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with P. Ferrari, E. Presutti, N. Soprano-Loto (in preparation)

Model with biological interpretation in terms of evolution and
selection.

N individuals (this number will not change in time).

Each individual is in a state represented by a real number, the
larger its value the better the state of the individual.

Individuals keep changing their state randomly modeled as

independent Brownian motion.
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The population goes towards a better fitness because:

each individual independently of the others duplicates
creating a new individual in its same position.

as N is constant we must then

delete the weakest individual, namely the leftmost particle.
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We study the limit as N →∞ of the empirical averages and
prove convergence to a deterministic function u related to the
solution of the free boundary problem:

ut =
1
2

uxx + u, in (Lt ,+∞)

u(x ,0) = ρ0(x)
∫
ρ0 = 1

with boundary conditions at the left edge Lt (the free boundary)

u(Lt , t) = 0,
1
2

ux(Lt , t) =
∫ ∞

Lt

u(x , t)dx

and therefore the total mass is conserved so that 1
2ux(Lt , t) = 1

d
dt

∫ ∞
Lt

u(x , t)dx = −1
2

ux(Lt , t) +
∫ ∞

Lt

u(x , t)dx
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This process is in the family of branching- selection models
introduced by Brunet-Derrida to study the effect of microscopic
noise in front propagation.

- E. Brunet, B. Derrida, Shift in the velocity of a front due to a
cutoff. Phys. Rev. E, 56 2597–2604 (1997)

- E. Brunet, B. Derrida, Effect of macroscopic noise on front
propagation. J. Stat. Phys., 103 269–282 (2001)

Maillard studied extensively this issue obtaining accurate
results for the speed.

- P. Maillard Branching Brownian motion with selection (2012)
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R. Durrett and D. Remenik considered a different process in
the same class.
Each of the N particles gives rise to a child at rate one.
The position of the child of a particle at x ∈ R is x + y with y
chosen according to a symmetric probability p(x , y).
At each birth event the left-most particle is removed.
They prove that the empirical averages is described in the limit
N →∞ by the solution u(·, t), t ≥ 0 of an integro-differential
equation with a free boundary.

R. Durrett, D. Remenik, Brunet-Derrida particle systems, free
boundary problems and Wiener-Hopf equations, Annals of
Probability 39, 2043–2078 (2011).
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We have developed a theory which includes our model but
applies also to a large class of systems: models for heat
conduction, queuing theory, propagation of fire, interface
dynamics.....

Main feature in the microscopic-particle version is that the
interaction has a topological nature and the particles evolution
is a free boundary problem.

Gioia Carinci, Cristian Giardinà, Pablo Ferrari, Errico Presutti

MODELS FOR EVOLUTION AND SELECTION.



Particles move in d = 1 and there are two edges or one edges.
An edge is a rightmost or a leftmost particle.

The rule of dynamics are the usual ones: particles are either
free (independent random walks or Brownian motions) or they
have some local interaction (for instance simple exclusion) and
on top of that particles may duplicate via a branching process.

The topological interaction refers to the fact that the edges are
special as they may disappear at some given rate being then
replaced by new edges, the rightmost and leftmost particles
among those which have survived.

The notion of edges has a topological nature.

Correspondingly the macroscopic version is a free boundary
problem for a PDE with Dirichlet condition.
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For instance in the problem of heat conduction the macroscopic
equation is

∂u
∂t

=
1
2
∂2u
∂x2 , in [Lt ,0]

with u(x ,0) = ρ0(x) ≥ 0 and boundary conditions

u(Lt , t) = 0
1
2
∂u
∂x

∣∣∣
r=Lt

=
1
2
∂u
∂x

∣∣∣
x=0

= 1

the condition in 0 means that there is a mass source at 0 of rate
1. Thus the total mass is preserved.∫ ∞

Lt

u(x , t)dx =

∫
ρ0(x)dx

Microscopic evolution: Brownians (or random walks) with births
(rate 1) at the origin and deaths of the leftmost particle.
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In all these models:

an important tool in the proofs is played by mass transport
inequalities

the proof of convergence in the macroscopic limit does not
use theorems on the limit PDE .

Strategy for the proof: introduce a family of upper and lower
barriers in an order defined by mass transport and prove that
the barriers have a unique separating element.
The upper and lower barriers squeeze the solution we are
looking for.

The proofs exploit extensively probabilistic ideas and
techniques based on the well known relation between heat
equation and Brownian motion and between the hitting
distribution at the boundaries and the Dirichlet condition.
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Branching BM with selection

x(t) = (x1(t), .., xN(t)) = particle configuration at time t .

Independently particles move as Brownians and at rate one
create a new particle at their position. At each branching time
remove leftmost particle.

Given the initial macroscopic profile ρ0(x) ≥ 0,
∫
ρ0(x)dx = 1

distribute the initial positions x1(0), .., xN(0) in R independently
with same law ρ0(x)dx .

Empirical mass density at time t ≥ 0

π
(N)
t (dx) =

1
N

N∑
i=1

δxi (t)(x)dx
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Branching BM with selection

Theorem
There is a function ρ such that for any t ≥ 0 and any ε > 0

lim
N→∞

P(N)
[

sup
r≥0

∣∣∣ ∫ ∞
r

π
(N)
t (dr ′)−

∫ ∞
r

ρ(r ′, t)dr ′
∣∣∣ > ε

]
= 0

ρ(r , t) coincides with the solution u(r , t) of the free boundary
problem till when the latter exists (see later).
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Mass transport inequalities.

Partial order among functions:

Definition

u 4 v iff
∫ ∞

r
u(x)dx ≤

∫ ∞
r

v(x)dx , ∀r

The order among configurations is analogous:

Definition

x 4 y iff |x ∩ [r ,∞)| ≤ |y ∩ [r ,∞)| ∀r

having regarded x = (x1, . . . , xN) and y = (y1, . . . , yN) as
subsets of R.
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Stochastic barriers

It is more convenient to remove particles at the end!

Split [0, t ] in the union of the time intervals [(k − 1)δ, kδ), δ > 0,
k = 1, .., δ−1t .

We define two stochastic barriers x±(t) iteratively:

supposing to have defined x±(t) for t ≤ (k − 1)δ we define it till
time t ≤ kδ.

Initially
x−(0) = x(0) = x+(0)
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Stochastic barriers

Assume in the time interval [0, δ] there are m branching events.

x+(t) is defined by letting particles branch and move
independently for t ∈ [0, δ).
At time δ delete the m leftmost particles.

At time 0 delete the m leftmost particles from x(0). Then
x−(t) is defined by letting the N −m remaining particles
move and branch independently for t ∈ [0, δ).

Then iterate.

Theorem

x−(kδ) 4 x(kδ) 4 x+(kδ)

stochastically
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x(δ) 4 x+(δ)

Assume only one branching event: m = 1 and at t1 ∈ (0, δ)
particle i of the true process at position xi creates a new
particle at xi . At time t1 color green the leftmost particle which
is deleted for the true process.

• Particles with same label move the same.

In the process x+(t) there is also the green particle at all
times t ∈ (0, δ).
At time δ the leftmost particle is removed in the x+-process
but it is present in the true process.
Then x+ “has more mass on the right".

MODELS FOR EVOLUTION AND SELECTION.



x−(δ) 4 x(δ)

Color red the leftmost particle at time 0.

In the process x−(t) the red particle is never present while
it is present in the true process.

Assume the particle i (the one that branches) is not the
green one. Then at time t1 the x− process will have N
particles included the green one which is the leftmost.
Thus the true process “has more mass on the right".
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Similar inequalities are valid in:

heat conduction model previously described
in the Durrett and Remenik model
in the SSEP where the leftmost particle and rightmost hole
are killed at rate ε
two species of random walks (colored) with change of color
of the leftmost particle and rightmost particle of the two
species
interface dynamics on a sticky substrate.
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Deterministic barriers

The free evolution Tt is defined as the solution of ut =
1
2uxx + u

Ttu = etGt ? u, Gt(r , r ′) =
1√
2πt

e−(r−r ′)2/2t

Observe that Tt amplifies by et the mass of u.

The cut operator Cm is defined as

Cmu(x) = u(x)1x≥Vm,u ,

∫ ∞
Vm,u

u(x)dx = m
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Deterministic barriers

The upper barrier S+ is defined by first applying the free
evolution in a time interval of length δ and then cutting mass to
the left in such a way to have total mass 1.

S+
kδ(u) = C1Tδ..........C1TδC1Tδu, k times

The lower barrier S− is defined by first cutting mass to the left
in such a way to have total mass e−δ and then applying the free
evolution in a time interval of length δ.

S−kδ(u) = TδCe−δ ......Tδ Ce−δ TδCe−δu, k times
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Hydrodynamic limit for the approximating processes

The hydrodynamic limits of the processes x±(t) are S±t .

Theorem
For all r

lim
N→∞

|x±(t) ∩ [r ,∞)| =
∫ ∞

r
S±t (ρ0), in probability

t = kδ
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Limit of the deterministic barriers

Sδ,−
t (u) 4 Sδ,+

t (u), ‖Sδ,−
t (u)− Sδ,+

t (u)‖L1 ≤ cδ

Sδ,−
t (u) is non decreasing and Sδ,+

t (u) is non increasing in
δ (in the sense of 4).
There exists a function Stu(r) continuous in (r , t) for t > 0
such that for all t > 0

lim
n→∞

‖S2−nt ,+
t u(r)− Stu(r)‖∞ = 0

Sδ,−
t u 4 Stu 4 Sδ,+

t u∫ ∞
r

Stu = inf
δ:t=kδ,k∈N

∫ ∞
r

Sδ,+
t u = sup

δ:t=kδ,k∈N

∫ ∞
r

Sδ,−
t u
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The free boundary problem

ut =
1
2uxx + u in (Lt ,∞), u(r ,0) = ρ0(r),

∫
ρ0 = 1

u(Lt , t) = 0,
1
2
∂u
∂r

∣∣∣
r=Lt

= 1

Local (in time) existence in the literature (e.g Fasano).

Write u in terms of a standard Brownian motion {Bt}.
Define the stopping time

τL = inf{t ≥ s : Bt ≥ Lt}, and =∞ if the set is empty

Then ∫ ∞
r

u(x , t)dx = et
∫
ρ0(r ′)Pr ′

(
Bt > r ; τL > t

)
dr ′
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∫ ∞
r

u(x , t)dx = et
∫
ρ0(r ′)Pr ′

(
Bt > r ; τL > t

)
dr ′

Lt , t ≥ 0 is such that

et
∫
ρ0(x)Px

(
τL

0 > t
)
dx = 1

Theorem

Sδ,−
t ρ0 4 u 4 Sδ,+

t ρ0

The analogous theorem has been proved in most of the cases I
mentioned before.
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