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PDE models in population ecology. Main idea

The dynamics of a population is governed by two main forces:

dispersion and growth (births - deaths).

General form (1D):

∂tu(t, x) = D[u](t, x) + F [u](t, x), t > 0, x ∈ R.
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Single species ODE models

Goal: to describe the dynamics of a population under the effect of
growth only.

Equation: {
U ′(t) = f (U(t)), t ∈ [0,T [,
U(0) = U0 ≥ 0,

Meaning of U(t): population size at time t ≥ 0.

Initial condition: U0 = the initial population size.

Growth term: f ∈ C1(R).
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Derivation of the growth term

Dynamics of the population size U(t) between t and t + δt :

U(t + δt)− U(t) = (nb births-nb deaths) during δt.

Birth rate a, death rate b.

U(t + δt)− U(t) = a U δt − b U δt.

Letting δt → 0 :

U ′ = a U − b U.

The growth term is:
f (U) = (a − b)U.
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Malthusian growth (Malthus 1798)

f (U) = (a − b)U
Assumption : a and b are constant.

Solution of U ′ = f (U) :
U(t) = U0er t ,

with r = a − b, the growth rate.
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Red line: U0 = 0.01 and r = 2 ;
Blue line: U0 = 150 and r = −1.

→ exponential growth for r > 0 (or decay, if r < 0).
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Logistic growth (Verhulst 1838)

Assumption: the death rate b is a linear increasing function of the
population size: b(U) = b0 + b1 U, with b1 > 0.

Letting r = a − b0 and K = a − b0
b1

, we get:

U ′(t) = f (U) = rU
(
1− U

K

)
, t ≥ 0.

Definitions:
• r : intrinsic growth rate;
• K : carrying capacity;
• U∗ s.t f (U∗) = 0: stationary state (here, 0 and K ).
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Logistic growth, stability of the stationary states

U ′ = f (U) = rU
(
1− U

K

)
Here, r = 2, K = 2
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Allee effect
Definition: per capita growth rate g(U) = f (U)/U.

Logistic case: g(U) = f (U)/U = r(1− U/K ) → g(U) is a decreasing
function of U.

Allee effect: g(U) does not reach its maximum at U = 0. Some kind of
“cooperation". Possible causes:

- difficulty of finding mates at low pop. density;

- inbreeding depression (consanguinité);

- isolated indiviuals are less robust to extreme climate events (pine
processionary moth, emperor penguin...).

Definitions:
• strong Allee effect: f (U) < 0 when U is small (death rate>birth
rate when U is small);

• weak Allee effect: f (U) ≥ 0, but g(U) = f (U)/U does not reach its
maximum at U = 0.
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ODE model with Allee effects: some examples
Weak Allee effect: f (U) = U2(1− U

K ).

Strong Allee effect: f (U) = U(1− U
K )(U − ρ), with ρ ∈]0,K [.
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Strong Allee effect, with r = 2, K = 2 et ρ = 0.5. Red line: U0 = 0.2 ;
green line: U0 = 1 ; blue line: U0 = 3.

→ the final state depends on the initial condition. fig
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Random walks and diffusion equation
Population of U independent individuals. Random walk:

x x+λx-λ

MM

N

Time step τ << 1 space step λ << 1.

The expected population density (normalised by U) u(t, x) converges
towards the solution of:

∂u
∂t = D ∂

2u
∂x2 ,

with D := lim
τ→0,λ→0

M λ2

τ
> 0.
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Random walk model vs diffusion equation: numerical
illustration

Population density (104 indiv.) Diffusion eq. ∂ u
∂ t = D ∂2u

∂x2

Here, τ = 2.5 10−3, λ ' 0.08, M = 0.4 and D = Mλ2/τ = 1.



Introduction Pulled/pushed waves F-KPP waves Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Diffusion in heterogeneous media
Population of U independent individuals. Random walk:

x x+λx-λ

M(x)M(x)

N(x)

Time step τ << 1 space step λ << 1.

The expected population density (normalised by U) u(t, x) converges
towards the solution of the Fokker-Planck equation :

∂u
∂t = ∂2(D(x) u)

∂x2 ,

with D(x) := lim
τ→0,λ→0

M(x) λ
2

τ
> 0.
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Heterogeneous diffusion: Fick vs Fokker-Planck
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Heat, pollutants ... vs Individuals, propagules, ...
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Reaction-dispersion models: general form

General form (1D):

∂tu(t, x) = D[u](t, x) + F [u](t, x), t > 0, x ∈ R.

Description of the dynamics of a concentration u(t, x) under the effect
of:

• a linear dispersion term D[u](t, x);

• a growth term (reaction) F [u](t, x);
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Reaction-dispersion models: examples
Reaction-diffusion equations:

∂tu(t, x) = ∂x (D(x)∂xu − v u)︸ ︷︷ ︸+ f (t, x , u)︸ ︷︷ ︸, t > 0, x ∈ R.

dispersion growth

Delayed reaction-diffusion equations:

∂tu(t, x) = ∂x (D(x)∂xu − v u)︸ ︷︷ ︸+ f (t, x , u, u(t − τ, x))︸ ︷︷ ︸, t > 0, x ∈ R.

dispersion growth

Integro-differential equations:

∂tu(t, x) =
∫
R
J(|x − y |) (u(t, y)− u(t, x)) dy︸ ︷︷ ︸+ f (t, x , u)︸ ︷︷ ︸ .

dispersion growth
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Traveling waves solutions

Solutions with constant speed c and a constant profile U > 0 :

u(t, x) = U(x − c t).



Introduction Pulled/pushed waves F-KPP waves Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Traveling waves: standard results for
∂tu = ∂xxu + f (u), t > 0, x ∈ R

Existence results

• KPP case: {c} = [c∗,+∞) with c∗ = 2
√

f ′(0)

• Monostable case: {c} = [c∗,+∞) with c∗ ≥ 2
√
f ′(0) and c∗ > 0

• Bistable case: there is a unique speed c and c > 0

[Aronson and Weinberger, Fife and McLeod, Kanel’]

Uniqueness of the profile U (up to shifts) for each speed c, and U ′ < 0

Stability for the Cauchy problem with u0 = U + perturbation

[Bramson, Eckmann and Wayne, Fife and McLeod, Kametaka, Kanel’,
Lau, McKean, Sattinger, Uchiyama...]
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Spreading properties
The importance of the wave with minimal speed

Cauchy problem:{
∂tu = ∂xxu + f (u), t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R.

Initial condition:

1

0

Convergence (in some sense) to the wave with minimal speed c∗.
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Pulled and pushed waves: the notion of inside dynamics
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Inside dynamics of a solution: main idea

Assumption: u is made of several components µi ≥ 0 (i ∈ I ⊂ N):

u(t, x) =
∑
i∈I

µi(t, x).

Interpretation: u is a density of genes inside a population.

Objective: to understand the dynamics of the µi ’s → dynamics of
genetic diversity in a population.
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Inside dynamics of a solution: the equations
Initial condition: u(0, x) =

∑
i∈I

µi
0(x), x ∈ R.

Neutrality assumption: dispersion and growth abilities are the same in
all the µi ’s. ∂tµ

i(t, x) = D[µi ](t, x) + µi

u F [u](t, x), t > 0, x ∈ R,

µi(0, x) = µi
0(x), x ∈ R.

Well-posedness: check that

u(t, x) =
∑
i∈I

µi(t, x) for all t ≥ 0, x ∈ R.

w =
∑

i∈I µ
i(t, x) and u are solutions of the linear equation:

∂tw(t, x) = D[w ](t, x) + w
u F [u](t, x), t > 0, x ∈ R.

Assumptions on D,F : guarantee the uniqueness of the solution w .
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Inside dynamics of traveling waves

Solutions with constant speed c and a constant profile U > 0 :

u(t, x) = U(x − c t).

Usual questions: existence, uniqueness, stability, minimal speed ...

New problem: to study the inside dynamics of U(x − c t).
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Inside dynamics of traveling waves

Solutions with constant speed c and a constant profile U > 0 :

u(t, x) = U(x − c t).

Usual questions: existence, uniqueness, stability, minimal speed ...

New problem: to study the inside dynamics of U(x − c t).
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Pulled and pushed waves: Stokes’definitions (1976)

Monostable case:

∂tu = d ∂xxu + f (u), with monostable growth term f fig .

Existence of waves for all c ≥ c∗ > 0 (Aronson and Weinberger, 1975;
1978).

• Pulled wave:

- Either a critical wave with c = c∗ = 2
√

f ′(0) d

Same speed as the solution of the linearized problem

- Or any super-critical wave, that is c > c∗

• Pushed wave: a critical wave with c = c∗ > 2
√

f ′(0) d
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Pulled and pushed waves: new definitions (2012)

Definition (Pulled wave)
u(t, x) = U(x − ct) is a pulled wave if, for any component µ such that
µ0(x) = 0 for large x ,

µ(t, x + ct)→ 0 as t → +∞, uniformly on compact sets.

Definition (Pushed wave)
u(t, x) = U(x − ct) is a pushed wave if, for any component µ such that
µ0 6≡ 0, there exists M > 0 such that

lim sup
t→+∞

sup
x∈[−M,M]

µ(t, x + ct) > 0.
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Application 1: Fisher-KPP growth terms
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KPP waves

• Equation: ∂tu = d ∂xxu + f (u).

• Growth term: f (u) = u (1− u) (or other KPP growth terms). fig

• Interpretation: per capita growth rate is maximal at low density
(competition effects).

• Traveling waves: u(t, x) = Uc(x − c t) for all c ≥ c∗ = 2
√

f ′(0) d
(Fisher, 1937; Kolmogorov et al, 1937)
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Inside dynamics of KPP waves

Theorem [Garnier, Giletti, Hamel, Klein, R. 2012]
All of the waves are pulled.

Funder effects → strong erosion of diversity.
Same result for Stokes pulled waves.
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Application 2: bistable growth terms
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Bistable waves

• Equation: ∂tu = d ∂xxu + f (u).

• Growth term: f (u) = u (1− u) (u − ρ), ρ ∈ (0, 1/2) (or other
bistable growth terms). fig

• Interpretation: negative growth rate at low densities (Allee
effect=cooperation between the individuals).

• Traveling wave: unique wave u(t, x) = Uc∗(x − c∗ t) (Aronson and
Weinberger, 1975; Fife and McLeod, 1977).
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Inside dynamics of bistable waves

Theorem [Garnier, Giletti, Hamel, Klein, R. 2012]
The unique wave is pushed.

Convergence to a positive proportion of the wave:

µ(t, x + c∗ t)→ p U(x) as t → +∞, uniformly on compact sets,

with

p = p[µ0] =

∫ +∞

−∞
µ0(x)U(x) e c∗

d x dx∫ +∞

−∞
U2(x) e c∗

d x dx
∈ (0, 1].

Back
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Inside dynamics of bistable waves

Theorem [Garnier, Giletti, Hamel, Klein, R. 2012]
The unique wave is pushed.

Higher mortality at low densities → maintenance of diversity.
Same result for Stokes pushed waves.
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Typical pulled and pushed profiles

Pulled profile Pushed profile
Diversity is lost Diversity is maintained
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Application 3: Lotka-Volterra competition models
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Traveling wave of LV competition systems

• Equation:{
∂t u = d ∂xx u + u (1− u − a1v),
∂t v = ∂xx v + r v (1− a2 u − v), t > 0, x ∈ R,

d , r , a1, a2 are positive and 0 < a1 < 1 < a2.

• Growth term: KPP-type (Fisher-KPP eq if a1 = 0).

• Traveling waves: u(t, x) = U(x − c t), v(t, x) = V (x − c t), with
limiting conditions:

(U,V )(−∞) = (1, 0) and (U,V )(+∞) = (0, 1).

Existence for all c ≥ c∗ > 0 (Kan-On, 1997).
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Traveling wave of LV competition systems

• Equation:{
∂t u = d ∂xx u + u (1− u − a1v),
∂t v = ∂xx v + r v (1− a2 u − v), t > 0, x ∈ R,

d , r , a1, a2 are positive and 0 < a1 < 1 < a2.

• Growth term: KPP-type (Fisher-KPP eq if a1 = 0).

• Traveling waves:

Existence for all c ≥ c∗ > 0 (Kan-On, 1997).
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Linear and nonlinear determinacy of the minimal speed
Comparison principle:

2
√

d(1− a1) ≤ c∗ ≤ 2
√
d .

• c∗ is linearly determined if c∗ = c0 := 2
√
d (1− a1);

or
• nonlinearly determined if c∗ > c0 := 2

√
d (1− a1).

Natural conjecture: c∗ is always linearly determined (Okubo et al., 1989,
Murray, 2002).

Other conjecture: c∗ is nonlinearly determined for d << 1 (Hosono,
2003).

Existence of nonlinear waves: a1 → 1 (Huang and Han, 2011), d << 1
(Holzer and Scheel, 2012).



Introduction Pulled/pushed waves F-KPP waves Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Linear and nonlinear determinacy of the minimal speed
Sufficient conditions for the linear determinacy: Lewis et al. 2002 and
Huang 2010.
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Ratio c∗/c0, in terms of the parameters a1, d (a2 = 2).
[Boivin, Bonnefon, Hosono, R. 2014]
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Inside dynamics of LV linear waves

Theorem [Boivin, Bonnefon, Hosono, R. 2014]
If c∗ is linearly determined, the wave u(t, x) = U(x − c∗ t) is pulled.

0
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(b) a1 = 0.4, d = 1, t = 80

Weak competitor (a1 << 1)→ erosion of diversity as in the scalar KPP
case.
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Slow and fast-decay waves

Definition (Slow-decay wave)
u(t, x) = U(x − ct) is a slow-decay wave if ln[U(y)] ∼ −λ y as
y → +∞, for some 0 < λ ≤ c/(2 d).

Definition (Fast-decay wave)
u(t, x) = U(x − ct) is a fast-decay wave if ln[U(y)] ∼ −λ y as
y → +∞, for some λ > c/(2 d).

Denominator

Monostable scalar case:

c∗ is linearly determined ⇔ u(t, x) = U(x − c∗ t) is a slow-decay wave.

Our conjecture: also true for LV competition systems. fig .
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Inside dynamics of LV nonlinear waves
Theorem [Boivin, Bonnefon, Hosono, R. 2014]
If c∗ is nonlinearly determined:

1) if u(t, x) = U(x − c∗ t) is a fast-decay wave, then it is a pushed wave;

2) if u(t, x) = U(x − c∗ t) is a slow-decay wave, then it is a pulled wave.
(should never occur)
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(c) a1 = 0.9, d = 1, t = 0
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(d) a1 = 0.9, d = 1, t = 175

Strong competitor → maintenance of diversity.
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Application 4: delayed reaction-diffusion equations
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Traveling waves in delayed PDEs

• Equation: ∂tu = d ∂xxu + F [u].

• Growth term: F (u(t − τ, x), u(t, x)) = u(t − τ, x) (1− u(t, x)).

• Interpretation: non-reproductive and motionless juvenile stage.

• Traveling waves: u(t, x) = Uc(x − c t) for all c ≥ c∗(τ) (Schaaf,
1987)
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Slow vs fast decay at +∞

Lemma [Bonnefon, Garnier, Hamel, R. 2013]
There exists c(τ) ∈ (c∗(τ),+∞) such that:
1) the waves with speeds c ∈ (c∗(τ), c(τ)) are fast-decay waves;

2) the waves with speeds c ≥ c(τ) are slow-decay waves.
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Inside dynamics of delayed waves

Equation satisfied by the components of the wave: ∂tµ(t, x) = ∂xxµ(t, x) + µ(t − τ, x)
u(t − τ, x) F (u(t − τ, x), u(t, x)), t > 0,

µ(t, x) = µ0(x − ct), t ∈ [−τ, 0].

Theorem [Bonnefon, Garnier, Hamel, R. 2013]
All of the waves with speeds c > c∗(τ) are pulled.

→ Same dynamics as in the non-delayed case.
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Application 4: integro-differential equations
The effect of long-distance dispersion
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Traveling waves and other solutions
• Equation: ∂tu = D[u] + f (u).

• Growth term: KPP or monostable (e.g. f (u) = u (1− u)).

• Dispersion term: D[u] : nonlocal linear operator

D[u] = D[u](t, x) =
∫
R
J(|x − y |) (u(t, y)− u(t, x)) dy .

Dispersion kernel J(λ) : probability to move at a distance λ.
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Traveling waves and other solutions
• Equation: ∂tu = D[u] + f (u).

• Growth term: KPP or monostable (e.g. f (u) = u (1− u)).

• Dispersion term: D[u] : nonlocal linear operator

D[u] = D[u](t, x) =
∫
R
J(|x − y |) (u(t, y)− u(t, x)) dy .

Dispersion kernel J(λ) : probability to move at a distance λ.

Thin-tailed dispersion kernel: local dispersion → TW with constant speeds
(Carr and Chmaj, 2004; Coville and Dupaigne, 2007)
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Traveling waves and other solutions
• Equation: ∂tu = D[u] + f (u).

• Growth term: KPP or monostable (e.g. f (u) = u (1− u)).

• Dispersion term: D[u] : nonlocal linear operator

D[u] = D[u](t, x) =
∫
R
J(|x − y |) (u(t, y)− u(t, x)) dy .

Dispersion kernel J(λ) : probability to move at a distance λ.

Fat-tailed dispersion kernel: long-distance dispersion → acceleration
(Garnier, 2011) and flattening [Garnier, Hamel, R., 2016].
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Thin-tailed and fat-tailed kernels
General assumptions:

J ∈ C0(R), J ≥ 0, J(x) = J(−x), and
∫
R
J(x)dx = 1.

Definition (Thin-tailed dispersion kernels)
The dispersion kernel J is a thin-tailed kernel if

there exists λ > 0, such that
∫
R
J(x)eλxdx <∞.

Definition (Fat-tailed dispersion kernels)
The dispersion kernel J is a fat-tailed kernel if

for all η > 0, there exists xη ∈ R such that J(x) ≥ e−ηx in [xη,+∞).
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Inside dynamics of traveling waves
Theorem [Bonnefon, Coville, Garnier, R. 2014]
If J is a thin-tailed kernel and f is of KPP type, all of the waves
u(t, x) = U(x − c t), with c ≥ c∗, are pulled

x

u
(t
,x
)

x
u
(t
,x
)

Figure: TW solution in the case of the thin-tailed kernel J(x) = (1/2) e−|x|, at
t = 0 (left) and t = 40

→ same dynamics as in the reaction-diffusion case (Fisher-KPP equation).
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Pulled/pushed accelerating solutions
Level set: for any level λ ∈ (0, 1) and t > 0:

Eλ(t) = {x ∈ R, u(t, x) = λ}.

Initial condition u0 with support (x−0 , x+
0 ).

Definition (Pulled solution (to the right))
For any component µ with Supp(µ0) ⊂ [x−0 , x+

0 ), there holds

sup
x>0∈Eλ(t)

µ(t, x)→ 0, as t → +∞, for any level λ ∈ (0, 1).

Definition (Pushed solution to the right)
For all component µ such that Supp(µ0) ⊂ [x−0 , x+

0 ), there is a level
λ ∈ (0, 1) such that

lim sup
t→+∞

sup
x>0∈Eλ(t)

µ(t, x) > 0.
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Inside dynamics for very fat kernels

Consider the Cauchy kernel:

J(x) = β

π(β2 + x2) for some β > 0,

and a monostable function f .

Theorem [Bonnefon, Coville, Garnier, R. 2014]
The solutions of the integro-differential equation
∂tu =

∫
R J(|x − y |) (u(t, y)− u(t, x)) dy + f (u) are pushed in any

direction:
µ(t, x)
u(t, x) ≥ α > 0 for all t ≥ τ and x ∈ R.
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Inside dynamics for very fat kernels

Figure: Solution starting from a step-function with β = 1, at t = 0 (left) and
t = 6 (right).

Long-distance dispersion → better maintenance of diversity.
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Conclusions

Biological mechanisms have been identified as possible causes of pushed
propagation waves:

• Allee effect;
• competition with a resident species;
• existence of moving climate barriers (Garnier and Lewis, 2016).

In all cases, they contribute to reduce the advantage of being in the
leading edge of the wave.
Consequence: diversity is maintained during the colonization.

From a mathematical viewpoint:
• new notions of pulled and pushed waves;
• these notions are consistent with previous notions, but more general;
• could be applied to other classes of equations, e.g. with nonlinear
dispersion terms.



Introduction Pulled/pushed waves F-KPP waves Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Thank you for your attention!
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Types of growth functions that we will consider in this talk: back

0 1
0

s
f(

s)

(a)KPP back

0 1
0

s

f(
s)

0 1

0

s

f(
s)

(b)Monostable back (c)Bistable back
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Figure: Comparison of ln(U(x)) with −λ−1 x and −λ+
1 x . Left: the parameter

values are a1 = 0.9, a2 = 2 and d = r = 1, leading to c∗ ' 0.73 > c0 ' 0.63.
Right: the parameter values are a1 = 0.7, a2 = 2, d = 0.1 and r = 1, leading
to c∗ ' 0.358 > c0 ' 0.346.

with
λ±1 =

c∗ ±
√

(c∗)2 + 4 d (a1 − 1)
2 d .
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