## Avoiding k-abelian powers in words

#### Michaël Rao Matthieu Rosenfeld

École Normale Supérieure de Lyon / CNRS, LIP, MC2 team

Two words u and v are k-abelian equivalent if: for every  $w \in A^*$  with  $|w| \le k$ ,  $|u|_w = |v|_w$  Two words u and v are k-abelian equivalent if: for every  $w \in A^*$  with  $|w| \le k$ ,  $|u|_w = |v|_w$ 

uv is a k-abelian-square if u and v are k-abelian equivalent uvwis a k-abelian-cube if u, v, w are k-abelian equivalent  $u_1u_2...u_n$  is a k-abelian-nth-power if  $u_1,...u_n$  are k-abelian equivalent

### *k*-abelian equivalence

" $\infty$ -abelian-equivalence" = word equality

#### ₩

## k-abelian equivalence



" $\infty$ -abelian-equivalence" = word equality

#### 1-abelian-equivalence = abelian-equivalence

Michaël Rao, Matthieu Rosenfeld Avoiding k-abelian powers in words

" $\infty$ -abelian-equivalence" = word equality

• [Folklore]: Squares are not avoidable over 2 letters

" $\infty$ -abelian-equivalence" = word equality

- [Folklore]: Squares are not avoidable over 2 letters
- [Thue 1906]: Squares are avoidable over 3 letters
- [Thue 1906]: Cubes are avoidable over 2 letters

" $\infty$ -abelian-equivalence" = word equality

- [Folklore]: Squares are not avoidable over 2 letters
- [Thue 1906]: Squares are avoidable over 3 letters
- [Thue 1906]: Cubes are avoidable over 2 letters

- [Folklore]: Squares are not avoidable over 3 letters
- [Folklore]: Cubes are not avoidable over 2 letters

" $\infty$ -abelian-equivalence" = word equality

- [Folklore]: Squares are not avoidable over 2 letters
- [Thue 1906]: Squares are avoidable over 3 letters
- [Thue 1906]: Cubes are avoidable over 2 letters

- [Folklore]: Squares are not avoidable over 3 letters
- [Folklore]: Cubes are not avoidable over 2 letters
- [Dekking 1979]: 4th-powers are avoidable over 2 letters
- [Dekking 1979]: Cubes are avoidable over 3 letters

" $\infty$ -abelian-equivalence" = word equality

- [Folklore]: Squares are not avoidable over 2 letters
- [Thue 1906]: Squares are avoidable over 3 letters
- [Thue 1906]: Cubes are avoidable over 2 letters

- [Folklore]: Squares are not avoidable over 3 letters
- [Folklore]: Cubes are not avoidable over 2 letters
- [Dekking 1979]: 4th-powers are avoidable over 2 letters
- [Dekking 1979]: Cubes are avoidable over 3 letters
- [Erdős 1957]: Are squares avoidable over 4 letters ?

" $\infty$ -abelian-equivalence" = word equality

- [Folklore]: Squares are not avoidable over 2 letters
- [Thue 1906]: Squares are avoidable over 3 letters
- [Thue 1906]: Cubes are avoidable over 2 letters

- [Folklore]: Squares are not avoidable over 3 letters
- [Folklore]: Cubes are not avoidable over 2 letters
- [Dekking 1979]: 4th-powers are avoidable over 2 letters
- [Dekking 1979]: Cubes are avoidable over 3 letters
- [Erdős 1957]: Are squares avoidable over 4 letters ?
- [Keränen 1992]: Yes !

" $\infty$ -abelian-equivalence" = word equality

- [Folklore]: Squares are not avoidable over 2 letters
- [Thue 1906]: Squares are avoidable over 3 letters
- [Thue 1906]: Cubes are avoidable over 2 letters

What about avoidability of k-abelian-powers?

- [Folklore]: Squares are not avoidable over 3 letters
- [Folklore]: Cubes are not avoidable over 2 letters
- [Dekking 1979]: 4th-powers are avoidable over 2 letters
- [Dekking 1979]: Cubes are avoidable over 3 letters
- [Erdős 1957]: Are squares avoidable over 4 letters ?
- [Keränen 1992]: Yes !

## Avoidability of k-abelian-powers

#### Question (Huova, Karhumäki, Saarela, Saari 2011)

- Is there a k such that k-abelian-squares avoidable on a ternary alphabet?
- Is there a k such that k-abelian-cubes avoidable on a binary alphabet?

## Avoidability of k-abelian-powers

#### Question (Huova, Karhumäki, Saarela, Saari 2011)

- Is there a k such that k-abelian-squares avoidable on a ternary alphabet?
- Is there a k such that k-abelian-cubes avoidable on a binary alphabet?

#### Theorem (Huova, Karhumäki, Saarela, Saari 2011)

2-abelian-squares are not avoidable on a ternary alphabet.

The longest 2-abelian-square-free ternary word has size 537.

## Avoidability of k-abelian-powers

#### Question (Huova, Karhumäki, Saarela, Saari 2011)

- Is there a k such that k-abelian-squares avoidable on a ternary alphabet?
- Is there a k such that k-abelian-cubes avoidable on a binary alphabet?

#### Theorem (Huova, Karhumäki, Saarela, Saari 2011)

2-abelian-squares are not avoidable on a ternary alphabet.

The longest 2-abelian-square-free ternary word has size 537.

#### Theorem (R. 2013)

2-abelian-cubes are avoidable over 2 letters. 3-abelian-squares are avoidable over 3 letters.

## 2-abelian-cube-free binary word

Let  $h: A_3^* \to A_2^*$  be the following 47-uniform morphism.

# 

#### Theorem (R. 2013)

For every abelian-cube-free word  $w \in A_3^*$ , h(w) is 2-abelian-cube-free.

 $\Rightarrow$  2-abelian-cubes are avoidable on a binary alphabet

## 3-abelian-square-free ternary word

Let  $h: A_4^* \to A_3^*$  be the following 25-uniform morphism.

$$h: \begin{cases} 0 \rightarrow 0102012021012010201210212\\ 1 \rightarrow 0102101201021201210120212\\ 2 \rightarrow 0102101210212021020120212\\ 3 \rightarrow 012102012021020120120212 \end{cases}$$

#### Theorem (R. 2013)

For every abelian-square-free word  $w \in A_4^*$ , h(w) is 3-abelian-square-free.

 $\Rightarrow$  3-abelian-squares are avoidable on a ternary alphabet

- Sufficient conditions for a morphism *h* to be *k*-abelian-*n*th-power-free
- i.e. for every abelian-*n*th-power-free word *w*, *h*(*w*) is *k*-abelian-*n*th-power-free

- Sufficient conditions for a morphism *h* to be *k*-abelian-*n*th-power-free
- i.e. for every abelian-*n*th-power-free word *w*, *h*(*w*) is *k*-abelian-*n*th-power-free
- Similar to [Carpi 1993] (sufficient conditions for a morphism to be abelian-*n*th-power-free)

- Sufficient conditions for a morphism *h* to be *k*-abelian-*n*th-power-free
- i.e. for every abelian-*n*th-power-free word *w*, *h*(*w*) is *k*-abelian-*n*th-power-free
- Similar to [Carpi 1993] (sufficient conditions for a morphism to be abelian-*n*th-power-free)
- 1st condition: the prefixes (resp. suffixes) of length k 1 in the images of h are the same.

- Sufficient conditions for a morphism *h* to be *k*-abelian-*n*th-power-free
- i.e. for every abelian-*n*th-power-free word *w*, *h*(*w*) is *k*-abelian-*n*th-power-free
- Similar to [Carpi 1993] (sufficient conditions for a morphism to be abelian-*n*th-power-free)
- 1st condition: the prefixes (resp. suffixes) of length k 1 in the images of h are the same.
- 2nd condition: 'generalized' Parikh matrix *M* of *h* has full rank:

 $\forall x \in \Sigma, w \in \Sigma^k$ 

$$M[x,w] = |h(a)p|_w$$

where p is the prefix of h(x) of length k-1

• Suppose that h(w) has a k-abelian-nth-power

- Suppose that h(w) has a k-abelian-nth-power
- Check all possibilities for the borders

- Suppose that h(w) has a k-abelian-nth-power
- Check all possibilities for the borders
- $\Rightarrow$  only finitely many

- Suppose that h(w) has a k-abelian-nth-power
- Check all possibilities for the borders
- $\Rightarrow$  only finitely many
- Check that for every possibility:
- either it cannot happen IRL
   (e.g. M'<sup>-1</sup>V is not an integer vector)
- either the pre-image in w has an abelian-nth-power

- Suppose that h(w) has a k-abelian-nth-power
- Check all possibilities for the borders
- $\Rightarrow$  only finitely many
- Check that for every possibility:
- either it cannot happen IRL
   (e.g. M'<sup>-1</sup>V is not an integer vector)
- either the pre-image in w has an abelian-nth-power
- If yes : *h* is *k*-abelian-*n*th-power-free

## Avoidability of k-abelian-nth-powers over $\ell$ letters (sum.)

|              | 111     | and the second second | "     |      | 12.0     |
|--------------|---------|-----------------------|-------|------|----------|
| $\infty$ -ab | elian-e | eduivalei             | nce = | word | equality |
|              |         | - q a a . o .         |       |      | equality |

| $\ell n$ | 2               | 3               |  |  |
|----------|-----------------|-----------------|--|--|
| 2        | No              | Yes (Thue 1906) |  |  |
| 3        | Yes (Thue 1906) | Yes             |  |  |

#### *k*-abelian-equivalence, $3 \le k$

| $\ell n$ | 2             | 3   |
|----------|---------------|-----|
| 2        | No            | Yes |
| 3        | Yes (R. 2013) | Yes |

#### 2-abelian-equivalence

| $\ell \setminus n$ | 2                                          | 3             |
|--------------------|--------------------------------------------|---------------|
| 2                  | No                                         | Yes (R. 2013) |
| 3                  | No (Huova, Karhumäki, Saarela, Saari 2011) | Yes           |
| 4                  | Yes                                        | Yes           |

#### 1-abelian-equivalence = abelian-equivalence

| $\ell \setminus n$ | 2                | 3                | 4                |
|--------------------|------------------|------------------|------------------|
| 2                  | No               | No               | Yes (Dekking 79) |
| 3                  | No               | Yes (Dekking 79) | Yes              |
| 4                  | Yes (Keränen 92) | Yes              | Yes              |

Michaël Rao, Matthieu Rosenfeld

Avoiding k-abelian powers in words

" $\infty$ -abelian-equivalence" = word equality

" $\infty$ -abelian-equivalence" = word equality

• [Erdős 1961] Can we avoid long squares over 2 letters?

" $\infty$ -abelian-equivalence" = word equality

- [Erdős 1961] Can we avoid long squares over 2 letters?
- [Entringer, Jackson & Schatz 1974] Yes: at most 5 squares

" $\infty$ -abelian-equivalence" = word equality

- [Erdős 1961] Can we avoid long squares over 2 letters?
- [Entringer, Jackson & Schatz 1974] Yes: at most 5 squares
- [Fraenkel & Simpson 1995] At most 3 squares (best possible): 00, 11, 0101

" $\infty$ -abelian-equivalence" = word equality

- [Erdős 1961] Can we avoid long squares over 2 letters?
- [Entringer, Jackson & Schatz 1974] Yes: at most 5 squares
- [Fraenkel & Simpson 1995] At most 3 squares (best possible): 00, 11, 0101

#### $1\mbox{-}abelian\mbox{-}equivalence = abelian\mbox{-}equivalence$

• [Entringer, Jackson & Schatz 1974] One cannot avoid long abelian squares over 2 letters

" $\infty$ -abelian-equivalence" = word equality

- [Erdős 1961] Can we avoid long squares over 2 letters?
- [Entringer, Jackson & Schatz 1974] Yes: at most 5 squares
- [Fraenkel & Simpson 1995] At most 3 squares (best possible): 00, 11, 0101

- [Entringer, Jackson & Schatz 1974] One cannot avoid long abelian squares over 2 letters
- [Mäkelä 2003]: Can we avoid abelian-cubes of the form *uvw* where |u| ≥ 2, over 2 letters?
- [Mäkelä 2003]: Can we avoid abelian-squares of the form uv where |u| ≥ 2, over 3 letters?

#### " $\infty$ -abelian-equivalence" = word equality

- [Erdős 1961] Can we avoid long squares over 2 letters?
- [Entringer, Jackson & Schatz 1974] Yes: at most 5 squares
- [Fraenkel & Simpson 1995] At most 3 squares (best possible): 00, 11, 0101

What about avoidability of long *k*-abelian-powers ?

- [Entringer, Jackson & Schatz 1974] One cannot avoid long abelian squares over 2 letters
- [Mäkelä 2003]: Can we avoid abelian-cubes of the form *uvw* where |u| ≥ 2, over 2 letters?
- [Mäkelä 2003]: Can we avoid abelian-squares of the form uv where |u| ≥ 2, over 3 letters?

#### Question (Mäkelä 2003)

Can you avoid abelian-cubes of the form uvw where  $|u| \ge 2$ , over two letters? - You can do this at least for words of length 250.

#### Question (Mäkelä 2003)

Can you avoid abelian-cubes of the form uvw where  $|u| \ge 2$ , over two letters? - You can do this at least for words of length 250.

#### Theorem (R., Rosenfeld 2014)

One cannot avoid abelian-cubes of the form uvw where  $|u| \ge 2$ , over two letters.

Proof:

#### Question (Mäkelä 2003)

Can you avoid abelian-cubes of the form uvw where  $|u| \ge 2$ , over two letters? - You can do this at least for words of length 250.

#### Theorem (R., Rosenfeld 2014)

One cannot avoid abelian-cubes of the form uvw where  $|u| \ge 2$ , over two letters.

Proof:

• Exhaustive search.

#### Question (Mäkelä 2003)

Can you avoid abelian-cubes of the form uvw where  $|u| \ge 2$ , over two letters? - You can do this at least for words of length 250.

#### Theorem (R., Rosenfeld 2014)

One cannot avoid abelian-cubes of the form uvw where  $|u| \ge 2$ , over two letters.

Proof:

- Exhaustive search.
- One can restrict w.l.o.g. on Lyndon words.
- Largest Lyndon word: 290.

## Avoidability of long abelian repetitions

Weak version of Mäkelä's questions:

Question 1

Can we avoid long abelian-cubes over two letters?

Question 2

Can we avoid long abelian-squares over three letters?

## Avoidability of long abelian repetitions

Weak version of Mäkelä's questions:

Question 1 Can we avoid long abelian-cubes over two letters?

#### Question 2

Can we avoid long abelian-squares over three letters?

 $\Rightarrow$  Yes ! One can avoid abelian squares uv with  $|u| \ge 6$ 

## Avoidability of long abelian repetitions

Weak version of Mäkelä's questions:

Question 1 Can we avoid long abelian-cubes over two letters?

 $\Rightarrow$  Still open... but period at least 3

#### Question 2

Can we avoid long abelian-squares over three letters?

 $\Rightarrow$  Yes ! One can avoid abelian squares uv with  $|u| \ge 6$ 

#### Question (Mäkelä 2003)

Can you avoid abelian-squares of the form uv where  $|u| \ge 2$  over three letters? - You can do this at least for words of length 450.

#### Question (Mäkelä 2003)

Can you avoid abelian-squares of the form uv where  $|u| \ge 2$  over three letters? - You can do this at least for words of length 450.

#### Question (weak version of Mäkelä)

Can we avoid long abelian-squares over three letters?

#### Question (Mäkelä 2003)

Can you avoid abelian-squares of the form uv where  $|u| \ge 2$  over three letters? - You can do this at least for words of length 450.

#### Question (weak version of Mäkelä)

Can we avoid long abelian-squares over three letters?

| Let $h_6$ : | i a $ ightarrow$ | ace |                 | $(a \rightarrow$     | bbbaabaaac  |
|-------------|------------------|-----|-----------------|----------------------|-------------|
|             | b  ightarrow     | adf |                 | $b \rightarrow$      | bccacccbcc  |
|             | c  ightarrow     | bdf | and as i        | $c \rightarrow$      | ccccbbbcbc  |
|             | d  ightarrow     | bdc | and $\varphi$ . | $d \rightarrow$      | cccccccaa   |
|             | e  ightarrow     | afe |                 | $e \rightarrow$      | bbbbbcabaa  |
|             | $f \rightarrow$  | bce |                 | $\int f \rightarrow$ | aaaaaaabaa. |

#### Theorem (R., Rosenfeld 2015)

The sequence obtained by applying  $\varphi$  to the fixed-point of  $h_6$ ,  $\varphi(h_6^{\infty}(a))$ , does not contain any abelian-square of period more than 5.

Theorem (R., Rosenfeld 2014 & 2015)

For every  $k \ge 2$ , one can avoid long k-abelian-squares on binary words.

#### Theorem (R., Rosenfeld 2014 & 2015)

For every  $k \ge 2$ , one can avoid long k-abelian-squares on binary words.

Let g(k) be the minimal number of k-abelian-squares in an infinite binary word

Note: 
$$g(1) = \infty$$
 [Entringer, Jackson & Schatz 1974]  
 $g(\infty) = 3$  [Fraenkel & Simpson 1995]

#### Theorem (R., Rosenfeld 2014 & 2015)

For every  $k \ge 2$ , one can avoid long k-abelian-squares on binary words.

Let g(k) be the minimal number of k-abelian-squares in an infinite binary word

Note: 
$$g(1) = \infty$$
 [Entringer, Jackson & Schatz 1974]  
 $g(\infty) = 3$  [Fraenkel & Simpson 1995]

#### Theorem (R., Rosenfeld 2014 & 2015)

| ٩ | 5 | $\leq$ | g(2) | $\leq$ | 707 |
|---|---|--------|------|--------|-----|
|---|---|--------|------|--------|-----|

• 
$$g(3) = g(4) = 4$$

• 
$$g(k) = 3$$
 for  $k \ge 5$ 

 $\begin{array}{c} \textit{period} \leq 60 \\ 0^2, \ 1^2, \ (01)^2, \ (10)^2 \\ 0^2, \ 1^2, \ (01)^2 \end{array}$ 

k = 2

$$\varphi: \begin{cases} a \to bbbaabaaac\\ b \to bccacccbcc\\ c \to ccccbbbcbc\\ d \to cccccccaa\\ e \to bbbbbcabaa\\ f \to aaaaaaabaa. \end{cases} h_2: \begin{cases} a \to 1110000000\\ b \to 11010001010\\ c \to 1111101010. \end{cases}$$

k = 3 and k = 4



For every abelian-square-free word w,  $h_5(w)$  contains only 3 distinct 5-abelian-squares:  $0^2$ ,  $1^2$ ,  $(01)^2$ 

#### Question

What is the minimal p such that one can avoid abelian-squares of period at least p over three letters?

 $2 \le p \le 6$ 

#### Question

What is the minimal p such that one can avoid abelian-squares of period at least p over three letters?

 $2 \le p \le 6$ 

#### Question

What is the minimal s such that one can construct infinite ternary word with only s abelian-squares ?

 $3 \le s \le 22$ 

#### Question

What is the minimal p such that one can avoid abelian-squares of period at least p over three letters?

 $2 \le p \le 6$ 

#### Question

What is the minimal s such that one can construct infinite ternary word with only s abelian-squares ?

 $3 \le s \le 22$ 

Question

Can we avoid long abelian-cubes over two letters?

#### Question

What is the minimal p such that one can avoid abelian-squares of period at least p over three letters?

 $2 \le p \le 6$ 

#### Question

What is the minimal s such that one can construct infinite ternary word with only s abelian-squares ?

 $3 \le s \le 22$ 

Question

Can we avoid long abelian-cubes over two letters?

If yes:

- What is the minimum period ?
- What is the minimum number of cubes ?

#### Question

What is the minimal p such that one can avoid 2-abelian-squares of period at least p over two letters?

 $2 \le k \le 60$ 

#### Question

What is the minimal p such that one can avoid 2-abelian-squares of period at least p over two letters?

 $2 \le k \le 60$ 

#### Question

What is g(2)? (i.e. smallest s such that one can construct an infinite binary word with only s 2-abelian-squares)

 $5 \leq g(2) \leq 707$ 

## Others questions

- Fractional k-abelian-repetitions ?
- k-abelian-repetitions patterns ?
- . . .