Open problems on square root map on Sturmian words

Jarkko Peltomäki and Markus Whiteland

Turku Centre for Computer Science University of Turku

14.3.2015

0, 01, 010, 10, 100, 10010

Jarkko Peltomäki and Markus Whiteland

- Background on the square root map
- Open problems

(4) E > (4) E >

Minimal squares

- Let s be a Sturmian word of slope [0; a + 1, b + 1, ...].
 - Between two blocks 1, there is 0^a or 0^{a+1} .
 - Between two blocks 10^{a+1} , there is $(10^a)^b$ or $(10^a)^{b+1}$.
- Any position in *s* begins with one of the six squares:

$$\begin{split} S_1^2 &= 0^2, \qquad S_4^2 &= (10^a)^2, \\ S_2^2 &= (010^{a-1})^2, \quad S_5^2 &= (10^{a+1}(10^a)^b)^2, \\ S_3^2 &= (010^a)^2, \qquad S_6^2 &= (10^{a+1}(10^a)^{b+1})^2, \end{split}$$

- The squares are *minimal*: they do not have proper square prefixes.
- The *square roots* in the case *a* = 1, *b* = 0 appear in the footer of every slide.

< 同 > < 回 > < 回 >

• Every Sturmian word *s* is a product of these six minimal squares.

•
$$s = X_1^2 X_2^2 X_3^2 \cdots$$

• $\sqrt{s} = X_1 X_2 X_3 \cdots$

• The square root map deletes half of each square.

Example: Fibonacci

$$f = (010)^2 \cdot (100)^2 \cdot (10)^2 \cdot (01)^2 \cdot 0^2 \cdot (10010)^2 \cdots ,$$

$$\sqrt{f} = 010 \cdot 100 \cdot 10 \cdot 01 \cdot 0 \cdot 10010 \cdots$$

Theorem (P.-W.)

If s is a Sturmian word, then $\mathcal{L}(s) = \mathcal{L}(\sqrt{s})$. That is, the square root map preserves the language of a Sturmian word.

伺 と く ヨ と く ヨ と

• Generalization: square root map for optimal squareful words.

A B A A B A

- Generalization: square root map for optimal squareful words.
- Optimal squareful word: aperiodic word whose every position begins with one of the six min. squares.

4 3 6 4 3 6

- Generalization: square root map for optimal squareful words.
- Optimal squareful word: aperiodic word whose every position begins with one of the six min. squares.

Question

Can we characterize Sturmian words among optimal squareful words with $\sqrt{\ }?$

伺い イヨト イヨト

• Let s be a optimal squareful word.

A B A A B A

- Let s be a optimal squareful word.
- If $\mathcal{L}(s) = \mathcal{L}(\sqrt{s})$, must s be Sturmian?

- Let s be a optimal squareful word.
- If $\mathcal{L}(s) = \mathcal{L}(\sqrt{s})$, must s be Sturmian?
- NO!

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let s be a optimal squareful word.
- If $\mathcal{L}(s) = \mathcal{L}(\sqrt{s})$, must s be Sturmian?
- NO!

Theorem (P.-W.)

There exists a non-Sturmian optimal squareful word Γ such that $\sqrt{\Gamma}=\Gamma.$

• Consider the word equation $X_1^2 \cdots X_n^2 = (X_1 \cdots X_n)^2$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Consider the word equation $X_1^2 \cdots X_n^2 = (X_1 \cdots X_n)^2$.
- Let w be a factor of an optimal squareful word.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

- Consider the word equation $X_1^2 \cdots X_n^2 = (X_1 \cdots X_n)^2$.
- Let w be a factor of an optimal squareful word. If

$$w^2 = X_1^2 \cdots X_n^2 = (X_1 \cdots X_n)^2$$

with minimal squares X_i^2 as before, then w is a solution to this word equation.

- Consider the word equation $X_1^2 \cdots X_n^2 = (X_1 \cdots X_n)^2$.
- Let w be a factor of an optimal squareful word. If

$$w^2 = X_1^2 \cdots X_n^2 = (X_1 \cdots X_n)^2$$

with minimal squares X_i^2 as before, then w is a solution to this word equation.

• w = 01010010 is a solution.

• Fixed points of $\sqrt{-}: 01c_{\alpha}$ and $10c_{\alpha}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Fixed points of $\sqrt{-}: 01c_{\alpha}$ and $10c_{\alpha}$.
- $01c_{\alpha}$ and $10c_{\alpha}$ are fixed points because they have arbitrarily long solutions to the word equation

$$X_1^2\cdots X_n^2=(X_1\cdots X_n)^2$$

as square prefixes.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Find a sequence (w_n) of solutions such that w_n^2 is a prefix of w_{n+1} .

A B + A B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- Find a sequence (w_n) of solutions such that w_n^2 is a prefix of w_{n+1} .
- Let $\Gamma = \lim_{n \to \infty} w_n$.

< 同 > < 三 > < 三 >

- Find a sequence (w_n) of solutions such that w_n^2 is a prefix of w_{n+1} .
- Let $\Gamma = \lim_{n \to \infty} w_n$.
- Then $\sqrt{\Gamma} = \Gamma$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let S be a (long enough) seed solution of the word equation.
- Now $\sqrt{SS} = S$, $\sqrt{SL} = S$, $\sqrt{LS} = L$, $\sqrt{LL} = L$.
 - *L* is *S* with two first letters exchanged.

- Let S be a (long enough) seed solution of the word equation.
- Now $\sqrt{SS} = S$, $\sqrt{SL} = S$, $\sqrt{LS} = L$, $\sqrt{LL} = L$.

• *L* is *S* with two first letters exchanged.

•
$$(LSS)^2 = LSSLSS = LS \cdot SL \cdot SS$$

• $\sqrt{(LSS)^2} = \sqrt{LS} \cdot \sqrt{SL} \cdot \sqrt{SS} = LSS$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Let S be a (long enough) seed solution of the word equation.
- Now $\sqrt{SS} = S$, $\sqrt{SL} = S$, $\sqrt{LS} = L$, $\sqrt{LL} = L$.

• L is S with two first letters exchanged.

•
$$(LSS)^2 = LSSLSS = LS \cdot SL \cdot SS$$

•
$$\sqrt{(LSS)^2} = \sqrt{LS} \cdot \sqrt{SL} \cdot \sqrt{SS} = LSS$$

• Iterate to get longer solutions.

•
$$S \rightarrow LSS \rightarrow \underline{SS}SLSSLSS \rightarrow \dots$$

• Sturmian subshift Ω_{α} satisfies the *strong* property $\sqrt{\Omega_{\alpha}} \subseteq \Omega_{\alpha}$.

- Sturmian subshift Ω_{α} satisfies the *strong* property $\sqrt{\Omega_{\alpha}} \subseteq \Omega_{\alpha}$.
- What about the subshift Ω_{Γ} generated by the fixed point $\Gamma?$

くほし くほし くほし

- Sturmian subshift Ω_{α} satisfies the *strong* property $\sqrt{\Omega_{\alpha}} \subseteq \Omega_{\alpha}$.
- What about the subshift Ω_{Γ} generated by the fixed point Γ ?

Theorem (P.-W.)

There exists $w \in \Omega_{\Gamma}$ such that \sqrt{w} is periodic.

< 同 > < 回 > < 回 >

- Sturmian subshift Ω_{α} satisfies the *strong* property $\sqrt{\Omega_{\alpha}} \subseteq \Omega_{\alpha}$.
- What about the subshift Ω_{Γ} generated by the fixed point Γ ?

Theorem (P.-W.)

There exists $w \in \Omega_{\Gamma}$ such that \sqrt{w} is periodic.

• Ω_{Γ} does not satisfy the strong property.

Conjecture

Let Ω be a minimal subshift containing optimal squareful words. If $\sqrt{\Omega} \subseteq \Omega$, then Ω is a Sturmian subshift.

伺 と く ヨ と く ヨ と

 \bullet We used a specific construction to obtain the fixed point $\Gamma.$

- We used a specific construction to obtain the fixed point $\Gamma.$
- Other types of solutions might produce a counter example to the conjecture.

• • = • • = •

- We used a specific construction to obtain the fixed point Γ .
- Other types of solutions might produce a counter example to the conjecture.
- However: we have not found such solutions!

• • = • • = •

- We used a specific construction to obtain the fixed point Γ .
- Other types of solutions might produce a counter example to the conjecture.
- However: we have not found such solutions!

Open problem

Characterize the solutions to the word equation $X_1^2 \cdots X_n^2 = (X_1 \cdots X_n)^2.$

伺下 イヨト イヨト

• Suppose that there are no other type of solutions to the word equation.

- Suppose that there are no other type of solutions to the word equation.
- Suppose $\sqrt{\Omega} \subseteq \Omega$, with Ω minimal.

A 3 1 A 3 1

- Suppose that there are no other type of solutions to the word equation.
- Suppose $\sqrt{\Omega} \subseteq \Omega$, with Ω minimal.
- Show that points of Ω contain arbitrarily long solutions to the word equation.

• • = • • = •

- Suppose that there are no other type of solutions to the word equation.
- Suppose $\sqrt{\Omega} \subseteq \Omega$, with Ω minimal.
- Show that points of Ω contain arbitrarily long solutions to the word equation.
- If all solutions are Sturmian, then the conclusion is clear.

- Suppose that there are no other type of solutions to the word equation.
- Suppose $\sqrt{\Omega} \subseteq \Omega$, with Ω minimal.
- Show that points of Ω contain arbitrarily long solutions to the word equation.
- If all solutions are Sturmian, then the conclusion is clear.
- If not, then by altering our proof, we can show that there is $w \in \Omega$ s.t. \sqrt{w} is periodic.

- Suppose that there are no other type of solutions to the word equation.
- Suppose $\sqrt{\Omega} \subseteq \Omega$, with Ω minimal.
- Show that points of Ω contain arbitrarily long solutions to the word equation.
- If all solutions are Sturmian, then the conclusion is clear.
- If not, then by altering our proof, we can show that there is $w \in \Omega$ s.t. \sqrt{w} is periodic.
- Thus $\sqrt{\Omega} \subseteq \Omega$ is not satisfied.

Thank you for your attention!

J. Peltomäki and M. Whiteland A square root map on Sturmian words arXiv:1509.06349

伺 と く ヨ と く ヨ と