On a square grid :

∆F13 + ∆F35 + ∆F57 + δF71 = 0

is equivalent to

∆F02 + ∆F04 + ∆F06 + ∆F08 = 0

Discrete Laplace Equation.
Sum, but not product, of discrete analytic functions is also DA



We find that the coefficients of the linear terms in the toppling
function define a discrete analytic function d + ie of the complex
variable m + in, where (m, n) is the patch label.
These conditions, and the asymptotic behavior for large |m + in|
determine the toppling function, and hence the pattern,
completely.
The pattern on the F-lattice involves the discrete analytic function
D1/2(z), which is analog of the anlytic function z1/2, defined by

D1/2(0) = 0, and D(z)→ z1/2, for |z | → ∞.
Growing sandpiles near an edge /wedge involve other fractional
powers of zn.

DA’s on multiple Riemann sheets.



These simple rules can give rise to patterns that are unexpectedly
like true life.

Figure: (a) A flower. (b) pattern produced by adding 256k particles on
the F-lattice, with tilted squares backgound with spacing 4. Different
colours denote different densities of particles, averaged over the unit cell
of the background pattern



Figure: (a) A larva pattern. Produced on square lattice, with particle
transfer on toppling only to up, down, right neighbors. Here N = 104.
Particles are added at the left column center. Color code: 0=white, 1=
red, 2=yellow.



Summary

I Growing sandpiles give a simple model showing complex
patterns, and proportionate growth.

I Exact characterization of asymptotic pattern in some cases.

I Robustness to small noise in initial background.

I Characterization of patterns on noisy backgrounds ?



Thank You.
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Connection to Tropical Mathematics

Define
a⊕b = Max [a, b] (3)

a⊗ b = a + b (4)

Then standard properties of usual addition and multiplication (
commutative, identity, distributive ..) contiue to hold.
Example: 3⊕5⊕2 = 5

3⊗ 4 = 7
Tropical polynomials: a⊗ x ⊗ x ⊕ b ⊗ x ⊕ c
Example: x ⊗ x⊕2⊗ x⊕5 = Max [2x , x + 2, 5].
Fundamental theorem of tropical algebra.

A piecewise -linear convex function can be represented as a
tropical polynomial.



Hence may be useful for describing the toppling function function
in growing sandpiles where toppling function is piece-wise linear.

Figure: (a) A piece-wise linear function c ⊕ b⊗ x ⊕ a⊗ x ⊗ x (b) Graph
of the toppling function for the fast-growing sandpile on triangular lattice



Or crumpled paper.

Figure: Crumpled paper. Picture taken from the internet
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