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Course on Quantum Mechanics

@ Hamiltonian H = H' on finite-dim Hilbert space H = (C?)®¢.

@ H looks like Markov generator, but we need all its
eigenvectors, not just the lowest one.

@ ‘States’ are vectors in ® € H ~ phase-space points.

@ Instead of 'functions on phasespace’ we have 'operators O on
‘H': Natural pairing:

(b, 00) = (¢|0|®) = 'value of O in ¢’

Time-evolution: ®(t) = e *Hd(0).
= useful to know the eigenvectors and eigenvalues of H.

Eigenvectors, eigenvalues denoted by W, E(¢)) ('Energies’).

Conserved quantities’ O:

[0,H] =0 = (&(t)|0]®(¢)) = ((0)|O|#(0))



Transport through a quantum chain

@ Hamiltonian dynamics of spin chain + Markov baths.

@ Magnetization 5% locally conserved = study 5% profile.

Model of chain: disordered XXZ-chain
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H=7 Z(Sf(sﬁrl + 5757 1) + VSiSH, + Z h(i)S7

24
i=1

© Pauli spin matrices S¥, 57, 57 at site .

@ Random fields h(i) € [—h, h] (uniform and i.i.d.)
© Relevant disorder parameter: h/J.

© Total magnetization: ;57 is conserved: [ ; S7, H] = 0.

Question: NESS-profile of (57)ness when baths set different
boundary values.
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Intuition: Two-site model

Drop V5757, and set 2H, = S*S¥; + S7S/.,

H(J) = hlsf + h2522 + JH/,

J =0 : Eigenstates: simple tensors n = | 1), | TJ),. ...

[T =1Ti1®] )2, Sty =11, Sl =~

Eigenvalues are

n [ [ | [ 1) |14 |41
E(n) | hi+h [ hi—h | —h—h|—-h+h

J > 0 : (Analytic) spectral perturbation theory applies if

||JH,H§?L_n,]E—E’| < J<2/hi—ha| (J < 2|h1],2]h2))
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J > 0 : (Analytic) spectral perturbation theory applies if

||JH,H§?L_n,]E—E’| < J<2/hi—ha| (J < 2|h1],2]h2))

Conclude: J < |hy — hy| = J > 0 eigenstates close to 7.



Localization if J < |h; — h2|. New eigenstates close to old 7.

- | t1) and | J1) do not

L. mix

Diagonalize H = UHU! in S7-basis: [H, S7]=0
Then construct quasilocal pseudo-spins

S7 = UTS?U  satisfying  [H,S7] =0, 57 = Siz—i-(’)(m)



Localization if J < |h; — h2|. New eigenstates close to old 7.

- | t1) and | J1) do not

L. mix

Diagonalize H = UHU! in S7-basis: [H, S7]=0
Then construct quasilocal pseudo-spins

57 =U'S?U  satisfying  [H,S7] =0, 57 = Siz—i-(’)(m)

Delocalization if J > |h; — ha|. No PT. n are resonant = mix. §,-Z
are non-local (fully spread over 2 sites)



Intuition for full chain
H = Z h;S? + JH;,

Bond (i, i+ 1) resonant when |h; — hjy1| < J

hx
Eesonances delocalized spots
— 7 l \/ hY
. (L 1(_’\\1 [N
% AL

@ Strong disorder J < h = Resonant bonds are sparse and
isolated. PT works well away from resonances.

@ At resonances: No PT, uncontrolled diagonalization, but at
least they are isolated.

@ Using uncontrolled but extremely plausible assumption, Imbrie
(2014) proves that diagonalization can thus be done.




Many Body Localization: Precise Statement

Diagonalization: 3 unitary U: UHU' = H such that
o H is diagonal in 7-basis (S*-basis).

H Zg,s + 8i, ,+15 5,_|_1 + 8i,i+1, I+2S 5:+151+2

Couplings |gi,...itn| < e Cn except at rare resonant spots.
@ U quasilocal: 0 = UO,U* is quasilocal around x for local O,.

Consequence: Conserved pseudo-spins §,- = UTS,-ZU:

[S?,H=0 = [S7 H]=0.

H=Y gSi+... = H=> g5+

We have a full set of (quasi)-local conserved quantities §,-Z.
H = H(S7) can be viewed as a chain of non-interacting
pseudo-spins! This is a robust form of integrability.




Localization as a dynamical phase transitioin

o 2L eigenvectors W of H.

o Write >y, ., ... for sum over all W with energy density
E(W)/L around e. There are d(e) of them.

@ The equilibrium-ensemble value is (O)e = die Y woe(VIO|V)
@ Order parameter

=X = 7 3 [ISEI) — (57)e)°
€ yoe

o 'Eigenstate Thermalization Hypothesis' (ETH) ~ ergodic
hypothesis. Eigenvectors behave as eigenvectors of random
matrices (GOE) = good concentration inqualities:

(V|OW) =~ (O)e, YV — e, V local O
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Ergodicity-Localization Phase Transition (in 1D!)

Small disorder: lim;  Ex(x) =0 (ETH) _
Large disorder: lim; E,(x) > 0 (Trivial if we replace S7 — S7)




Chain of (classical) coupled rotors

2
ZH = Z + Jeos(f; — 0i11), 6 € Si,wieR

Wy _ -
‘ /?.\: [ 8 fe,
- - <w3

Canonical coordinates 8; = w;,w; = —0p,H



Chain of (classical) coupled rotors

2
ZH, = Z + Jcos(0; — 6i11), 0; € S1,w;i €R

Wy . .
/o0 [oo (o, )
Canonical coordinates 9,- = wj,w; = —0p;H

Rotors i, i + 1 in resonance when |w; — wjt1] < J.

Gibbs measure oc e " Probg(|w; — wit1| < J) ~ JVB

Res. sparse if J\/3 < 1 = intuition from quantum applies.
Difference I: Even for 3 rotors, 3 chaotic regions: KAM not in
entire phase-space (Quantum: Can always diagonalize finite
system)

e Difference II: Location of Res. can change (no quenched
disorder) = even sparse chaotic spots can transport.



'Asymptotic Localization" (~ Many-Body Nekoroshev)

We do not expect genuine MBL, but still some slow dynamics.

Theorem (DR-Huveneers, 2013)

Let H[a,b] = Za§i<b Hi and AHa,b(t) = Ha,b(t) = Ha,b(o)-

(AH.p(1)2)s < C(m, B)JY4, t < J~™C(m,B), any m >0

@ For a ‘normal’ system, expect (-) o< Jt until saturation at
()~ 1b—al

@ Here, growth much slower: Initial fluctuations are frozen in for
long time.

@ Real Nekoroshev: H, stable in all of phase space. Here: with
large proba. (Indeed: small energies = fast ballistic transport)

@ We expect conductivity k ~ J™. Indirect Proof: add small
noise O(J™), then k = O(J™) indeed.



