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Université Catholique de Louvain



Where does “Probability” come from in
Quantum Mechanics ?

Is is an Axiom ?

Is it “irreducible”?
Or can it be reduced to some hypothesis on

initial conditions ?



In quantum mechanics, one associates to

every system a state, i.e. a vector Ψ in a

Hilbert space and to each physical quantity

(like energy or angular momentum) a

self-adjoint operator (or a matrix) A.

If the operator has a basis of eigenvectors :

Aψk = λkψk ,



then, one decomposes the quantum state Ψ

into that basis

Ψ =
∑
k

ckψk ,

and the results of a measurement of A yields

the value λk with probability |ck |2 (one

assumes ‖Ψ‖2 =
∑

k |ck |2 = 1).



Then the quantum state jumps or “collapses”

to ψk .

For a continuous variable, like the position,

|Ψ(x)|2 gives the probability density of

results of measurements.
Outside of measurements, the state evolves
according to a deterministic and continuous
evolution, like Schrödinger’s equation.



Let us first see how probabilities work in classical
statistical physics.
Given x(t) = (q(t),p(t)), which is the
MICRO-STATE
for a (closed) mechanical system,
q = the positions of the particles
p = the momenta of the particles,
then ‘everything’ follows.
In particular, macroscopic quantities, like the density
or the energy density, are functions of x.



Simple example of macroscopic equation :
diffusion

d

dt
u = ∆u

u = u(z , t), z ∈ R3.

Let u = density (or energy density).
u = example of ‘macroscopic’ variable.

Same idea with Navier-Stokes, Boltzmann...



Ω

F

Ω = PHASE SPACE ⊂ R6N

N ∼ AVOGADRO

n << N
Ex : n CELLS

F (x) = (F1(x), ...;Fn(x)) ∈ Rn = fraction of particles in each cell ;
F (x) is the macro-state.
u(z) in the diffusion equation is a continuous approximation to F .



Simple example of micro- and macro-state
Coin tossing

x→ (H ,T ,T ,H ...) : micro-state

2N possible values

F (x) = Number of heads or tails : macro-state
= N possible values

N << 2N .



x(0)→ x(t) = T tx(0) Hamilton
↓ ↓
F0 → Ft

The goal of non-equilibrium statistical mechanics is
to show that the evolution of F

is the same for the vast majority of x(0)′s mapped
onto F0 (and is given by the macroscopic law).
Here “vast majority” is meant relative to the
Lebesgue measure on the set of micro-states x(0)
corresponding to F0.



The basis of Boltzmann’s approach to irreversibility
is that the map F is many to one in a way that
depends on value taken by F .

Think of coin tossing

F = N → one ‘configuration’

F = N
2 →'

2N
√
N

‘configurations’



A coarse-graining of
phase space Ω into
regions corresponding
to states that are ma-
croscopically indistin-
guishable from one
another.



As time evolves, the
phase-space point
enters compart-
ments of larger and
larger volume.



Ω0 = F−1(F0), given F0

Ω0 ⊂ Ω0 “good” configurations, meaning that

∀ x ∈ Ω0

F0 = F (x) −→ Ft

ACCORDING TO THE MACROSCOPIC LAW.
THE GOAL IS TO SHOW THAT THE LEBESQUE MEASURE
OF Ω0 \ Ω0 IS SMALL FOR N LARGE.



THIS IS A LAW OF LARGE NUMBER TYPE OF RESULT. F IS
LIKE AN AVERAGE OF MANY MORE OR LESS INDEPENDENT
RANDOM VARIABLES ;
IT TAKES A CONSTANT VALUE “ALMOST EVERYWHERE”.
THE “GOOD” CONFIGURATIONS ARE SOMETIMES CALLED
“TYPICAL”.

WHY LEBESGUE MEASURE ? −→INDIFFERENCE PRINCIPLE
(LAPLACE).



Misleading ‘solution’

Appeal to ergodicity

(Almost) every trajectory in the ‘big’ phase space Ω
will spend in each region of that space a fraction of
time proportional to its ‘size’ (i.e. Lebesgue volume).

Shows too much and too little !



Too much : we are not interested in the time spent in
every tiny region of the phase space Ω !

Too little : ergodicity, by itself says nothing about time
scales. We want the macroscopic quantities (and only
them !) to ‘reach equilibrium’ reasonably fast.



DOES THIS EXPLAIN

IRREVERSIBILITY

AND THE SECOND LAW ?

WHAT DO YOU MEAN BY “EXPLAIN”?



IN A DETERMINISTIC FRAMEWORK :

IF THE LAWS IMPLY THAT A STATE A AT TIME ZERO
YIELDS A STATE B AT TIME T ,

THEN B AT TIME T IS “EXPLAINED” BY THE LAWS AND
BY A AT TIME ZERO.

OF COURSE, IT REMAINS TO EXPLAIN A.



IN A PROBABILISTIC FRAMEWORK :

IF F0 IS A MACROSTATE AT TIME ZERO, THEN THERE
IS A “NATURAL” MEASURE (HERE THE LEBESGUE
MEASURE ; IN GENERAL, THE ONE WITH MAXIMAL
ENTROPY) ON THE CORRESPONDING SET F−1(F0) OF
MICROSTATES x0.

IF, WITH LARGE PROBABILITY WITH RESPECT TO
THAT MEASURE, THE MACROSTATE F (xt) OBTAINED
FROM THE EVOLUTION OF THE MICROSTATE xt
EQUALS Ft , THEN F0 AND THE LAWS “EXPLAIN”Ft .

ANOTHER WAY TO SAY THIS, IS THAT ONE EXPLAINS
Ft , IF, BY A BAYESIAN REASONING, ONE WOULD HAVE
PREDICTED Ft , KNOWING ONLY F0 AT TIME 0.



REAL PROBLEM

ORIGIN of the LOW ENTROPY STATES



The sun and the cycle of life



“ God ”choosing the initial conditions of the universe,
in a volume of size 10−10123

of the total volume (ac-
cording to R. Penrose).
There is no good answer to that problem.



WHAT ABOUT QUANTUM

PROBABILITIES ?

We can either regard them as a deus ex

machina or consider them as arising from a

deeper deterministic theory.

(We are NOT talking here about probability

distributions on quantum states ; that is more

or less similar to classical probabilities).
We are interested in the probabilistic
meaning of quantum states.



The deterministic theory cannot be ordinary

quantum mechanics, even though the time

evolution of the quantum state is

deterministic (OUTSIDE OF

MEASUREMENTS), since the quantum

state only determines probabilities (OF

RESULTS OF MEASUREMENTS).



Moreover, ordinary quantum mechanics only

speaks of probabilities of results of

measurements and is silent about what goes

on outside of laboratories.



To tell something about what goes on

outside of laboratories and to “explain” the

origin of probabilities, we need a theory that

goes beyond ordinary quantum mechanics.



THE DE BROGLIE-BOHM THEORY

In the de Broglie-Bohm’s theory, the state of

system is a pair (X,Ψ), where

X = (X1, . . . ,XN) denotes the actual

positions of all the particles in the system

under consideration, and Ψ = Ψ(x1, . . . , xN)

is the usual quantum state.



The dynamics of the de Broglie-Bohm’s

theory is as follows : both objects Ψ and X
evolve in time :



1. SCHRÖDINGER’S EQUATION : for the

quantum state, at all times, and whether one

measures something or not

Ψ0 → Ψt = U(t)Ψ0

i~∂tΨ(x1, . . . , xN , t) = (HΨ)(x1, . . . , xN)

H = −1
2∆ + V where H is the Hamiltonian

and V the potential.

THE QUANTUM STATE NEVER

COLLAPSES.



2. PILOT EQUATION The evolution of the

positions is guided by the quantum state :

writing Ψ = Re iS

Ẋk(t) =
~
mk
∇kS(X1(t), . . . ,XN(t))

for k = 1, . . . ,N , where X1(t), . . . ,XN(t) are

the actual positions of the particles at time t.



Double slit experiment : numerical
solution in the de Broglie-Bohm
theory.



Motion in vacuum highly non classical ! !

Note that one can determine a posteriori

through which hole the particle went !



Experiment-indirect, “weak” measurement

(Science, june 2011).



It is not clear from the smallness of the

scintillation on the screen that we have to do

with a particle ? And is it not clear, from the

diffraction and interference patterns, that the

motion of the particle is directed by a wave ?

De Broglie showed in detail how the motion

of a particle, passing through just one of two

holes in the screen, could be influenced by

waves propagating through both holes.



And so influenced that the particle does not

go where the waves cancel out, but is

attracted to where they cooperate. This idea

seems to me so natural and simple, to resolve

the wave-particle dilemma in such a clear and

ordinary way, that it is a great mystery to me

that it was so generally ignored.

J. BELL



HOW DOES THE THEORY OF DE

BROGLIE-BOHM ACCOUNT FOR THE

STATISTICAL PREDICTIONS OF

QUANTUM MECHANICS ?



THANKS TO EQUIVARIANCE :



We have t ′ > t.

With ρt = |Ψt|2 → ρt ′ = |Ψt ′|2
where Ψt ′ comes from Schrödinger’s equation

i~∂tΨ = HΨ

and ρt ′ from the pilot equation (mk = 1,

~ = 1)

Ẋk = ∇kS , with Ψ = Re iS .



SO, IF WE ASSUME THAT ρt0 = |Ψ0|2 AT

SOME INITIAL TIME t0, IT WILL HOLD

AT ALL TIMES t > t0.

THE STATISTICAL PREDICTIONS OF

QUANTUM MECHANICS ARE

RECOVERED, AT LEAST AS FAR AS

POSITIONS OF PARTICLES ARE

CONCERNED.



WHAT ABOUT OTHER “OBSERVABLES”.

CONSIDER THE SPIN FOR EXAMPLE :

Consider a quantum state of the form

Ψ(z)
(
c1|1 ↑〉 + c2|1 ↓〉

)
,

with |c1|2 + |c2|2 = 1 and
∫
|Ψ(z)|2dz = 1.

Consider an ensemble of particles distributed

at the initial time according to the empirical

density distribution ρ(z) = |Ψ(z)|2.



We get from Schrödinger’s equation

Ψ(z − t)c1|1 ↑〉 + Ψ(z + t)c2|1 ↓〉 ,

  

H

x

z

z  ∣1 ∣1  

Initial position of the electron

z−t 

zt 

Direction of the field

Direction opposite to  the field

1  

1  

0



And, by equivariance, the empirical density

distribution of the particle positions will be

given by |Ψ(z − t)c1|2 + |Ψ(z + t)c2|2. Thus,

equivariance implies that a fraction

approximately equal to |c1|2 of the particles

will go upwards and a fraction approximately

equal to |c2|2 of them will go downwards, so

that the usual quantum predictions (“Born’s

rule”) are recovered in the de Broglie–Bohm

theory.



THE SAME HOLDS FOR ALL

“OBSERVABLES”.

THE ASSUMPTION THAT ρ0 = |Ψ0|2 IS

CALLED QUANTUM EQUILIBRIUM.

HOW CAN IT BE JUSTIFIED ?



Through a Law of Large Numbers argument :

consider N independent quantum systems

with the same wave-function ψ(xi),

i = 1, . . . ,N .

Then, the wave-function of the “Universe”

(composed of those N systems) is :

Ψ(x1, . . . , xN) =
∏N

i=1 ψ(xi).



In Quantum Equilibrium, the distribution of

X1, . . . ,XN is

|Ψ(X1, . . . ,XN)|2 =
∏N

i=1 |ψ(Xi)|2.

So, the variables X1, . . . ,XN are independent

random variables with identical distribution

|ψ(X )|2.



So, by the Law of Large Numbers, the vast

majority of configurations X1, . . . ,XN

(relative to the measure

|Ψ(X1, . . . ,XN)|2
∏N

i=1 dXi) will yield an

“empirical density”

ρ(x) = 1
N

∑N
i=1 δ(x − Xi) approximately

(namely, if it is“smoothed”) equal to |ψ(x)|2.



IMPORTANT REMARK :

Since we have no evidence of a

non-(quantum) equilibrium situation, we may

assume that the world started in Quantum

Equilibrium.

No need to invoke special initial conditions,

as we have to do classically to account for a

non-equilibrium world.



So, in some ways, Classical and Quantum

Equilibrium are similar :

In both cases, one appeals to the Law of

Large Numbers (or typicality) to account for

observed statistical regularities.



BUT the initial measure is different and its

justification is different also.

In the classical case, one appeals to the

indifference principle, but the initial

macro-state is “mysterious”.

In the quantum case, one appeals to

equivariance.



The quantum case is in some sense, easier or

more natural, since we do not have to

“explain” the occurrence of extremely

improbable initial conditions, and there is no

need to prove convergence to equilibrium.
BUT the quantum equilibrium has
consequences for the limits of our knowledge
(for example, Heisenberg’s uncertainty
relations).




