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Minimal squares

Let s be a Sturmian word of slope [0; a + 1, b + 1, . . .].
Between two blocks 1, there is 0a or 0a+1.
Between two blocks 10a+1, there is (10a)b or (10a)b+1.

Any position in s begins with one of the six squares:

S2
1 = 02, S2

4 = (10a)2,

S2
2 = (010a−1)2, S2

5 = (10a+1(10a)b)2,

S2
3 = (010a)2, S2

6 = (10a+1(10a)b+1)2,

The squares are minimal: they do not have proper square
prefixes.
The square roots in the case a = 1, b = 0 appear in the footer
of every slide.
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The square root map

Every Sturmian word s is a product of these six minimal
squares.
s = X 2

1X
2
2X

2
3 · · ·√

s = X1X2X3 · · ·
The square root map deletes half of each square.

Example: Fibonacci

f = (010)2 · (100)2 · (10)2 · (01)2 · 02 · (10010)2 · · · ,
√
f = 010 · 100 · 10 · 01 · 0 · 10010 · · ·
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The square root map

Theorem (P.-W.)

If s is a Sturmian word, then L(s) = L(
√
s). That is, the square

root map preserves the language of a Sturmian word.
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Generalization

Generalization: square root map for optimal squareful words.

Optimal squareful word: aperiodic word whose every position
begins with one of the six min. squares.

Question
Can we characterize Sturmian words among optimal squareful
words with √ ?
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Idea for a characterization

Let s be a optimal squareful word.

If L(s) = L(
√
s), must s be Sturmian?

NO!

Theorem (P.-W.)

There exists a non-Sturmian optimal squareful word Γ such that√
Γ = Γ.
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Idea for the construction

Consider the word equation X 2
1 · · ·X 2

n = (X1 · · ·Xn)2.

Let w be a factor of an optimal squareful word. If

w2 = X 2
1 · · ·X 2

n = (X1 · · ·Xn)2

with minimal squares X 2
i as before, then w is a solution to this

word equation.
w = 01010010 is a solution.
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Idea for the construction

Fixed points of √ : 01cα and 10cα.

01cα and 10cα are fixed points because they have arbitrarily
long solutions to the word equation

X 2
1 · · ·X 2

n = (X1 · · ·Xn)2

as square prefixes.
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Idea for the construction

Find a sequence (wn) of solutions such that w2
n is a prefix of

wn+1.

Let Γ = limn→∞ wn.
Then

√
Γ = Γ.
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How it works

Let S be a (long enough) seed solution of the word equation.

Now
√
SS = S ,

√
SL = S ,

√
LS = L,

√
LL = L.

L is S with two first letters exchanged.

(LSS)2 = LSSLSS = LS · SL · SS√
(LSS)2 =

√
LS ·
√
SL ·
√
SS = LSS

Iterate to get longer solutions.
S → LSS → SSSLSSLSS → . . .
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Towards the open problems

Sturmian subshift Ωα satisfies the strong property
√

Ωα ⊆ Ωα.

What about the subshift ΩΓ generated by the fixed point Γ?

Theorem (P.-W.)

There exists w ∈ ΩΓ such that
√
w is periodic.

ΩΓ does not satisfy the strong property.

0, 01, 010, 10, 100, 10010 Jarkko Peltomäki and Markus Whiteland 25



Towards the open problems

Sturmian subshift Ωα satisfies the strong property
√

Ωα ⊆ Ωα.
What about the subshift ΩΓ generated by the fixed point Γ?

Theorem (P.-W.)

There exists w ∈ ΩΓ such that
√
w is periodic.

ΩΓ does not satisfy the strong property.

0, 01, 010, 10, 100, 10010 Jarkko Peltomäki and Markus Whiteland 26



Towards the open problems

Sturmian subshift Ωα satisfies the strong property
√

Ωα ⊆ Ωα.
What about the subshift ΩΓ generated by the fixed point Γ?

Theorem (P.-W.)

There exists w ∈ ΩΓ such that
√
w is periodic.

ΩΓ does not satisfy the strong property.

0, 01, 010, 10, 100, 10010 Jarkko Peltomäki and Markus Whiteland 27



Towards the open problems

Sturmian subshift Ωα satisfies the strong property
√

Ωα ⊆ Ωα.
What about the subshift ΩΓ generated by the fixed point Γ?

Theorem (P.-W.)

There exists w ∈ ΩΓ such that
√
w is periodic.

ΩΓ does not satisfy the strong property.

0, 01, 010, 10, 100, 10010 Jarkko Peltomäki and Markus Whiteland 28



Open problems

Conjecture
Let Ω be a minimal subshift containing optimal squareful words. If√

Ω ⊆ Ω, then Ω is a Sturmian subshift.
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Connection to solutions of the word equation

We used a specific construction to obtain the fixed point Γ.

Other types of solutions might produce a counter example to
the conjecture.
However: we have not found such solutions!

Open problem
Characterize the solutions to the word equation
X 2

1 · · ·X 2
n = (X1 · · ·Xn)2.
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Proof strategy for the conjecture

Suppose that there are no other type of solutions to the word
equation.

Suppose
√

Ω ⊆ Ω, with Ω minimal.
Show that points of Ω contain arbitrarily long solutions to the
word equation.
If all solutions are Sturmian, then the conclusion is clear.
If not, then by altering our proof, we can show that there is
w ∈ Ω s.t.

√
w is periodic.

Thus
√

Ω ⊆ Ω is not satisfied.
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Thank You

Thank you for your attention!

J. Peltomäki and M. Whiteland
A square root map on Sturmian words
arXiv:1509.06349
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