Exact simulation of a class of PDMPs

Nicolas THOMAS

Laboratoire de Probabilités et Modèles Aléatoires, Paris 6

July 5, 2016

イロン イヨン イヨン イヨン

- 2 PDMPs
 - Definition
 - Construction

3 Numerical methods

- "Deterministic" methods
- A probabilistic method

④ Simulation

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

Stochastic Hodgkin-Huxley model (Pakdaman and Al. 2010 [9]).

- channel-state-tracking (*Gillespie's first reaction method*) : Clay/Defelice 1983 [3], Rubinstein 1995 [12], Anderson and Al. 2015 [1].
- channel-number-tracking (*Gillespie's direct method*) : Skaugen/Walloe 1970 [13], Chow/White 1996 [2], Anderson and Al. 2015 [1].
- Approximate algorithms (*Diffusion approximation*) : Orio/Soudry 2012 [8], Goldwyn and Al. 2011 [7].

(ロ) (同) (三) (三)

Definition Construction

Let K be a countable set and $d \in \mathbb{N}$. The set

$$\mathsf{E} = \{(heta, \mathsf{V}) : heta \in \mathsf{K}, \mathsf{V} \in \mathbb{R}^d\}$$

defined the state space of a PDMP noted $x_t = (\theta_t, V_t)$.

- (θ_t) is a jump process.
- (V_t) is a process which gives the deterministic trajectories.

イロト イポト イヨト イヨト

Definition Construction

A PDMP is characterized by the following objects :

- a family of vector fields $f_{\theta} : \mathbb{R}^d \to \mathbb{R}^d$, $\theta \in K$.
- a non-negative measurable function $\lambda : E \to \mathbb{R}_+$ (rate function).
- a transition measure $Q: E \times \mathcal{B}(E) \rightarrow [0, 1]$.

Hypothesis: For $\theta \in K$, the flows $\phi_{\theta} : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d$ are known explicitly.

Notation: $\forall x = (\theta, V) \in E, \forall t \ge 0$

$$\phi_{\theta}(t,V) = \phi(t,x).$$

Trajectory of (x_t) starting from $x_0 = (\theta_0, V_0) \in E$ (Davis 1984 [4]): Let

$$F(t, x_0) = e^{-\int_0^t \lambda(\theta_0, \phi(s, x_0)) ds}$$

be the survival function of T_1 .

 x_{T_1} random variable in E with conditional law $Q((\theta_0, \phi(T_1, x_0)), .)$.

Then, for $t \leq T_1$,

$$x_t = (\theta_t, V_t) = \begin{cases} (\theta_0, \phi(t, x_0)) & t < T_1, \\ x_{T_1} = (\theta_{T_1}, V_{T_1}) & t = T_1. \end{cases}$$

Then, the PDMP restarts from x_{T_1} at time T_1 . The survival function of the inter-jump time S_2 is

$$F(t, x_{T_1}) = e^{-\int_0^t \lambda(\theta_{T_1}, \phi(s, x_{T_1}))ds}$$

The second jump time is $T_2 = T_1 + S_2$.

The conditional law of x_{T_2} is $Q((\theta_{T_1}, \phi(S_2, x_{T_1})), .)$. Then, for $T_1 \leq t \leq T_2$

$$x_t = (\theta_t, V_t) = \begin{cases} (\theta_{T_1}, \phi(t - T_1, x_{T_1})) & T_1 \le t < T_2, \\ x_{T_2} = (\theta_{T_2}, V_{T_2}) & t = T_2 \end{cases}$$

・ロト ・四ト ・ヨト ・ヨト

э

"Deterministic" methods A probabilistic method

- Inversion of the survival function.
- Resolution of ODE + random hitting time problem (Riedler 2012 [11]).
- Link between a class of PDMPs and the *random time change* equations (Kurtz representation) (Riedler 2013 [10]).
- A probabilistic method using thinning.

イロト イポト イヨト イヨト

"Deterministic" methods A probabilistic method

Let $i \ge 0$, at time T_i the PDMP is in state x_{T_i} , we want to simulate S_{i+1} .

We have to solve $S(t, x_{T_i}) = U$ where $U \sim U([0, 1])$.

$$w(t, x_{T_i}) = -\log(S(t, x_{T_i})) = \int_0^t \lambda(\theta_{T_i}, \phi(s, x_{T_i})) ds.$$

Equivalent problem :

$$w'(t, x_{T_i}) = \lambda(\theta_{T_i}, \phi(t, x_{T_i}))$$
$$S_{i+1} = \inf\{s > 0, w(s, x_{T_i}) = -\log(U)\}$$

æ

"Deterministic" methods A probabilistic method

Equality in law between a class of PDMPs and the processes solution of :

$$X(t) = X(0) + \int_0^t h(X(s))ds + \sum_{k=1}^r Y_k \Big(\int_0^t \lambda_k(X(s))ds\Big)\nu_k$$

- $(Y_k)_{k=1,...,r}$ independent unit rate Poisson processes.
- $\nu_k \in \mathbb{R}^n$ jump heights.
- $h: \mathbb{R}^n \to \mathbb{R}^n$ contains the vector fields of the PDMP.
- $\lambda_k : \mathbb{R}^n \to \mathbb{R}_+$ such that $\lambda(.) = \sum_{k=1}^r \lambda_k(.)$.

"Deterministic" methods A probabilistic method

Theorem (Devroye 1986 [6])

Let $(T_n)_{n\geq 0}$ be a Poisson process with jump rate $\lambda(t)$ and let $E\sim \mathcal{E}(1)$, then

$$T_{n+1} \stackrel{Law}{=} \Lambda^{-1} \left(E + \Lambda(T_n) \right), \qquad n \ge 0$$

where $\Lambda(t) = \int_0^t \lambda(s) ds.$

In applications, we are rarely able to compute Λ et Λ^{-1} explicitly. However, we can compute Λ et Λ^{-1} for specific functions λ .

"Deterministic" methods A probabilistic method

We want to simulate $(T_n)_{n\geq 0}$ with jump rate $\lambda(t)$. We choose $(\overline{T}_n)_{n\geq 0}$ a Poisson process with jump rate $\overline{\lambda}(t)$ such that

$$\lambda(t) \leq \overline{\lambda}(t), \qquad \forall t \geq 0.$$

with $\overline{\Lambda}$, $\overline{\Lambda}^{-1}$ explicitly computable.

Idea of the thinning procedure

- Simulate the Poisson process $(\overline{T}_n)_{n\geq 0}$.
- Keep points \overline{T}_k with probability $\frac{\lambda}{\overline{\lambda}}(\overline{T}_k)$.

"Deterministic" methods A probabilistic method

Let $i \ge 0$, at time T_i the PDMP is in the state x_{T_i} , we want to simulate S_{i+1} .

 S_{i+1} is the first jump time of a Poisson process with jump rate $\lambda(\theta_{T_i}, \phi(t - T_i, x_{T_i}))$ for $t \geq T_i$.

Let $\epsilon > 0$, $[\mathcal{T}_i, +\infty[=\cup_{k\geq 0}\mathcal{P}_k^{i,\epsilon}]$

where $P_k^{i,\epsilon} = [T_i + k\epsilon, T_i + (k+1)\epsilon].$

"Deterministic" methods A probabilistic method

We define $\overline{\lambda}(t)$

$$\overline{\lambda}(t) = \sum_{k \geq 0} \overline{\lambda}_k^{i,\epsilon} \mathbf{1}_{P_k^{i,\epsilon}}(t), \qquad t \geq T_i$$

where

$$\overline{\lambda}_{k}^{i,\epsilon} = \sup_{t \in P_{k}^{i,\epsilon}} \lambda(\theta_{T_{i}}, \phi(t - T_{i}, x_{T_{i}})).$$

Thus, we have

$$\lambda(\theta_{T_i}, \phi(t - T_i, x_{T_i})) \leq \overline{\lambda}(t), \qquad \forall t \geq T_i.$$

イロン イヨン イヨン イヨン

æ

"Deterministic" methods A probabilistic method

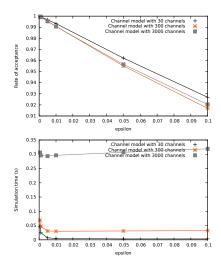
$$ar{\Lambda}(t) = \sum_{k\geq 0} \overline{\lambda}_k^{i,\epsilon} \Big[(k+1)\epsilon \wedge (t-T_i) - k\epsilon \wedge (t-T_i) \Big] \ ar{\Lambda}^{-1}(s) = \sum_{p\geq 0} \Big(\epsilon rac{s-\kappa_{p-1}}{\kappa_p-\kappa_{p-1}} + T_i + p\epsilon \Big) \mathbf{1}_{[\kappa_{p-1},\kappa_p[}(s)$$

where

$$\kappa_{\mathbf{p}} = \epsilon \sum_{k=0}^{\mathbf{p}} \overline{\lambda}_{k}^{i,\epsilon}.$$

By convention, $\kappa_{-1} = 0$.

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ



イロン イヨン イヨン イヨン

Э

We define the global bound

$$\overline{\lambda} = \sup_{x \in E} \sup_{t \ge 0} \lambda(\theta, \phi(t, x))$$

and the local bound

$$\forall x \in E, \qquad \overline{\lambda} = sup_{t \geq 0}\lambda(\theta, \phi(t, x))$$

Model	Bound	simulation time (sec)		rate of acceptance	
Channel	$Optimal extsf{-}\mathcal{Q}^{\epsilon_n}$	0,003	$(\pm 8.10^{-7})$	0,857	$(\pm 2.10^{-3})$
	Local	0,008	$(\pm 6.10^{-6})$	0,141	$(\pm 2.10^{-3})$
	Global	0,012	$(\pm 3.10^{-6})$	0,065	$(\pm 6.10^{-5})$

Channel model with 30 channels.

イロン イヨン イヨン イヨン

æ

Algorithm for the simulation of the first jump time of a non-homogeneous Poisson process

 $\tilde{T}_{0} \gets 0$ $k \leftarrow 0$ Repeat $k \leftarrow k + 1$ Simulate a uniform random variable U_{2k-1} on [0, 1]Simulate $E_k = -\log(U_{2k-1})$ $ilde{T}_k \leftarrow ilde{\Lambda}^{-1} \left(E_k + ilde{\Lambda}(ilde{T}_{k-1})
ight)$ Simulate a uniform random variable U_{2k} on [0, 1]Until $U_{2k}\tilde{\lambda}(\tilde{T}_k) \leq \lambda(\tilde{T}_k)$ Return \tilde{T}_{k}

< 🗇 > < 🖻 > <

Qutline Numerical methods Simulation

D.F. Anderson, B. Ermentrout, and P.J. Thomas. Stochastic representation of ion channel kinetics and exact stochastic simulation of neuronal dynamics.

Journal of Computational Neuroscience, 38:67–82, 2015.

C.C. Chow and J.A. White.

Spontaneous action potentials due to channel fluctuations. Biophysical Journal, 71:3013–3021, 1996.

J.R. Clay and DeFelice.

Relationship between membrane excitability and single channel open-close kinetics.

Biophysical Journal, 42:151–157, 1983.

M.H.A. Davis.

Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models.

(日) (同) (三) (三)

Journal of the Royal statistical Society, 46:353–388, 1984.

M.H.A. Davis. *Markov Models and Optimization*. Chapman and Hall, London, 1993.

L. Devroye.

Non-uniform random variate generation. Springer-Verlag, New York Inc., 1986.

J.H. Goldwyn, N.S. Imennov, M. Famular, and E. Shea-Brown. Stochastic differential equation models for ion channels noise in Hodgkin-Huxley neurons.

Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 83 (4 Pt 1), 2011.

P. Orio and D. Soudry.

< 同 > < 三 > < 三 >

Simple, fast and accurate implementation of the diffusion approximation algorithm for stochastic ion channels with multiple states.

PLoS one, 7, 2012.

- K. Pakdaman, M. Thieullen, and G. Wainrib. Fluid limit theorems for stochastic hybrid systems with application to neuron models. advanced applied probability, 42:761–794, 2010.
- Martin G Riedler and Girolama Notarangelo. Strong error Analysis of the Theta-Method for Stochastic Hybrid Systems.

arXiv preprint arXiv:1310.0392, 2013.

M.G. Riedler.

Almost sure convergence of numerical approximations for Piecewise Deterministic Markov Processes

Journal of Computational and Applied Mathematics, pages 50–71, 2012.

J.T. Rubinstein.

Threshold fluctuations in an N sodium channel model of the node of ranvier.

Biophysical Journal, 68:779–785, 1995.

E. Skaugen and L. Walloe.

Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations.

Acta Physiologica, 107:343-363, 1979.

< 同 > < 三 > < 三 >