k-ABELIAN EQUIVALENCE – AN EQUIVALENCE RELATION IN BETWEEN THE EQUALITY AND THE ABELIAN EQUIVALENCE Motto: "When does the k-abelian equivalence resemble the equality and when

the abelian equivalence"

J. Karhumäki

karhumak@utu.fi

University of Turku, Finland

Presentations:

- M. Rosenfeld, M. Rao: k-abelian avoidability
- S. Puzynina: k-abelian palindromicity
- A. Saarela: k-abelian complexity and fluctuation
- M. Whiteland: k-abelian singletons and Gray codes

Basic properties

Definition 1

u and $v \in A^*$ are *k*-abelian equivalent if

•
$$|u|_x = |v|_x$$
 for all $x \in A^{\leq \kappa}$

Denoted by $u \equiv_k v$.

Basic properties

Definition 1

u and $v \in A^*$ are k-abelian equivalent if

• $|u|_x = |v|_x$ for all $x \in A^{\leq k}$.

Denoted by $u \equiv_k v$.

- k-abelian equivalence is a congruence on A^* .
- k = 1 is just abelian equivalence
- $k = \infty$ is the equality of words.
- A hierarchy of approximations of the equality

$$= \subseteq \ldots \subseteq \equiv_k \subseteq \equiv_{k-1} \subseteq \ldots \subseteq \equiv_0$$

where \equiv_0 denotes the equal length relation.

•
$$u = v \iff \forall k : u \equiv_k v$$

Background

Parikh Theorem

- not true for the equality.
- true for the abelian equivalence.

• not true for *k*-abelian equivalence.

Background

PCP and D0L

PCP

$$\exists w, w' \colon h(w) \equiv_k g(w) \text{ or } h(w) = g(w') \text{ and } w \equiv_k w'?$$

DOL

$$h^n(w) \stackrel{?}{\equiv}_k g^n(w) \quad \forall n$$

also for morphic images!

Equivalent definitions

Lemma 2 (K., Saarela, & Zamboni 13) $u \equiv_k v$ if and only if • $|u|_x = |v|_x$ for all $x \in \Sigma^k$, • $\operatorname{pref}_{k-1}(u) = \operatorname{pref}_{k-1}(v)$, and

• $\operatorname{suff}_{k-1}(u) = \operatorname{suff}_{k-1}(v).$

Equivalent definitions

Let $a \in \Sigma$. Let Z_k be the set of non-empty words:

- of length at most k;
- do not begin or end with a:

 $Z_k = \{u \in \Sigma^* \mid 1 \leq |u| \leq k, \operatorname{pref}_1(u) \neq a \neq \operatorname{suff}_1(u)\}.$

A refinement of the previous

The k-abelian equivalence class of u is determined by

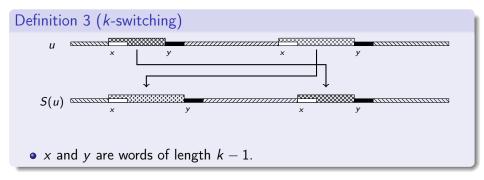
- |*u*|,
- $\operatorname{pref}_{k-1}(u)$ and $\operatorname{suff}_{k-1}(v)$, and
- $|u|_z$ for $z \in Z_k$.

Equivalent definitions

k-switchings

A characterization by rewriting.

k-switchings



Theorem 4 $u \equiv_k v \text{ iff } uR_k^* v.$

Applications

Singletons \Rightarrow regular expression (for complement) Minimal \Rightarrow regular expression (for complement)

Example 5

Expression for minimals:

$$\left(\bigcup_{\substack{x,y\in A^{k-1}\\a,b\in A\\b$$

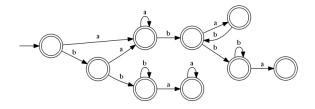
Corollary 6

 $(a_n)_{n\geq 0}$ is rational (for any A), where

$$a_n = \#\{w \mid w \text{ is minimal } \& |w| = n\} = \mathcal{P}_k(n).$$

Examples of automata

DFA accepting minimal representatives; k = 2, $\Sigma = \{a, b\}$



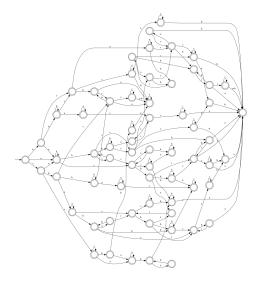
- The sink state is not illustrated.
- All other states are final, since we are avoiding patterns.

Example 7

- *abbba* is accepted; it is a minimal representative.
- *abbbab* is not accepted; minimal representative is *ababbb*.

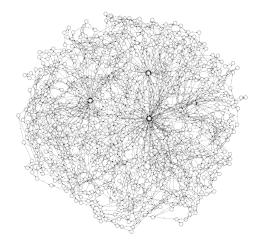
Examples of automata

DFA accepting minimal representatives; k = 2, $\Sigma = \{a, b, c\}$



Examples of automata

DFA accepting minimal representatives; k = 4, $\Sigma = \{a, b\}$

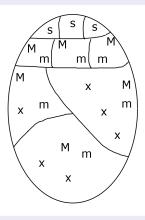


Regular languages closed under R_k

Theorem 8

L is a regular language $\Rightarrow R_k(L)$ is regular.

Application: Words admitting classes of size 2



Open problems

- When is $\mathcal{P}_k(n) \sim C \cdot n^{m^{k-1}(m-1)}$?
- Exact complexity for small values of k?
- Same for singleton classes?
- Regularity of classes of size / (classes of bounded size)?