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Stochastic Hodgkin-Huxley model (Pakdaman and Al. 2010
[9]).

channel-state-tracking (Gillespie’s first reaction method) :
Clay/Defelice 1983 [3], Rubinstein 1995 [12], Anderson and Al.
2015 [1].
channel-number-tracking (Gillespie’s direct method) :
Skaugen/Walloe 1970 [13], Chow/White 1996 [2], Anderson
and Al. 2015 [1].
Approximate algorithms (Diffusion approximation) :
Orio/Soudry 2012 [8], Goldwyn and Al. 2011 [7].
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Definition
Construction

Let K be a countable set and d ∈ N.
The set

E = {(θ,V ) : θ ∈ K ,V ∈ Rd}

defined the state space of a PDMP noted xt = (θt ,Vt).

(θt) is a jump process.
(Vt) is a process which gives the deterministic trajectories.
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A PDMP is characterized by the following objects :

a family of vector fields fθ : Rd → Rd , θ ∈ K .
a non-negative measurable function λ : E → R+ (rate
function).
a transition measure Q : E × B(E )→ [0, 1].

Hypothesis: For θ ∈ K , the flows φθ : R+ × Rd → Rd are known
explicitly.

Notation: ∀x = (θ,V ) ∈ E , ∀t ≥ 0

φθ(t,V ) = φ(t, x).
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Trajectory of (xt) starting from x0 = (θ0,V0) ∈ E (Davis 1984 [4]):

Let
F (t, x0) = e−

∫ t
0 λ(θ0,φ(s,x0))ds

be the survival function of T1.

xT1 random variable in E with conditional law Q ((θ0, φ(T1, x0)), .).

Then, for t ≤ T1,

xt = (θt ,Vt) =

{
(θ0, φ(t, x0)) t < T1,
xT1 = (θT1 ,VT1) t = T1.
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Then, the PDMP restarts from xT1 at time T1. The survival
function of the inter-jump time S2 is

F (t, xT1) = e−
∫ t
0 λ(θT1 ,φ(s,xT1 ))ds

The second jump time is T2 = T1 + S2.

The conditional law of xT2 is Q ((θT1 , φ(S2, xT1)), .).

Then, for T1 ≤ t ≤ T2

xt = (θt ,Vt) =

{
(θT1 , φ(t − T1, xT1)) T1 ≤ t < T2,
xT2 = (θT2 ,VT2) t = T2
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"Deterministic" methods
A probabilistic method

Inversion of the survival function.
Resolution of ODE + random hitting time problem (Riedler
2012 [11]).
Link between a class of PDMPs and the random time change
equations (Kurtz representation) (Riedler 2013 [10]).
A probabilistic method using thinning.
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Let i ≥ 0, at time Ti the PDMP is in state xTi , we want to
simulate Si+1.

We have to solve S(t, xTi ) = U where U ∼ U([0, 1]).

w(t, xTi ) = −log(S(t, xTi )) =

∫ t

0
λ(θTi , φ(s, xTi ))ds.

Equivalent problem :

w ′(t, xTi ) = λ(θTi , φ(t, xTi ))

Si+1 = inf{s > 0,w(s, xTi ) = − log(U)}
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Equality in law between a class of PDMPs and the processes
solution of :

X (t) = X (0) +

∫ t

0
h(X (s))ds +

r∑
k=1

Yk

(∫ t

0
λk(X (s))ds

)
νk

(Yk)k=1,...,r independent unit rate Poisson processes.
νk ∈ Rn jump heights.
h : Rn → Rn contains the vector fields of the PDMP.
λk : Rn → R+ such that λ(.) =

∑r
k=1 λk(.).
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Theorem (Devroye 1986 [6])

Let (Tn)n≥0 be a Poisson process with jump rate λ(t) and let
E ∼ E(1), then

Tn+1
Law
= Λ−1 (E + Λ(Tn)) , n ≥ 0

where Λ(t) =
∫ t
0 λ(s)ds.

In applications, we are rarely able to compute Λ et Λ−1 explicitly.
However, we can compute Λ et Λ−1 for specific functions λ.
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We want to simulate (Tn)n≥0 with jump rate λ(t).
We choose (T n)n≥0 a Poisson process with jump rate λ(t) such
that

λ(t) ≤ λ(t), ∀t ≥ 0.

with Λ, Λ
−1 explicitly computable.

Idea of the thinning procedure

Simulate the Poisson process (T n)n≥0.

Keep points T k with probability λ
λ

(T k).
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Let i ≥ 0, at time Ti the PDMP is in the state xTi , we want to
simulate Si+1.

Si+1 is the first jump time of a Poisson process with jump rate
λ(θTi , φ(t − Ti , xTi )) for t ≥ Ti .

Let ε > 0,
[Ti ,+∞[= ∪k≥0P

i ,ε
k

where P i ,ε
k = [Ti + kε,Ti + (k + 1)ε[.
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We define
λ(t) =

∑
k≥0

λ
i ,ε
k 1P i,ε

k
(t), t ≥ Ti

where
λ

i ,ε
k = supt∈P i,ε

k
λ(θTi , φ(t − Ti , xTi )).

Thus, we have

λ(θTi , φ(t − Ti , xTi )) ≤ λ(t), ∀t ≥ Ti .

Nicolas THOMAS Exact simulation of a class of PDMPs



Outline
Motivation

PDMPs
Numerical methods

Simulation

"Deterministic" methods
A probabilistic method

Λ(t) =
∑
k≥0

λ
i ,ε
k

[
(k + 1)ε ∧ (t − Ti )− kε ∧ (t − Ti )

]
Λ
−1

(s) =
∑
p≥0

(
ε
s − κp−1

κp − κp−1
+ Ti + pε

)
1[κp−1,κp [(s)

where

κp = ε

p∑
k=0

λ
i ,ε
k .

By convention, κ−1 = 0.
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We define the global bound

λ = supx∈E supt≥0λ(θ, φ(t, x))

and the local bound

∀x ∈ E , λ = supt≥0λ(θ, φ(t, x))

Model Bound simulation time (sec) rate of acceptance
Optimal-Qεn 0,003 (±8.10−7) 0,857 (±2.10−3)

Channel Local 0,008 (±6.10−6) 0,141 (±2.10−3)
Global 0,012 (±3.10−6) 0,065 (±6.10−5)

Channel model with 30 channels.
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Algorithm for the simulation of the first jump time of a
non-homogeneous Poisson process

T̃0 ← 0
k ← 0
Repeat

k ← k + 1
Simulate a uniform random variable U2k−1 on [0, 1]
Simulate Ek = − log(U2k−1)

T̃k ← Λ̃−1
(
Ek + Λ̃(T̃k−1)

)
Simulate a uniform random variable U2k on [0, 1]

Until U2k λ̃(T̃k) ≤ λ(T̃k)
Return T̃k
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