
An Application of Word Equations to Group
Theory

Arye Juhász

Department of Mathematics
The Technion - Israel Institute of Technology

Haifa, 32000, ISRAEL

LUMINY, March 2016



1

1.Introduction
1.1 3 problems on the plane

Suppose we are given two plane figures (domains) D and M on the integral
grid of the plane, defined by the words d = uur ūūr̄ and
m = uuuurrrr ūūr̄ r̄ ūūr̄ r̄ , respectively, while u means “one step up”, r means
“one step to the right” and ū and r̄ are the inverses of u and r , respectively.
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There are at least three natural questions one can ask about the interrelation
between D and M:

I Can we fill in M with copies of D?

II If YES, then in how many ways?

III If YES, then how many copies of D are needed?
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1.Introduction
1.2-I generalization of the problems

This scenario occurs in a more general setting in group theory: we

remain on the plane E2, but forget about the grid and about the

shapes of D and M, as well forget about the geometrical

interpretation of the letters u and r , so that we are left with

regions D and M on the plane, the interiors of which are

homeomorphic to open discs and their boundaries are labelled by

arbitrary words over an alphabet.
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1 Introduction
1.2-II generalization of the problems

Example 1
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Now we can repeat questions I,II and III in this new context, for D1 and M1.

These questions represent three fundamental problems in Group Theory.
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1.Introduction
1.3 Group Theory

Thus, let X be a set, F (X ) the free group, freely generated by X
and let R be a cyclically reduced word on X . This data uniquely
defines a group G presented by

〈X |R〉 (0)

as the quotient of F (X ) by the normal closure N of R in F (X ). It
is well known and easy to see that the elements of N are precisely
the words of F (X ) which represent 1 in G and each such word W
can be written by

W = C1 · · ·Ck , Ci = f −1
i Rεi fi , fi ∈ F (X ), εi ∈ {1,−1}, 1 ≤ i ≤ k (1)
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1.Introduction
1.4-I Cancellation Diagrams (van Kampen Diagrams)

Equality (1) can be interpreted in the plane graphically as follows:
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1 Introduction
1.4-II Cancellation Diagrams (van Kampen Diagrams)

While W is a cyclically reduced word in F (X ), the product on the right-hand
side of (1) need not be.
Example 2 Let X = {a, b, c}, let R = cbac̄b̄ā and let W = cbac̄ac̄b̄āb̄ācb
We have in F

W = (R)
C1

·
(
abac̄b̄ā · R · abcāb̄ā

)
C2

·
(
ac̄b̄āRabcā

)
C3

(2)

f1 = 1, f2 = abac̄b̄ā and f3 = abcā.
Now C2 = abac̄b̄ā · cbac̄b̄ā · abcāb̄

cancellation

ā = abac̄b̄ācā

and C3 = ac̄b̄ā · cbac̄b̄ā · abcā

cancellation

= ac̄b̄ācb

Hence W = cbac̄b̄ā · ab

cancellation

ac̄b̄ācā · ac̄

cancellation

b̄ācb = (cbac̄)(ac̄b̄ā)b̄ācb

The graphical interpretation of (2) depicted below.
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1 Introduction
1.4-III Cancellation Diagrams (van Kampen Diagrams)
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1 Introduction
1.4-IV Cancellation Diagrams (van Kampen Diagrams)
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1 Introduction
1.4-V Cancellation Diagrams (van Kampen Diagrams)

Cancellation of words is interpreted graphically as folding adjacent edges with
the same label having a common endpoint.

v

a u1

a u2

v u = u1 = u2

Fig. 5

Carrying out all possible foldings leads to a 2-complex on the plane which spells
out the reduced word W on its boundary. See Fig. 4(e). Such 2 complexes are
called van Kampen diagrams and they constitute one of the main tools in the
branch of combinatorial group theory, called small cancellation theory.

The three problems above are known in this context in group theory under the

following names:
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1.Introduction
1.5 Three problems in Group Theory

(I) The word Problem (Decide whether a word W in F represents
1G )

(II) The Identity Problem (How many essentially different minimal
expressions like (1) are there for W ?)

(III) The Isoperimetric Problem Find k in terms of the length of
the boundary of M for a shortest expression like (1), for W .

The first problem was solved by W. Magnus in 1932 and the
second problem was solved by Roger Lyndon in 1961. However, the
third problem is still widely open. The present work is devoted to
this problem in the particular case when R is a positive word. To
formulate the result, we recall a few standard notions concerning
isoperimetric functions.
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1.Introduction
1.6 Isoperimetric Functions

An isoperimetric function of a presentation 〈X |R〉 is a monotone
non decreasing function f : N→ [0,∞) such that if W = 1 in G ,
W reduced, then k in (1) satisfies k ≤ f (|W |), where |W | denotes
the word length of W . f is a Dehn-function for 〈X |R〉 if
f (n) ≤ g(n), for every other isoperimetric function g for 〈X |R〉
and for every n ≥ 0. Since practically it is impossible to calculate
Dehn-functions precisely, they are computed up to an equivalence.
Thus if given two isoperimetric functions f and g , we say that f is
dominated by g if there exists a constant C ≥ 1 such that
f (n) ≤ Cg(Cn + C ) + Cn + C . Say that f is equivalent to g (write
f ≈ g ), if f is dominated by g and g is dominated by f .
For example, 1 ≈ n and for every polynomial f of degree m,
f (n) ≈ nm. Isomorphic groups have equivalent Dehn-functions.
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1 Introduction
1.7-I Examples

Examples 3

1. Consider the presentation P = 〈a, b|a−1ba = b2〉. A van Kampen
diagram for it is given in Fig. 2 . We see that the length of the upper
horizontal segment has length 1, the next has length 2, the next has
length 4 and it is not difficult to see that the nth horizontal line has
length 2n. Hence, if we have n horizontal layers in our diagram then the
perimeter is P = n + 1 + n + 2n = 2n + 2n + 1. The number of regions A
is 1 + 2 + 22 + . . .+ 2n = 2n+1 − 1. Hence A = 2P − (4n + 3) < 2P, i.e.
A is bounded by a linear function of P for such diagrams. However, we
can attach two such diagrams M1 and M2 along the long horizontal
segment, shifted by 1. See Fig 6.

M1

M2

M
Fig. 6
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1 Introduction
1.7-II Examples

Then the perimeter is n + 1 + n + 1 + n + 1 + n + 1 = 4n + 4, while the
number of regions is 2 · (2n+1 − 1) = 2n+2 − 2. Hence, A is an exponential
function of P. Consequently, the isoperimetric function of P is at least
exponential. It turns out that the Dehn function is 2n. The groups
B(m, n) = 〈a, b|a−1bma = bn〉 |m| 6= |n| all have exponential Dehn
functions.

2. This trick can be repeated to construct a one-relator group with Dehn

function f (n) = 222
2.
. }

n times.

3. If G is a one-relator group with torsion then it has linear Dehn function.
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1 Introduction
1.8-I Small Cancellation Theory

Consider the group G = 〈a, b, c|cbac−1b−1a−1〉 of Example 2. Fig. 4(e) is a
finite part of the tessellation of the plane by hexagons and it can be shown that
each van Kampen diagram related to this group is a finite part of the
tessellation of the plane by hexagons. Since on E2 we have quadratic
isoperimetric function, this implies that G has quadratic isoperimetric function.
Similarly, if a group has a presentation such that every corresponding van
Kampen diagram is a finite part of the tesselation of the plane by triangles or
squares then it has quadratic isoperimetric function. Actually, it has quadratic
Dehn function. By the same idea, groups having diagrams which are parts of a
tessellation of the hyperbolic plane have linear Dehn functions. Hence the
fundamental groups of oriented closed surfaces with genus at least 2 have linear
Dehn functions.
These results have been extended by Roger-Lyndon (1966) as follows.

Theorem (Lyndon’s Theorem)
Let P = 〈X |R〉 be a group presentation. If any of the following conditions is
satisfied then P has quadratic (linear) Isoperimetric functions:
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1 Introduction
1.8-II Small Cancellation Theory

(i) in every van Kampen diagram for P, every inner region has at least 6(7)
neighbouring regions.

(ii) In every van Kampen diagram for P, every inner region has at least 4
neighbouring regions and every boundary vertex of it has valency at least
4.

(iii) In every van Kampen diagram for P, every inner region has at least 3
neighbouring regions and every boundary vertex of it has valency at least
6(7) .

These conditions, which generalize the regular tessellations of the plane, are

called the classical small cancellation conditions. Conditions (i),(ii)(iii) are

called C(6),C(4) & T(4) and C(3) & T(6), respectively.
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1 Introduction
1.9 The Main Result

This examples raise the question: what are all the possible Dehn
functions for one-relator groups? This is a very difficult (active)
open problem, hence it is reasonable to subdivide it into two
subproblems:

1. What are the polynomial functions which are Dehn functions
of one-relator groups ?

2. What are the non-polynomial Dehn functions for one-relator
groups?

In the present work we solve Problem 2 for positive words.

Main Theorem

Let GR = 〈X |R〉 be a torsion-free one-relator group. If R is a
positive word then GR has an isoperimetric function which is either
polynomial or exponential.
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2 Idea of the proof
2.1-I Admissible Sets of Words for W .

We start with some introductory remarks.

1. Let W ∈ F (X ) be a reduced word. Suppose that there are words

A1, . . . ,Am in F (X ) such that

1.1 A = {A1, . . . ,An} freely generates a subgroup H of F (X ).
1.2 W ∈ H. Hence W can be uniquely written as a word in A.

Then we can consider the presentation H̃ = 〈A|W (A1, . . . ,Am)〉. Every

diagram corresponding to H̃ is also a diagram of 〈X |W 〉.
2. Suppose that U,V ∈ H, reduced words, If V = C ∗ U ∗ D is an

occurrence of U in V in F (X ) but not in H then we say that that
occurrence of U is non H-standard in V .
Example 5: A = {A,B} |A||B| ≥ 5, A = aBb in F (X ). Then the
occurrence of B in A is not H-standard.

A

a B b

Fig. 7
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2 Idea of the proof
2.1-II Admissible Sets of Words for W .

3. Now assume that each of the following holds

3.1 Every diagram for a word in H representing 1 in H̃ satisfies the
small cancellation condition C(6).

3.2 If U = C ∗V ∗D, U,V ∈ H, is a non H-standard occurrence
of V in U then |V |H ≤ l , for some integer l .

3.3 Each diagram for a word in H which represents 1 in H̃ has
boundary of length (in H) at least 6l .

Then we call A = {A1, . . . ,Am} an admissible set for W .



19

2 Idea of the proof
2.2-I Isoperimetric Functions for 〈X |R〉.

Lemma
Suppose that A = {A1, . . . ,Am} is an admissible set for R. Then f (n) = n4 is
an isoperimetric function for 〈X |R〉.
proof:
Define an equivalence relation on Reg(M)-the regions of M- as follows:
adjacent regions D1 and D2 are H-equivalent if their common edge µ is a word
on A in standard position.

A3

A2

A1

µ

D1 D2 Fig. 8
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2 Idea of the proof
2.2-II Isoperimetric Functions for 〈X |R〉.

Let “∼H” be the transitive closure of this relation. Then it partitions Reg(M)

into equivalence classes ∆̃1, . . . , ∆̃s . Let ∆i be the subdiagram of M consisting
of the regions in ∆̃i . It follows from standard arguments relying on the
assumptions of the Lemma that each ∆i is homeomorphic to a disc. Hence, we
may consider the ∆i as regions. Denote the diagram obtained from M this way
by MH . Then due to parts (b) and (c) in the definition of admissibility, MH

satisfies the small cancellation condition C(6), hence due to Lyndon’s Theorem

s ≤ |∂M|2 (?)

Due to part(a) there,
|∆i | ≤ |∂∆i |2 (??)

and it follows again by standard arguments that

|∂∆i | ≤ |∂M| (? ? ?)

Combining ? and ?? with ? ? ? implies that |M| ≤ s|∂M|2 ≤ |∂M|2|∂M|2.
Thus f (n) = n4 is an isoperimetric function for 〈X |R〉.
So we have to find an admissible set of words for R.
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2 Idea of the proof
2.3-I Integral Piecewise Rotations and word Equations

We observe that we may assume that 〈X |R〉 does not satisfy the
condition C (4) since the positivity of R implies that each inner
vertex v has even valency which is at least 3. i.e. at least 4.

rD3

D1

D2

Fig. 9

Hence if it satisfies the condition C (4) then it satisfies the
condition C (4)&T (4) and hence Lyndon’s Theorem applies. In
other word, we may assume that either there is a diagram with an
inner region with 2 neighbours or there is a diagram with an inner
region with 3 neighbours.
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2 Idea of the proof
2.3-II Integral Piecewise Rotations and word Equations
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2 Idea of the proof
2.3-III Integral Piecewise Rotations and word Equations

We call such systems 2-systems and 3-systems, respectively and
denote P0 = (P0,Q0|P ′

0,Q
′
0) or P0 = (P0,Q0, S0|P ′

0,Q
′
0,S

′
0),

respectively.
They can be described by linear word equations:


R = P0Q0

RR = H1P ′
0T1

RR = H2Q ′
0T2


R = P0Q0S0

RR = H1P ′
0T1

RR = H2Q ′
0T2

RR = H3S ′
0T3

Word equations Word equations
for 2-systems for 3-systems

(E)
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2 Idea of the proof
2.4-I The Main Proposition

Proposition Let P0 be an r-system as above, r = 2 or r = 3

1. The cyclic word R̂ contains a canonically defined subword
P1Q1 if r = 2 and canonically defined subword P1Q1S1 if
r = 3, which constitutes an r-system, P1 = (P1,Q1|P ′

1,Q
′
1)

and P1 = (P1,Q1, S1|P ′
1,Q

′
1, S

′
1), respectively. We call P1 the

derived system of P0 and denote by P = (P0,P1, . . . ,Pk) the
sequence of successively derived systems. Also, we define
κ : F (X )→ N ∪ {∞} by κ(R) =∞ if R does not satisfy
equations (E) and κ(R) = k if R satisfies one of the systems
of equations.
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2 Idea of the proof
2.4-II The Main Proposition

2. Let P be the derived sequence of P0 as in part (a). If r = 2
then PkQk is a cyclic conjugate of Wa(A,B), by a word in
〈A,B〉, where Wa = (AB)aA and if r = 3 then the subword
QkSk constitutes a 2-system (Qk ,Sk |Q ′

k ,S
′
k) such that QkSk

is a cyclic conjugate of Wα1 · · ·Wαp , Wαi = Wαi (A,B),
such that A and B decompose into A = A0A1 and B = B0B1

respectively and Pk ,Qk , Sk ∈ 〈A0,A1,B0,B1〉.Pk ⊂ QkSk .
Moreover, if κ ≥ 4 then {A,B} and {A0,A1,B0,B1}
respectively is an admissible set of words for R.
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2 Idea of the proof
2.5 Proof of the Main Theorem.

Proof of the Theorem

If κ(R) ≥ 4 then by the Proposition and Lemma G = 〈X |R〉 has

polynomial isoperimetric function f . If κ(R) ≤ 3 then we may list

all the possibilities for R due to the canonicity of Pi . We find by

identifying G with known classes of groups, up to isomorphism,

that f is either linear or quadratic or exponential.


