k-Abelian Complexity and Fluctuation

Aleksi Saarela

Department of Mathematics and Statistics University of Turku, Finland

CIRM, Marseille 16.3.2016

- 4 目 ト - 4 日 ト - 4 日 ト

This talk is based on the following articles:

• Karhumäki, Saarela, Zamboni:

On a generalization of Abelian equivalence and complexity of infinite words (2013)

• Cassaigne, Karhumäki, Saarela:

On growth and fluctuation of k-abelian complexity (2015)

3 K K 3 K

2 Low complexity

3 High complexity

3

・ 同 ト ・ ヨ ト ・ ヨ ト

k-abelian equivalence

For $k \ge 1$, words u and v are k-abelian equivalent if $|u|_t = |v|_t$ for all words t such that $|t| \le k$.

Example

0011001 and 0001011 are 2-abelian equivalent, but not 3-abelian equivalent.

k-abelian equivalences form a hierarchy of equivalence relations (and congruences) between abelian equivalence (k = 1) and equality $(k \to \infty)$.

・ 何 ト ・ ヨ ト ・ ヨ ト …

Factor complexity

Let $F_n(w)$ be the set of factors of w of length n.

The factor complexity of w is the function

$$\mathcal{P}_w: \mathbb{Z}_+ \to \mathbb{Z}_+, \ \mathcal{P}_w(n) = \#F_n(w).$$

The *k*-abelian complexity of *w* is the function

$$\mathcal{P}_w^k: \mathbb{Z}_+ \to \mathbb{Z}_+, \ \mathcal{P}_w^k(n) = \#\{[u]_k \mid u \in F_n(w)\}\}$$

where $[u]_k$ is the k-abelian equivalence class of u.

< 回 ト < 三 ト < 三 ト

Outline

2 Low complexity

3 High complexity

э

イロト イポト イヨト イヨト

Equality

Theorem (Morse and Hedlund)

- $\mathcal{P}_w(n) < n+1$ for some $n \Leftrightarrow w$ ult. per. $\Leftrightarrow \mathcal{P}_w(n) = O(1)$
- $\mathcal{P}_w(n) = n + 1$ for all $n \Leftrightarrow w$ Sturmian

Figure : The factor complexity of Sturmian words.

イロト 不得下 イヨト イヨト 二日

Abelian equivalence

Theorem (Morse and Hedlund; Coven and Hedlund)

- $\mathcal{P}^1_w(n) < 2$ for some $n \Leftrightarrow w$ per. $\Rightarrow w$ ult. per. $\Rightarrow \mathcal{P}^1_w(n) = O(1)$
- $\mathcal{P}^1_w(n) = 2$ for all n and w aper. \Leftrightarrow w Sturmian

Figure : The abelian complexity of Sturmian words.

イロト 不得下 イヨト イヨト 二日

k-abelian equivalence

Theorem

• $\mathcal{P}_{w}^{k}(n) < \min(2k, n+1)$ for some $n \Rightarrow w$ ult. per. $\Rightarrow \mathcal{P}_{w}^{k}(n) = O(1)$ • $\mathcal{P}_{w}^{k}(n) = \min(2k, n+1)$ for all n and w aper. \Leftrightarrow w Sturmian

Figure : The 3-abelian complexity of Sturmian words.

(日) (同) (日) (日) (日)

Outline

1 Background

2 Low complexity

3 High complexity

3

(日) (周) (三) (三)

Number of equivalence classes

Let $nec_k(n)$ be the number of k-abelian equivalence classes of words of length n (alphabet size m is constant).

Theorem

$$\operatorname{nec}_k(n) = \Theta(n^{(m-1)m^{k-1}}).$$

Proof.

Can be proved by using Rauzy multigraphs and linear algebra, or by a combinatorial argument using a different "minimal" definition of k-abelian equivalence.

Corollary

$$\mathcal{P}_{w}^{k}(n) = O(\operatorname{nec}_{k}(n)) = O(n^{(m-1)m^{k-1}}).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

1 Background

2 Low complexity

3 High complexity

э

Notation

- $m \ge 2$, $\Sigma_m = \{0, \dots, m-1\}$ *m*-letter alphabet.
- f(n) = O'(g(n)) if $\exists \alpha > 0$: $f(n) < \alpha g(n)$ for infinitely many n.
- $f(n) = \Omega'(g(n))$ if $\exists \alpha > 0$: $f(n) > \alpha g(n)$ for infinitely many n.

3

イロン イ団と イヨン ト

Fluctuation

For how slowly growing f and fast growing g can we find words w such that

 $\mathcal{P}_w^k(n) = O'(f(n))$ and $\mathcal{P}_w^k(n) = \Omega'(g(n))?$

· · · · · · · · ·

Maximal fluctuation

We can have

•
$$f(n) = O(1)$$
 and $g(n)$ almost $\Theta(\operatorname{nec}_k(n))$ or

•
$$f(n) = O(n)$$
 and $g(n) = \Theta(\operatorname{nec}_k(n))$.

We cannot have

•
$$f(n) = o(n)$$
 and $g(n) = \Theta(\operatorname{nec}_k(n))$.

(Recall that $\operatorname{nec}_k(n) = \Theta(n^{m^k - m^{k-1}})$ is the maximal k-abelian complexity.)

3

イロト 不得 トイヨト イヨト

From 2k to logarithmic

If $\mathcal{P}_{w}^{k}(n) < 2k$ for some $n \geq 2k - 1$, then w is ultimately periodic.

Theorem

Let $k \geq 1$. There exists $w \in \Sigma_2^{\omega}$ such that

lim inf $\mathcal{P}_w^k = 2k$ and $\mathcal{P}_w^k(n) = \Omega'(\log n)$.

Proof.

Construction: Image of the period-doubling word under the morphism $h: \Sigma_2^* \to \Sigma_2^*$ defined by $h(0) = 0^{k-1}1$ and $h(1) = 0^k 1$.

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

From bounded to almost maximal

Theorem

Let $k \ge 1$. Let f be a function such that

$$f(n) = o(\operatorname{nec}_k(n)) = o(n^{(m-1)m^{k-1}}).$$

There exists $w \in \Sigma_m^\omega$ such that

$$\mathcal{P}^k_w(n) = O'(1)$$
 and $\mathcal{P}^k_w(n) = \Omega'(f(n))$

Proof.

Construction for k = 1: Let l_1, l_2, l_3, \ldots be a sequence of numbers that grows fast enough. Let u_i be a word that has a factor in every abelian equivalence class of words in $\sum_{m}^{l_i}$. Then w can be defined by a Toeplitz construction using the words u_i .

From linear to maximal

Theorem

Let $k \geq 1$. There exists $w \in \Sigma_m^{\omega}$ such that

$$\mathcal{P}^k_w(n) = O'(n)$$
 and $\mathcal{P}^k_w(n) = \Omega'(\operatorname{nec}_k(n)) = \Omega'(n^{(m-1)m^{k-1}}).$

Proof.

Construction for k = 1: Let $u_0 = 0$ and, for $j \ge 0$,

$$u_{j+1} = \prod_{(n_0,\ldots,n_{m-1})} \prod_{i=0}^{m-1} i^{|u_j|+n_i},$$

where the outer product is taken over all sequences (n_0, \ldots, n_{m-1}) of non-negative integers such that $\sum_{i=0}^{m-1} n_i = m|u_j|$. Let $w = u_0 u_1 u_2 \cdots$.

イロト イポト イヨト イヨト

Not from sublinear to maximal

Theorem

Let $k \geq 1$. There does not exist f(n) = o(n) and $w \in \Sigma_m^{\omega}$ such that

 $\mathcal{P}^k_w(n) = O'(f(n))$ and $\mathcal{P}^k_w(n) = \Omega'(\operatorname{nec}_k(n)) = \Omega'(n^{(m-1)m^{k-1}}).$

Thank You!

2

<ロ> (日) (日) (日) (日) (日)