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Part 1. Channel noise for a single neuron



Conductance-based neuron models

A family of deterministic multidimensional models

C
dV
dt

= −Iion(V ,w (1), ·, ·, ·,w (n)) + I(t)

dw (j)

dt
= αj(V )(1− w (j))− βj(V )w (j)

• w (j) ∈ [0,1] probability that channels (or gates) of type j
are open at time t ,

• Iion : the sum of ionic currents
• for type j ions, Ij = Gj(w (1), ·, ·, ·,w (n))(V − Vj) where Vj=

reversal potential, Gj= varying conductance to be specified
• I(t)=external stimulus.



Deterministic 3D Morris-Lecar model

C
dV
dt

= I(t)− gCauCa(V − VCa)− gK uK (V − VK )− gL(V − VL),

duCa

dt
= (1− αCa(V ))uCa − βCa(V )uCa,

duK

dt
= (1− αK (V ))uK − βK (V )uK .

C is the membrane capacitance,
gCa, gK are the maximal conductances,
VCa,VK are the reversal potentials associated with ions Ca,K ,
I(t) is the input current.



3D Morris-Lecar (I)

2 types of ions : calcium and potassium
• current balance

C
dVt

dt
+ ICa + IK + IL = I

GCa = gCauCa, GK = gKuK , GL = gL = const .

uCa (resp. uK ) interpreted as proportion of open calcium
(resp. potassium) channels



3D Morris-Lecar (II)

We use Morris-Lecar model with functions α, β given by
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2D Morris-Lecar

C
dV
dt

= gK ω (VK − V ) + gCa m∞(V ) (VCa − V )

dω
dt

= α(V )(1− ω)− β(V )ω



4D Hodgkin-Huxley (I)

3 types of gates : m and h (resp. n) for a sodium (resp.
potassium) channel,
• current balance

C
dVt

dt
+ INa + IK + IL = I

• currents Ij = Gj (V − Vj),

GNa = gNam3h, GK = gKn4, GL = gL = const .

• m, h, n are probability that gate of each type is open
• the probability that a sodium (resp. potassium) channel is

open is m3h (resp. n4).



4D Hodgkin-Huxley (II)

C
dVt

dt
= −gNam3h(V − VNa)− gKn4(V − VK )− gL(V − VL) + I(t)

d
dmt

dt t
= αm(Vt )(1−mt )− βm(Vt )mt

d
dht

dt t
= αh(Vt )(1− ht )− βh(Vt )ht

d
dnt

dt t
= αn(Vt )(1− nt )− βn(Vt )nt

Set of constant values :
C = 1,

gK = 36,gNa = 120,gL = 0.3

VK = −12,VNa = 120,VL = 10.6



4D Hodgkin-Huxley (III)

The opening/closing rates depend on V :

αn(V ) =
0.1− 0.01 V

exp(1− 0.1 V )− 1
, βn(V ) = 0.125 exp(−V/80),

αm(V ) =
2.5− 0.1 V

exp(2.5− 0.1 V )− 1
, βm(V ) = 4 exp(−V/18),

αh(V ) = 0.07 exp(−V/20), βh(V ) =
1

exp(3− 0.1 V ) + 1
.



The Hodgkin-Huxley Model :
a fully coupled evolution



Common structure of conductance-based models

They are made of 2 parts :
• current balance for V ,
• underlying stochastic gating mechanism of channels/gates

for an infinite number of channels/gates.

However the number of gates/channels is finite.

Question : which stochastic version would be the most relevant
and how to choose it ?



Two possible stochastic HH models (I)

The two states model : the building blocks are the gates.
Let N be the number of each type of channels (sodium and
potassium),
• continuous component is VN , the membrane potential of a

neuron with this amount of channels
• any single gate is modeled by a two-state jump process

with VN dependent rates
• the jumping component uN is the vector of proportions of

open gates. For (HH), uN = (u(m)
N ,u(n)

N ,u(h)
N ) where

u(m)
N (t) =

1
N

ΣN
l=1c(m)

l (t)

where c(m)
l are jump processes in {0,1 } with rates

αm(VN), βm(VN). Idem for u(n)
N , u(h)

N .



Two possible stochastic HH models (II)

• Evolution of VN , dVN
dt = f (VN ,u

(m)
N ,u(n)

N ,u(h)
N ) with

f (v ,p,q, r) = −gNap3q(v−VNa)−gKr4(v−VK )−gL(v−VL)

• If (u(m)
N (0),u(n)

N (0),u(h)
N (0)) = (u1,u2,u3) let v solve

dv
dt

= f (v ,u1,u2,u3), v(0) = VN(0).

Then the first jump time τ is defined by

P(τ > t) = e−N
∫ t

0 Σ3
j=1βj (v(s))uj +αj (v(s))(1−uj )ds.



Two possible stochastic HH models (III)

Skaugen and Walloe : the building blocks are channels.

Gating of a sodium channel.



Two possible stochastic HH models (IV)

Gating of a potassium channel.



Two possible stochastic HH models (V)

Eight (resp. five) states for a sodium (resp. potassium) channel.

A single open state m3h1 (resp. n4).

• In this model dVN
dt = f (VN , pN,Na, pN,K), with

f (v ,p,q, r) = −gNa pN,Na (v−VNa)−gK pN,K (v−VK)−gL(v−VL),

• pN,Na is the proportion of sodium channels in state m3h1,
• pN,K the proportion of potassium channels in state n4.

The complete PDMP is (VN , p(j)) where p(j) are the proportions
of channels in the total 13 possible states.



N → +∞ for the two types of PDMP sequences

(HH)-gates converges (u.c. compacts) to 4D HH.

(HH)-channels converges to a HH of dim. 14 whose first
component Vt coincides with that of 4D HH only if initial
conditions are related by

These convergence results can be proved with the classical
methods about convergence of sequences of processes (cf. the
courses by B. Cloez and J. Fontbona).



Piecewise Deterministic Markov Processes

Deterministic dynamics between successive random events

Data (cf. Davis) :
• a multidim. countable set K , an integer d
• (f (·,u))u∈K family of vector fields
• λ : Rd × K → [0,1] family of jump intensities
• Q : B × (Rd × K )→ [0,1] family of jump measures.



Iterative construction of process (Xt) = (Yt ,ut)

• Take initial value X0 = (Y0,u0)

• Solve dy(t)
dt = f (y(t),u0); y0 = Y0

• Define T1 such that

P(T1 > t) = e−
∫ t

0 λ(y(s),u0)ds

• Define ξ1 ∈ Rd × K with law Q(·; (y(T1),u0)) conditionally
on T1

• Define

Xt = (y(t),u0) if t < T1

XT1 = ξ1



PDMP as Markov processes

• (Yt ,ut ) is a Markov process
• Infinitesimal generator

Lh(x) = f (x)∇h(x) + λ(x)

∫
(h(x̃)− h(x))Q(dx̃ , x)

with f (x)∇h(x) := f (y ,u)∇yh(y ,u) if x = (y ,u).
• (Yt ) is not a Markov process
• Davis (1984,1993), Costa (1990), Jacobsen (2006),

Costa-Dufour (2008)



The Fluid Limit Assumption
• Fluid Limit assumption in presence of jumps : small jumps

at high frequency.
• For sequences of Markov jump processes in the fluid limit,

LLN, CLT have been proved (Jacod, Kurtz) as well as CLT
for exit times and exit points.

• Fluid Limit assumption for a sequence (XN) :

FN(x) := λN(x)

∫
(z − x)QN(x ,dz)→ F (x), ∀x ,

when N →∞, where λN is the jump intensity, QN the jump
measure of XN .

• Fluid Limit provides LLN. Stronger assumption is required
to prove CLT : convergence of

Gi,j
N (x) = α2

NλN(x)

∫
(zi − xi)(zj − xj)QN(x ,dz)



Check Fluid Limit

For fully coupled systems of the form

dVN

dt
= f (VN ,uN)

u(i)
N =

1
N

ΣN
l=1c(i)

l

• λN is proportional to N
•
∫

(z − x)QN(x ,dz) is proportional to 1
N

• take αN =
√

N
Then both LLN and CLT are satisfied.



LLN and CLT
Let xN = (VN ,uN) and x = (V ,u) solve

dV
dt

= f (V ,u)

du(j)

dt
= αj(V )(1− u(j))− βj(V )u(j)

• LLN

∀T > 0, ∀δ > 0, lim
N→+∞

P(sup
[0,T ]
|xN − x | > δ) = 0

• CLT Set b(j)(x) = αj(V )(1− u(j))− βj(V )u(j).√
N(xN − x) converges in distribution to z = (zv , z(j)) s.t.

dzv
t = ∇f (xt ) · ztdt

dz(j)
t = ∇b(j)(xt ) · ztdt + q(xt )

jdW j
t

• when each u(j) ∈ R, qj(x) =
√
αj(V )(1− u(j)) + βj(V )u(j).



A comment on CLT

• Second CLT statement :

√
N(uN(t)− uN(0)−

∫ t

0
b(VN(s),uN(s))ds)

converges in distribution to R = (
∫ t

0 qj(xs)dW j
s)t≥0.

• Diffusion approximation for (VN ,uN) by

dṼN = f (ṼN , ũN)dt

dũ(j)
N = b(j)(ṼN , ũN)dt +

1√
N

qj(ṼN , ũN)dW j
t



A comment on exit time/point

Let φ of class C1 such that φ(x(0)) > 0. Denote ẋ = F (x) and
define

TN := inf{t > 0;φ(xN(t)) ≤ 0}

T := inf{t > 0;φ(x(t)) ≤ 0}

π(T ) := − ∇φ(x(T )).z(T )

∇φ(x(T )).F (x(T ))

If T <∞ and ∇φ(x(T )).F (x(T )) < 0, then convergence in
distribution when N →∞ :

√
N(TN − T )→ π(T )

√
N(xN(TN)− x(T ))→ z(T ) + π(T )F (x(T ))

This can be used to study the variance of the latency time.



A comment on speed of convergence

With exponential inequalities for martingales we can prove the
following

lim sup
N→∞

1
N

log P(sup
[0,T ]
|xN − x | > δ) ≤ −δe−B(T )T

CT



Example (I)

Consider Model 1 with channels of a single type having 3
possible states (m2 is the open state)

and Model 2 where each channel has two gates of a single
type m having two possible states in {0,1} (channel is open
when the two gates are open).



Example (II)
Corresponding deterministic limits :
to Model 1 : (V (t),m0(t),m1(t),m2(t)),

C
dV
dt

= −g m2(V − Vm)− gL (V − VL)

dm2

dt
= −2βm2 + αm1

dm1

dt
= 2βm2 − (α + β)m1 + 2αm0

dm0

dt
= βm1 − 2αm0.

to Model 2 : (v(t),m(t)),

C
dv
dt

= −g m2(v − Vm)− gL (v − VL),

dm
dt

= (1−m)α(v)−mβ(v),



Example (III)

If the initial conditions satisfy V (0) = v(0),
(m0(0),m1(0),m2(0)) = ((1−m(0))2,2m(0)(1−m(0)),m(0)2)

then at any time t > 0,

V (t) = v(t),
m0(t) = (1−m(t))2,

m1(t) = 2m(t)(1−m(t)),

m2(t) = m(t)2.

In the sequel we assume that these conditions are satisfied.



Multiscale character of the previous models

In the (HH) above models the variable m is faster than the other
variables : we replace αm and βm by αm

ε and βm
ε for ε > 0.

It is possible to perform a dimension reduction.



Reduction of deterministic HH

Let us denote

F (V ,m,n,h) = −gNam3h(V −VNa)−gKn4(V −VK )−gL(V −VL)

Then the reduced model (the ε→ 0 limit) is 3D :

C
dVt

dt
= F (V ,m∞(V ),n,h)

dht

dt
= αh(Vt )(1− ht )− βh(Vt )ht

dnt

dt
= αn(Vt )(1− nt )− βn(Vt )nt

where m∞(V ) = αm(V )
αm(V )+βm(V ) .



Reduction of (HH)-gates

The reduced model is again a PDMP :

h and n remain two states with rates αh, βh (resp. αn, βn).

Evolution of V between jumps of h or n is

dVt

dt
= F (V ,m∞(V ),n,h)− gNa h (V − VNa) KN(V ).

There is an additional term in dVt
dt which depends on the

number N of sodium channels.



The additional drift in (HH)-gates

KN(V ) =
3

Nm
m∞(V )2(1−m∞(V )) +

1
N2

m
m∞(V )(1 + 2m∞(V )2).



Reduction of (HH)-channels
Again the reduced model is a PDMP,
2 states sodium channels : h has two states and rates αh, βh,
5 states potassium channels :

evolution of V between jumps of h or n is

dVt

dt
= −gNa m∞(V )3 h (V −VNa)−gK pK (V −VK)−gL(V −VL),

where h is the proportion of open sodium channels,
and pK the proportion of potassium channels in state n4.



Previous limits are LLN

Remark : we have encountered previously two limit results.

• N →∞, ε is fixed, (HH)-gates and (HH)-channels converge
to deterministic HH type models,

• ε→ 0, N is fixed, (HH)-gates and (HH)-channels converge
to stochastic PDMP models.

In both results the convergence is in the following sense

lim
N→+∞

P( sup
s∈[0,T ]

|Zk (s)− Z (s)| > α)→ 0

for all T > 0, α > 0 (resp. limε→0) cf. the course by B. Cloez.



Associated CLT in ε (I)

In the sequel we focus on limits when ε→ 0 for fixed N.

We can prove that (HH)-gates and (HH)-channels admit
switching diffusion approximations. The CLT is read in the Vt
evolution.

For (HH)-gates :

dVt = [F (V ,m∞(V ),h,n)− gNah(V − VNa)KN(v)]dt
+
√
ε σ(Vt ,ht ) dWt .

Note that σ(Vt ,ht ) does not depend on NNa.



Associated CLT in ε (II)

For (HH)-channels :

dVt = [−gNam∞(V )3h(V − VNa)− gKpK(V − VK)− gL(V − VL)]dt

+

√
ε

NNa
σ(Vt ,ht ) dWt .

In this case the diffusion term depends on NNa.



Combined effect of N and ε on ISI.
(HH)-gates. (I)

104 gates h and n, N = 30, ε = 0.1 : periodicity



Combined effect of N and ε on ISI.
(HH)-gates. (II)

N = 70, ε = 0.1 : bursting



Combined effect of N and ε on ISI.
(HH)-gates. (III)

N = 120, ε = 0.1 : small oscillation around equilibrium point,
rare excursions.



(HH)-channels (I)
N = 30, ε = 0.001 (bold), ε = 0.01 (dashed), ε = 0.1 (thin) : no
bursting for ε = 0.1.



(HH)-channels (II)
N = 40, ε = 0.001 (bold), ε = 0.01 (dashed), ε = 0.1 (thin) : no
bursting for ε = 0.1.



(Reference for this part

This part is based on the paper in collaboration with Khashayar
PAKDAMAN and Gilles WAINRIB published in
• J. Comput. Neuroscience, 13 August 2011 (for the

numerics part)
• Advances in Applied Probability (2010) and Stochastic

Processes and their Applications (2012) for the
mathematical proofs.



Part 2. Neuronal populations



Leaky Integrate and Fire Models

These models are 1D and composed of
• a threshold value VF ,
• the underthreshold evolution of the membrane potential

described by an sde (mainly Ornstein-Uhlenbeck
dVt = (−Vt

τ + µ)dt + σdWt , or Cox-Ingersoll-Ross),
• the initial value V0,
• the reset value : when the potential reaches the threshold it

is instantaneously set back to the value V0.

Compared to conductance-based models,
• LIF models contain less parameters,
• populations of LIF neurones are easier to simulate,
• however they are not biologically detailed.



A population of LIF neurons (I)

In two papers F. Delarue, J. Inglis, E. Tanré and S. Rubenthaler
consider N neurons, for i ∈ {1, ·, ·, ·,N},

V i
t = V i

0 +

∫ t

0
b(V i

s)ds +
α

N

N∑
j=1

M j
t + W i

t −M i
t ,

where M i
t is the number of times neuron i has spiked before

time t ,
M i

t =
∑
k≥1

1[0,t](τ
i
k ),

with

τ i
0 := 0, τ i

k := inf{t > τ i
k−1; V i

t− ≥ 1}, ∀k ≥ 1.



A population of LIF neurons (II)

• the potential at the soma of each neuron is a LIF model,
• In this model VF = 1, reset value VR = 0,

• the (τk ) are the jump or reset times of V : each time V
reaches the threshold, M (resp. V ) is increased (resp.
decreased) by 1 and V is instantaneously reset to VR = 0,

• if one neuron in the system fires at some time t , the
potential of any other neuron undergoes a jump
proportional (with coefficient α) to the proportion of
neurons firing simultaneously at that time t because of the
interaction term α

N
∑N

j=1 M j
t .

• The W i are independent Brownian motions.



A population of LIF neurons (III)

• Additional assumption : the initial values V i
0 are

independent.

Delarue et al. address the question : does the system converge
when N → +∞? Can we prove a propagation of chaos result
for this model ?

Propagation of chaos holds if given a subset of k neurons, they
are independent and follow the same law when N → +∞.



A population of LIF neurons (IV)

Then the typical behavior of a neuron in the population is given
by the LLN limit.

Here a typical neuron should satisfy

Vt = V0 +

∫ t

0
b(Vs)ds + α E(Mt ) + σWt −Mt (1)

called the mean field evolution.



A population of LIF neurons (V)

Actually the process solution is the pair (Vt ,Mt ) satisfying (1)
and (2)-(3) as follows

Mt =
∑
k≥1

1[0,t](τk ), (2)

τ0 := 0, τk := inf{t > τk−1; Vt− ≥ 1}, ∀k ≥ 1. (3)



Population density model

This is the PDE version of (1).

Suppose that e(t) := E(Mt ) is C1. Remember that VF = 1,
VR = 0.

∂t p(t , y) + ∂y ((−y + α e′(t)) p(t , y))− 1
2
∂yy p(t , y) = δ0(y) e′(t)

on ]−∞,1[×]0,+∞[,
with p(t ,1) = 0, p(t ,−∞) = 0, p(0, y) = p0(y).

We have moreover e′(t) = −1
2 ∂y p (t ,1) since p(t , x)dx is a

probability density on ]−∞,1[.



History of the model

Omurtag, Knight, Sirovich (2000) Nykamp, Tranchina (2000)
Somers et al. (1995)
Brunel, Hakim (1999, 2000)
Cai et al. (2006)
Caceres, Carrillo, Perthame (2011)
Dumont, Henry (2012, 2013)
Delarue et al. (2014, 2015),
Inglis, Talay (2015).



Propagation of chaos in Probability

Propagation of chaos for diffusions has been extensively
studied in Probability by for instance by A. S. Sznitman,
S. Méléard, C. Graham (cf. for instance Ecole d’été de Saint
Flour 1991, LNM 1464 and C.I.M.E. Course, 1995, LNM 1627).

In the model considered by Delarue and coauthors, neurons
interact through their hitting time of VF .

This type of interaction does not fit the assumptions of these
previous works.



The meaning of e′(t)

e′(t) = d
dt E(Mt ) = −1

2 ∂y p (t ,1) is the mean firing rate of the
infinite network with N = +∞.

e′(t) very large, means that a large proportion of neurons in the
network spike at that time t . The network is said to synchronize
at time t .

Corresponding mathematical meaning : if e′(t) = +∞, the
solution of (1) does not exist for times larger than t : there is a
blow-up.



Example of result (I)

• (Vt ,Mt )t∈[0,T ] is a solution of (1)-(3) if e ∈ C1 ([0,T ]) and
(Xt ) is a strong solution of (1).

• (cf. Delarue et al. (2014)) Let X0 = x0 < 1. There exists
α0 ∈]0,1] depending on x0 such that for all α ∈]0, α0[ and
all T > 0, there is a solution on [0,T ] in the previous sense
and it is unique.



Example of result (II)

Let x0 = 0.8, b ≡ 0. Numerics (particle method) suggest that a
global solution exists for α ≤ 0.38 but fails to exist for α ≥ 0.39.



A model without blow-up (I)

Problem :

• blow up is not biologically meaningful,
• instantaneous transmission from one neuron to the others

is not either.

Inglis and Talay (2015) proposed another model. Note that their
model allows for different synaptic weights and a non constant
diffusion matrix.



A model without blow-up (II)

V i
t = V i

0 + H(t) +

∫ t

0
b(V i

s)ds +

∫ t

0
σ(V i

s)dW i
s

+
N∑

j=1

Jij

SN
i

∫ t

0
G(t − s)M j

sds −M i
t ,

where SN
i =

∑N
j=1 Jij , and as before

M i
t =

∑
k≥1

1[0,t](τ
i
k ),

with

τ i
0 := 0, τ i

k := inf{t > τ i
k−1; V i

t− ≥ 1}, ∀k ≥ 1.



A model without blow-up (III)

The Jij ≥ 0 are the synaptic weights.

The interaction term is
∑N

j=1
Jij

SN
i

∫ t
0 G(t − s)M j

sds compared to
α
N
∑N

j=1 M j
t in the model of Delarue et al. Here there is no

instantaneous transmission.

The kernel G is bounded and twice differentiable with bounded
derivatives, and satisfies G(0) = G′(0) = 0.
Delarue et al. corresponds to G = δ0. It is not a particular case
of Inglis, Talay.

We still have V i
t < 1 a.s. for all i and t .



Motivation for the model without blow-up (I)
For simplicity ignore the axon part of a neuron.
• Dendritic tree : modeled as R. The potential at a point ξ on

the dendritic tree follows

∂tU(t , ξ) =
1
2
∂ξξU(t , ξ)− γU(t , ξ) + f (t , ξ),

with γ > 0, f (t , ξ) an applied current.
• Soma (located at ξ = 0) : the potential at the soma follows

a LIF with an external current I(t),

Vt = V0 + I(t) +

∫ t

0
b(Vs)ds +

∫ t

0
σ(Vs)dWs

− Mt ,

where Mt is the number of spikes of the neuron in [0, t ] and
I(t) depends on the potential along the dendritic tree.



Motivation for the model without blow-up (II)

Now let us go back to the previous network, take neuron i .
Then
• the potential at a point ξ on the dendritic tree of neuron i

∂tU i(t , ξ) =
1
2
∂ξξU i(t , ξ)− γU i(t , ξ) + f i(t , ξ),

• and the potential at the soma of neuron i

V i
t = V i

0 + Ii(t) +

∫ t

0
b(V i

s)ds +

∫ t

0
σ(V i

s)dW i
s

− M i
t .

Now f i(t , ξ) depends on the spike trains of neurons connected
to neuron i .



Motivation for the model without blow-up (III)

• Ii(t) := U i(t ,0) for all t ≥ 0 (think to Ohm’s law),
• f i(t , ξ) is taken as follows

f i(t , ξ) =
1

SN
i

N∑
j=1

Jij ρ(ξ)
∞∑

k=1

δ0(t − τ j
k ). (4)

The first choice (more complicated) would be

f i(t , ξ) =
N∑

j=1, j 6=i

ρj→i(ξ)
∞∑

k=1

δ0(t − τ j
k ).

where ρj→i is the density of synapses on dendritic tree of i
coming from presynaptic neuron j . Distribution of synapses
is supposed homogeneous in (4) for simplicity.



Motivation for the model without blow-up (IV)

This leads to the coupled system

∂tU i(t , ξ) =
1
2
∂ξξU i(t , ξ)− γU i(t , ξ) +

1
SN

i

N∑
j=1

Jijρ(ξ)
∞∑

k=1

δ0(t − τ j
k )

V i
t = V i

0 + U i(t ,0) +

∫ t

0
b(V i

s)ds +

∫ t

0
σ(V i

s)dW i
s −M i

t .



Motivation for the model without blow-up (V)

It remains to deduce a self-contained system for the V i ,M i

from the previous coupled system.

This is done by expressing U i(t ,0) (actually U i(t , ξ)) using the
Green kernel

G(t , ξ) =
1√
2πt

e−γt e−
1
2 ξ

2
,

that is

U i(t , ξ) = [G(t , ·) ? U i(0, ·)](ξ)

+

∫ t

0
G(t − s, ξ′ − ξ)

N∑
j=1

Jijρ(ξ′)

SN
i

∞∑
k=1

δ0(t − τ j
k )dξ′ds.



Motivation for the model without blow-up (V)

Note that
∑∞

k=1 δ0(t − τ j
k ) = d

ds M j
s. We obtain the formal

expression

U i(t ,0) = [G(t , ·) ? U i(0, ·)](0)

+

∫ t

0
[G(t − s, ·) ? ρ](0)

d
ds

N∑
j=1

Jij

SN
i

M j
s ds.



Motivation for the model without blow-up (V)

The formal term is given a meaning through an integration by
parts. To get rid of boundary conditions it is assumed that there
are no synapses at the soma : ρ(0) = 0 as well as ρ(k)(0) = 0.
This leads to

V i
t = V i

0 +

∫ t

0
b(V i

s)ds +

∫ t

0
σ(V i

s)dW i
s

+ [G(t , ·) ? U i(0, ·)](0)

+
N∑

j=1

Jij

SN
i

∫ t

0

d
ds

[G(t − s, ·) ? ρ](0) M j
s ds

− M i
t .



Limit equation without blow-up

The limit of the previous interacting system should satisfy

Vt = V0 +

∫ t

0
b(Vs)ds +

∫ t

0
σ(Vs)dWs

+ H(t) +

∫ t

0
G(t − s, ·)E(Ms) ds −Mt ,

where
Mt =

∑
k≥1

1[0,t](τk ),

τ0 := 0, τk := inf{t > τk−1; Vt− ≥ 1}.

In their paper Inglis and Talay show that indeed there is
convergence when N → +∞ and that there is no blow-up for
the limit equation.
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Part 3. Infinite dimensional PDMP models



Reminder : gating mechanism of ionic channels (I)
Channels open and close at rates depending on membrane
potential V : example of Hodgkin-Huxley model

for a sodium channel



Reminder : gating mechanism of ionic channels (II)

for a potassium channel



Reminder : channel noise

We want to model a neuron with a finite number of channels
and study the impact of their stochastic gating mechanism :

channel noise

We also want to consider spatial models to take into account
the propagation of the potential along the axon including
inhomogeneous repartition of channels along the axon.

We want to handle the different time scales present in the
gating mechanisms.



Deterministic Conductance-based Models (I)

Point models : multidimensional models

C
dV
dt

= −Iion(V ,p(1), ·, ·, ·,p(n)) + I(t)

dp(j)
k

dt
=

∑
i 6=k

αi,k (V )p(j)
i − αk ,i(V )p(j)

k

• p(j)
k ∈ [0,1] probability that a channel of type j is in state k .

• Iion : the sum of ionic currents
• I(t)= applied current (external stimulus).



Deterministic Conductance-based Models (II)

Ionic currents :

Ij = Gj(p(1), ·, ·, ·,p(n))(V − Vj)

for type j channels, where Vj= reversal potential.

Gj= varying conductance
= proportion of channels in the open state.

Current balance equation :

C
dVt

dt
= −

∑
j

Ij + I



Example of Hodgkin-Huxley model

In the first course we introduced the Hodgkin-Huxley model,
• two types of channels : sodium and potassium
• 8 possible states for sodium channels, 5 possible states for

potassium channels

• sodium open state is m3h1, potassium open state is n4

• p(1)
m3h1

(resp. p(2)
n4

) the proportion of sodium (resp.
potassium) channels in open state

GNa = gNap
(1)
m3h1

, GK = gKp(2)
n4

, GL = gL = const .



Deterministic Conductance-based Models (III)

Hodgkin-Huxley model was originally a spatial models : in a
simplified form,

C
dV
dt

= ∆V − Iion(V ,p(1), ·, ·, ·,p(n)) + I(t)

dp(j)
k

dt
=

∑
i 6=k

αi,k (V )p(j)
i − αk ,i(V )p(j)

k

• here V = V (t , x)

• p(j) = pj(t , x) since it is a function of V (t , x) :
conductances vary with position x along the axon.



Piecewise Deterministic Markov Models or PDMP (I)

Deterministic dynamics between successive random events

We need characteristics (cf. Davis) :
• a countable set K (may be multidimensional), an integer d
• (f (·,p))u∈K family of vector fields with values in Rd

• λ : Rd × K → [0,1] family of jump intensities
• Q : B × (Rd × K )→ [0,1] family of jump measures.



Iterative construction of process Xt = (Ut ,pt)

• Take initial value X0 = (U0,p0)

• Solve dy(t)
dt = f (y(t),p0); y0 = U0

• Define T1 such that

P(T1 > t) = e−
∫ t

0 λ(y(s),p0)ds

• Define ξ1 ∈ Rd × K with law Q(·; (y(T1),p0)) conditionally
on T1

• Define

Xt = (y(t),p0) if t < T1

XT1 = ξ1



Comments on PDMP

• same iterative construction applies with PDE instead of
ODE

• the PDMP (Ut ,pt ) is a Markov process
• (Ut ) is not a Markov process
• (Ut ) may have jumps too (for neuron models it is

continuous : it is the membrane potential)



PDMP - HH Model (I)

Take N channels of each type (two types).

C
dVN

dt
= −gNap

m3h1
N (VN − VNa)− gKpn4

N (VN − VK )− gL(VN − VL)

dpk
N

dt
=

∑
i 6=k

αi,k (VN)pi
N − αk ,i(VN)pk

N

where we consider the set of all possible state. There is no
ambiguity on the type of channels : m3h1 is a possible state for
sodium channels only.
pk

N(t) is the proportion of channels that are in state k at time t .



PDMP - Spatial Models (I)

• the axon is an interval D
• for each n ∈ N, Pn is a partition of D in a finite collection of

mutually disjoint intervals Dk ,n (the compartments)
• each compartment either contains no channel or a fixed

deterministic number
• π(n) := the number of compartments Dk ,n containing

channels
• l(k ,n) the total number of channels in Dk ,n

• configuration of channels : Θk ,n
i (t) is the number of

channels in Dk ,n that are in state i at time t .



PDMP - Spatial Models (II)
Remember Θk ,n

i (t) := the number of channels located in Dk ,n
that are in state i at time t .

• The jumping part of the PDMP is :

zn
i (Θn(t)) :=

π(n)∑
k=1

Θk ,n
i (t)

l(k ,n)
IDk,n

for each state i ,
• zn ≡ 0 on compartments with no channels,
• given configuration Θk ,n

i , one channel in Dk ,n switches from
state i to state j at instantaneous rate

Θk ,n
i αij

( 1
|Dk ,n|

∫
Dk,n

V n
t (x) dx

)



PDMP - Spatial Models (III)

The deterministic evolution between two successive jumps is
given by a PDE.

Example of HH : V n
t (x) satisfies the PDE

∂tV n(t , x) = ∆V n(t , x)−
2∑

i=1

gi zn
i (Θn(t)) (V n(t , x)− Ei)

where i ∈ { 1,3} stands for the two open states m3h1 and n4
and Ei are the reversal potentials of Na and K .



General Mathematical Framework (I)

PDMP in Hilbert spaces : Xt (ω) = (Ut (ω),Θt (ω)) where
• Θt (ω) ∈ K a countable set.
• For each θ ∈ K , Ut satisfies an abstract evolution equation

with unique solution

u̇ = A(θ) u + B(θ,u), (5)

A(θ) a linear operator, B(θ, ·) a possibly nonlinear operator



General Mathematical Framework (II)

We obtain limit theorems (LLN, CLT) and Langevin
approximation
for sequences of PDMPs (Un, zn(Θn)) when

U̇n = A(zn(θn)) Un + B(zn(θn),Un)

where zn(θ) is a finite dimensional vector, its dimension not
depending on n.

Example of HH :

zn
i (Θn(t)) :=

π(n)∑
k=1

Θk ,n
i (t)

l(k ,n)
IDk,n

where the dimension of zn is the number of open states the
channels can be in.



Limit Theorems

LLN : the deterministic limit of the sequence (Un, zn(Θn)) is
(u,p) satisfying

u̇ = A(p) u + B(p,u)

ṗj =
∑

i 6=j qij(u) pi − qij(u) pj := Fj(p,u)

We also obtain a CLT and the Langevin approximation of
(Un, zn(Θn)) takes the form

dŨn
t =

(
A(p̃n

t )Ũn
t + B(p̃n

t , Ũ
n
t )
)

dt

dp̃n
t = F (p̃n

t , Ũ
n
t ) dt + 1√

αn

√
G(Ũn

t , p̃
n
t ) dWt



Conditions on the partition (I)

The validity of LLN is expressed via two parameters of Pn,

δ+(n) = max
k=1,...,π(n)

diam(Dk ,n) and `−(n) = min
k=1,...,π(n)

l(k ,n) :

If
• δ+(n)→ 0 and `−(n)→∞ when n→∞
• and initial conditions (Un

0 , z
n(Θn

0)) converge in probability
to (u0,p0)

then Law of Large Numbers holds for the PDMP (Un, zn(Θn))
which converges to (u,p).



Conditions on the partition (II)

Remember that

δ+(n) = max
k=1,...,π(n)

diam(Dk ,n) and `−(n) = min
k=1,...,π(n)

l(k ,n).

For the CLT additional parameters of Pn are needed :

`+(n) := max
k=1,...,π(n)

l(k ,n) ,

ν+(n) := max
k=1,...,π(n)

|Dk ,n| , ν−(n) := min
k=1,...,π(n)

|Dk ,n| .



Conditions on the partition (III)

If, when n→∞,
• δ+(n)→ 0 and `−(n)→∞
• `−(n) ν−(n)

`+(n) ν+(n) → 1

• initial conditions (Un
0 , z

n(Θn
0)) converge in probability to

(u0,p0)

then Central Limit Theorem holds :
(√

`−(n)
ν+(n) Mn

t

)
t≥0

converges

to a diffusion where Mn is the martingale part of zn(Θn).



Comments

• only compartments which contain channels are used to
establish LLN and CLL

• heterogeneities are possible with the limitation that
`−(n) ν−(n)
`+(n) ν+(n) → 1

• normalization coefficient of CLT depends on parameters of
the partition Pn

• size of the noise in Langevin approximation :√
ν+(n)

`−(n)



Another family of infinite dimensional PDMP.
Multiple time scales study. (I)

For a given scale N ∈ N∗, we consider it is populated by N
channels of different types (for Hodgkin-Huxley, Na, K ),

located at sites zi ∈ 1
N (Z ∩ N ]0,1[).

For zi ∈ IN consider (φKzi
) a sequence of smooth functions

approximating δzi . The parameter K can be interpreted as a
small area around zi , when K → 0, the area shrinks to the point
zi itself. We will not write K in the sequel.

∂tV = ∂xxV + I

where I is the ionic current.



Another family of infinite dimensional PDMP.
Multiple time scales study. (II)

A channel configuration is a vector (ri)i∈{1,·,·,·N} where
ri = (ci , zi) ∈ S × IN and S is the set of all possible states.

As before the current sources are single (or families of) ion
channel(s) in open conducting states.

I(r ,V ) =
1
N

N∑
i=1

cri (Er(i) − V i)φzi ,

where hi :=
∫

I h(x)φzi (x) dx for a function h.
Several time scales are naturally present. With A. Genadot we
have proved averaging and associated CLT for this family of
spatial PDMP.
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