k-abelian singletons and Gray codes for necklaces

Markus A. Whiteland Joint work: J. Karhumäki, S. Puzynina, M. Rao

mawhit@utu.fi

University of Turku, Finland

Motivation

- k-abelian equivalence classes.
- structure of classes.
- singletons.

Motivation

- k-abelian equivalence classes.
- structure of classes.
- singletons.

Another way to see singletons:

Singletons

k-abelian singletons: the words uniquely characterized by

- prefix of length k-1,
- number of occurrences of each x, $x \in \Sigma^k$, as a factor.

Examples

• a^n : singleton for any k.

• $a^n b^m$: singleton for $k \ge 2$.

• aabaabaab: singleton for $k \ge 3$.

Examples

- a^n : singleton for any k.
- $a^n b^m$: singleton for $k \ge 2$.
- aabaabaab: singleton for $k \ge 3$.

Questions

- What do singletons look like? (structurally)
- How many are there of length n? (for k, Σ fixed)

Another characterization of k-abelian equivalence

Another characterization of k-abelian equivalence

Definition 1 (k-switching)

• x and y are words of length k-1.

Theorem 2

$$u \equiv_k v \iff u R_k^* v.$$

Characterization of singletons

- let $u \in A^*$.
- For any x, $y \in A^*$, a return from x to y in u:
 - ▶ a factor of *u*,
 - ▶ has prefix x,
 - ▶ has suffix y,
 - does not contain x or y as a proper factor.

Characterization of singletons

- let $u \in A^*$.
- For any x, $y \in A^*$, a return from x to y in u:
 - ▶ a factor of *u*,
 - ▶ has prefix x,
 - ► has suffix *y*,
 - does not contain x or y as a proper factor.

Theorem 3

u is a k-abelian singleton

if and only if

at most one return from x to y in u for all $x, y \in A^{k-1}$.

- Implication: Factorization of singletons into <u>runs</u>
- Natural interpretation in de Bruijn graphs

Cycle decompositions and quotient graphs

Natural interpretation in de Bruijn graphs:
Cycle decompositions and quotient graphs

Cycle decompositions and quotient graphs

Natural interpretation in de Bruijn graphs:
Cycle decompositions and quotient graphs

The number of singletons of length n

Theorem 4 (Mykkeltveit 1972)

The maximum size of a cycle decomposition of dB(k) is at most N(k).

Corollary 5

The number of singletons of length n is of order

$$\mathcal{O}\left(n^{N(k-1)-1}\right)$$
.

The number of singletons of length n

Theorem 6

The number of singletons of length n is of order $\Theta\left(n^{N(k-1)-1}\right)$

if and only if

Exists maximal cycle decomposition C of dB(k-1) such that

dB(k-1)/C contains hamiltonian path.

Necklace graph and Gray codes for necklaces

A Gray code for necklaces:

- list of all necklaces of length k
- consecutive elements have representatives differing in exactly one bit

Observation

Gray codes for necklaces \leftrightarrow Hamiltonian paths in *Necklace graph*

Necklace graph and Gray codes for necklaces

A Gray code for necklaces:

- list of all necklaces of length k
- consecutive elements have representatives differing in exactly one bit

Observation

Gray codes for necklaces \leftrightarrow Hamiltonian paths in *Necklace graph*

Open Problem 7 (C. Savage, 1997)

For binary alphabet, k odd: Does there exist a Gray code for necklaces of length k?

Necklace graphs

Necklace graphs

Hamiltonian paths in necklace graphs

- Previously known: Gray codes for necklaces of odd length up to 11.
- New bound: up to length 15.

Hamiltonian paths in necklace graphs

- Previously known: Gray codes for necklaces of <u>odd</u> length up to 11.
- New bound: up to length 15.
- For even lengths Gray codes not possible.
- Instead: Other maximal cycle decompositions giving hamiltonian path.

Main conjectures

Conjecture 8

Always exists a maximal cycle decomposition C such that dB/C has hamiltonian path.

This is equivalent to

Conjecture 9

The number of singletons of length n is of order $\Theta(n^{N(k-1)-1})$.

Thank you!

Merci!