Introduction Pulled/pushed waves F-KPP waves Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Pulled and pushed waves Causes and consequences

Lionel Roques

with T. Boivin, O. Bonnefon, J. Coville, J. Garnier, T. Giletti, F. Hamel, Y. Hosono, and E. Klein

CIRM - Summer school "EDP et Probabilités pour les sciences du vivant"

INRA Biostatistics and Spatial Processes (BioSP) - Avignon - France

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction Pulled/pushed waves F-KPP waves Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Introduction

PDE models in population ecology. Main idea

The dynamics of a population is governed by two main forces:

dispersion and growth (births - deaths).

General form (1D):

 $\partial_t u(t,x) = \mathcal{D}[u](t,x) + \mathcal{F}[u](t,x), \ t > 0, x \in \mathbb{R}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Single species ODE models

Goal: to describe the dynamics of a population under the effect of growth only.

Equation:

$$\left\{ egin{array}{ll} U'(t) = f(U(t)), \ t \in \ [0, \, \mathcal{T}[, \ U(0) = U_0 \geq 0, \end{array}
ight.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Meaning of U(t): population size at time $t \ge 0$.

Initial condition: U_0 = the initial population size.

Growth term: $f \in C^1(\mathbb{R})$.

Derivation of the growth term

Dynamics of the population size U(t) between t and $t + \delta t$:

 $U(t + \delta t) - U(t) =$ (nb births-nb deaths) during δt .

Birth rate *a*, death rate *b*.

 $U(t + \delta t) - U(t) = a U \delta t - b U \delta t.$

Letting $\delta t \rightarrow 0$:

$$U' = a U - b U.$$

The growth term is:

f(U) = (a - b) U.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Malthusian growth (Malthus 1798)

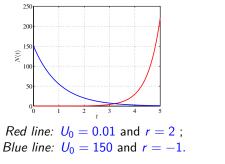
f(U) = (a - b) U

Assumption : *a* and *b* are constant.

Solution of U' = f(U):

$$U(t)=U_0e^{rt},$$

with r = a - b, the growth rate.



 \rightarrow exponential growth for r > 0 (or decay, if r < 0), $r \ge 1$ and $r \ge 1$

Logistic growth (Verhulst 1838)

Assumption: the death rate *b* is a linear increasing function of the population size: $b(U) = b_0 + b_1 U$, with $b_1 > 0$.

Letting
$$r = a - b_0$$
 and $K = \frac{a - b_0}{b_1}$, we get:
 $U'(t) = f(U) = rU\left(1 - \frac{U}{K}\right), \ t \ge 0.$

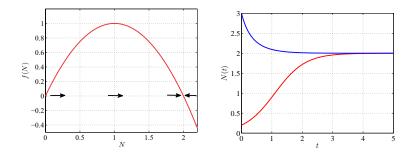
Definitions:

- r: intrinsic growth rate;
- K: carrying capacity;
- U^* s.t $f(U^*) = 0$: stationary state (here, 0 and K).

Logistic growth, stability of the stationary states

$$U'=f(U)=rU\left(1-\frac{U}{K}\right)$$

Here, r = 2, K = 2



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Allee effect

Definition: per capita growth rate g(U) = f(U)/U.

Logistic case: $g(U) = f(U)/U = r(1 - U/K) \rightarrow g(U)$ is a decreasing function of U.

Allee effect: g(U) does not reach its maximum at U = 0. Some kind of "cooperation". Possible causes:

- difficulty of finding mates at low pop. density;
- inbreeding depression (consanguinité);
- isolated indiviuals are less robust to extreme climate events (pine processionary moth, emperor penguin...).

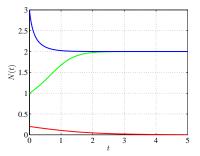
Definitions:

- strong Allee effect: f(U) < 0 when U is small (death rate>birth rate when U is small);
- weak Allee effect: f(U) ≥ 0, but g(U) = f(U)/U does not reach its maximum at U = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

ODE model with Allee effects: some examples

Weak Allee effect: $f(U) = U^2(1 - \frac{U}{K})$. Strong Allee effect: $f(U) = U(1 - \frac{U}{K})(U - \rho)$, with $\rho \in]0, K[$.



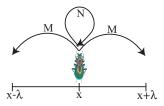
Strong Allee effect, with r = 2, K = 2 et $\rho = 0.5$. Red line: $U_0 = 0.2$; green line: $U_0 = 1$; blue line: $U_0 = 3$.

 \rightarrow the final state depends on the initial condition. \bigcirc fig.

Lotka-Volterra D

Random walks and diffusion equation

Population of U independent individuals. Random walk:



Time step $\tau \ll 1$ space step $\lambda \ll 1$.

The expected population density (normalised by U) u(t, x) converges towards the solution of:

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2},$$

with
$$D := \lim_{\tau \to 0, \lambda \to 0} M \frac{\lambda^2}{\tau} > 0.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Random walk model vs diffusion equation: numerical illustration

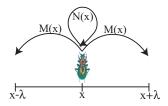
Population density (10^4 indiv.)

Diffusion eq.
$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$

Here, $\tau = 2.5 \, 10^{-3}$, $\lambda \simeq 0.08$, M = 0.4 and $D = M \lambda^2 / \tau = 1$.

Diffusion in heterogeneous media

Population of U independent individuals. Random walk:



Time step $\tau \ll 1$ space step $\lambda \ll 1$.

The expected population density (normalised by U) u(t, x) converges towards the solution of the Fokker-Planck equation :

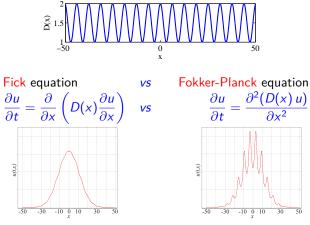
$$\frac{\partial u}{\partial t} = \frac{\partial^2 (D(x) \, u)}{\partial x^2},$$

with $D(x) := \lim_{\tau \to 0, \lambda \to 0} M(x) \frac{\lambda^2}{\tau} > 0.$

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ 今々ぐ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Heterogeneous diffusion: Fick vs Fokker-Planck



Heat, pollutants ...

VS

Individuals, propagules, ...

Reaction-dispersion models: general form

General form (1D):

 $\partial_t u(t,x) = \mathcal{D}[u](t,x) + \mathcal{F}[u](t,x), \ t > 0, x \in \mathbb{R}.$

Description of the dynamics of a concentration u(t, x) under the effect of:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- a linear dispersion term $\mathcal{D}[u](t,x)$;
- a growth term (reaction) $\mathcal{F}[u](t,x)$;

Reaction-dispersion models: examples Reaction-diffusion equations:

$$\partial_t u(t,x) = \underbrace{\partial_x (D(x)\partial_x u - v u)}_{\text{dispersion}} + \underbrace{f(t,x,u)}_{\text{growth}}, t > 0, x \in \mathbb{R}.$$

Delayed reaction-diffusion equations:

$$\partial_t u(t,x) = \underbrace{\partial_x (D(x)\partial_x u - v u)}_{\text{dispersion}} + \underbrace{f(t,x,u,u(t-\tau,x))}_{\text{growth}}, t > 0, x \in \mathbb{R}.$$

Integro-differential equations:

$$\partial_t u(t,x) = \underbrace{\int_{\mathbb{R}} J(|x-y|) (u(t,y) - u(t,x)) dy}_{\text{dispersion}} + \underbrace{f(t,x,u)}_{\text{growth}}.$$

Traveling waves solutions

Solutions with constant speed c and a constant profile U > 0:

 $u(t,x)=U(x-c\,t).$

Traveling waves: standard results for $\partial_t u = \partial_{xx} u + f(u), \ t > 0, x \in \mathbb{R}$

Existence results

- KPP case: $\{c\} = [c^*, +\infty)$ with $c^* = 2\sqrt{f'(0)}$
- Monostable case: $\{c\} = [c^*, +\infty)$ with $c^* \ge 2\sqrt{f'(0)}$ and $c^* > 0$
- Bistable case: there is a unique speed c and c > 0

[Aronson and Weinberger, Fife and McLeod, Kanel']

Uniqueness of the profile U (up to shifts) for each speed c, and U' < 0

Stability for the Cauchy problem with $u_0 = U + \text{perturbation}$ [Bramson, Eckmann and Wayne, Fife and McLeod, Kametaka, Kanel', Lau, McKean, Sattinger, Uchiyama...]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Spreading properties

The importance of the wave with minimal speed

Cauchy problem:

$$\begin{cases} \partial_t u = \partial_{xx} u + f(u), & t > 0, x \in \mathbb{R}, \\ u(0, x) = u_0(x), & x \in \mathbb{R}. \end{cases}$$

Initial condition:



Convergence (in some sense) to the wave with minimal speed c^* .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Introduction Pulled/pushed waves F-KPP waves Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Pulled and pushed waves: the notion of inside dynamics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Inside dynamics of a solution: main idea

Assumption: *u* is made of several components $\mu^i \ge 0$ ($i \in I \subset \mathbb{N}$):

$$u(t,x)=\sum_{i\in I}\mu^i(t,x).$$

Interpretation: *u* is a density of genes inside a population.

Objective: to understand the dynamics of the μ^{i} 's \rightarrow dynamics of genetic diversity in a population.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Inside dynamics of a solution: the equations Initial condition: $u(0,x) = \sum \mu_0^i(x), x \in \mathbb{R}.$

Neutrality assumption: dispersion and growth abilities are the same in all the μ^{i} 's.

$$\left\{ egin{array}{ll} \partial_t\mu^i(t,x)&=&\mathcal{D}[\mu^i](t,x)+rac{\mu^i}{u}\,\mathcal{F}[u](t,x),\quad t>0,\;x\in\mathbb{R},\ \mu^i(0,x)&=&\mu^i_0(x),\qquad\qquad x\in\mathbb{R}. \end{array}
ight.$$

Well-posedness: check that

$$u(t,x) = \sum_{i \in I} \mu^i(t,x) ext{ for all } t \geq 0, \ x \in \mathbb{R}.$$

 $w = \sum_{i \in I} \mu^i(t, x)$ and u are solutions of the linear equation:

$$\partial_t w(t,x) = \mathcal{D}[w](t,x) + rac{w}{u} \mathcal{F}[u](t,x), \ t > 0, x \in \mathbb{R}.$$

Assumptions on \mathcal{D}, \mathcal{F} : guarantee the uniqueness of the solution w_{\pm} , ж

Inside dynamics of traveling waves

Solutions with constant speed c and a constant profile U > 0:

u(t,x)=U(x-c t).

Usual questions: existence, uniqueness, stability, minimal speed ...

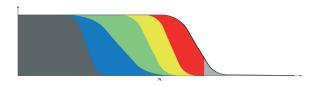
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

New problem: to study the inside dynamics of U(x - c t).

Inside dynamics of traveling waves

Solutions with constant speed c and a constant profile U > 0:

u(t,x)=U(x-c t).



▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Usual questions: existence, uniqueness, stability, minimal speed ...

New problem: to study the inside dynamics of U(x - c t).

Pulled and pushed waves: Stokes' definitions (1976)

Monostable case:

 $\partial_t u = d \partial_{xx} u + f(u)$, with monostable growth term $f \bigcirc f_{\text{fig.}}$.

Existence of waves for all $c \ge c^* > 0$ (Aronson and Weinberger, 1975; 1978).

- Pulled wave:
 - Either a critical wave with $c = c^* = 2\sqrt{f'(0) d}$

Same speed as the solution of the linearized problem

- Or any super-critical wave, that is $c > c^*$

• Pushed wave: a critical wave with $c = c^* > 2\sqrt{f'(0) d}$

Pulled and pushed waves: new definitions (2012)

Definition (Pulled wave)

u(t,x) = U(x - ct) is a pulled wave if, for any component μ such that $\mu_0(x) = 0$ for large x.

 $\mu(t, x + ct) \rightarrow 0$ as $t \rightarrow +\infty$, uniformly on compact sets.

Definition (Pushed wave)

u(t,x) = U(x - ct) is a pushed wave if, for any component μ such that $\mu_0 \not\equiv 0$, there exists M > 0 such that

 $\limsup_{t\to+\infty} \sup_{x\in [-M,M]} \mu(t,x+ct) > 0.$

Introduction Pulled/pushed waves F-KPP waves Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Application 1: Fisher-KPP growth terms

KPP waves

• Equation: $\partial_t u = d \partial_{xx} u + f(u)$.

• **Growth term:** f(u) = u(1-u) (or other KPP growth terms).

• Interpretation: per capita growth rate is maximal at low density (competition effects).

• Traveling waves: $u(t,x) = U_c(x-c t)$ for all $c \ge c^* = 2\sqrt{f'(0) d}$ (Fisher, 1937; Kolmogorov et al, 1937)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Inside dynamics of KPP waves

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem [Garnier, Giletti, Hamel, Klein, R. 2012] *All of the waves are pulled.*

Funder effects \rightarrow strong erosion of diversity. Same result for Stokes pulled waves. Introduction Pulled/pushed waves F-KPP waves Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Application 2: bistable growth terms

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Bistable waves

• Equation: $\partial_t u = d \partial_{xx} u + f(u)$.

• Growth term: $f(u) = u(1-u)(u-\rho), \rho \in (0, 1/2)$ (or other bistable growth terms).

• Interpretation: negative growth rate at low densities (Allee effect=cooperation between the individuals).

• **Traveling wave:** unique wave $u(t, x) = U_{c^*}(x - c^* t)$ (Aronson and Weinberger, 1975; Fife and McLeod, 1977).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Inside dynamics of bistable waves

Theorem [Garnier, Giletti, Hamel, Klein, R. 2012] The unique wave is pushed.

Convergence to a positive proportion of the wave:

 $\mu(t, x + c^* t) \rightarrow p U(x)$ as $t \rightarrow +\infty$, uniformly on compact sets,

with

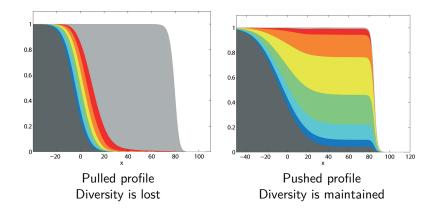
$$p = p[\mu_0] = \frac{\int_{-\infty}^{+\infty} \mu_0(x) U(x) e^{\frac{c^*}{d} \times dx}}{\int_{-\infty}^{+\infty} U^2(x) e^{\frac{c^*}{d} \times dx}} \in (0, 1].$$

Inside dynamics of bistable waves

Theorem [Garnier, Giletti, Hamel, Klein, R. 2012] The unique wave is pushed.

Higher mortality at low densities \rightarrow maintenance of diversity. Same result for Stokes pushed waves.

Typical pulled and pushed profiles



・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト æ Introduction Pulled/pushed waves F-KPP waves Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Application 3: Lotka-Volterra competition models

Traveling wave of LV competition systems

• Equation:

$$\begin{cases} \partial_t u = d \partial_{xx} u + u (1 - u - a_1 v), \\ \partial_t v = \partial_{xx} v + r v (1 - a_2 u - v), \end{cases} \quad t > 0, \ x \in \mathbb{R},$$

 d, r, a_1, a_2 are positive and $0 < a_1 < 1 < a_2$.

- **Growth term:** KPP-type (Fisher-KPP eq if $a_1 = 0$).
- Traveling waves: u(t,x) = U(x c t), v(t,x) = V(x c t), with limiting conditions:

 $(U, V)(-\infty) = (1, 0)$ and $(U, V)(+\infty) = (0, 1)$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Existence for all $c \ge c^* > 0$ (Kan-On, 1997).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Traveling wave of LV competition systems

• Equation:

$$\begin{cases} \partial_t u = d \partial_{xx} u + u (1 - u - a_1 v), \\ \partial_t v = \partial_{xx} v + r v (1 - a_2 u - v), \end{cases} \quad t > 0, \ x \in \mathbb{R},$$

d, r, a_1 , a_2 are positive and $0 < a_1 < 1 < a_2$.

- **Growth term:** KPP-type (Fisher-KPP eq if $a_1 = 0$).
- Traveling waves:

Existence for all $c \ge c^* > 0$ (Kan-On, 1997).

Introduction Pulled/pushed waves F-KPP waves Bistable waves Lotka-Volterra Delaved PDEs Integro-differential equations Conclusions

Linear and nonlinear determinacy of the minimal speed Comparison principle:

$2\sqrt{d(1-a_1)} < c^* < 2\sqrt{d}.$

• c^* is linearly determined if $c^* = c_0 := 2\sqrt{d(1-a_1)};$

or

• nonlinearly determined if $c^* > c_0 := 2\sqrt{d(1-a_1)}$.

Natural conjecture: c^* is always linearly determined (Okubo et al., 1989, Murray, 2002).

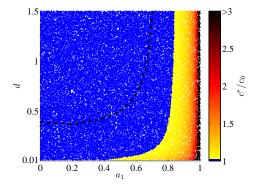
Other conjecture: c^* is nonlinearly determined for $d \ll 1$ (Hosono, 2003).

Existence of nonlinear waves: $a_1 \rightarrow 1$ (Huang and Han, 2011), d << 1(Holzer and Scheel, 2012). ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(日) (四) (日) (日) (日)

Linear and nonlinear determinacy of the minimal speed

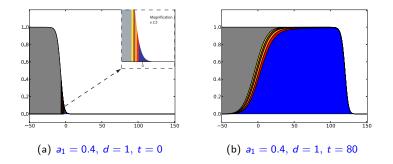
Sufficient conditions for the linear determinacy: Lewis et al. 2002 and Huang 2010.



Ratio c^*/c_0 , in terms of the parameters a_1 , d ($a_2 = 2$). [Boivin, Bonnefon, Hosono, R. 2014]

Inside dynamics of LV linear waves

Theorem [Boivin, Bonnefon, Hosono, R. 2014] If c^* is linearly determined, the wave $u(t, x) = U(x - c^* t)$ is pulled.



Weak competitor $(a_1 \ll 1) \rightarrow$ erosion of diversity as in the scalar KPP case.

Slow and fast-decay waves

Definition (Slow-decay wave) u(t, x) = U(x - ct) is a *slow-decay wave* if $\ln[U(y)] \sim -\lambda y$ as $y \to +\infty$, for some $0 < \lambda \le c/(2d)$. Definition (Fast-decay wave) u(t, x) = U(x - ct) is a *fast-decay* wave if $\ln[U(y)] \sim -\lambda y$ as $y \to +\infty$, for some $\lambda > c/(2d)$.

Monostable scalar case:

 c^* is linearly determined $\Leftrightarrow u(t,x) = U(x - c^* t)$ is a slow-decay wave.

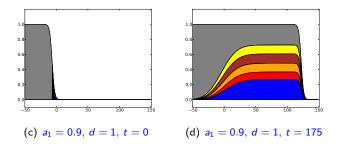
Our conjecture: also true for LV competition systems.

Inside dynamics of LV nonlinear waves

Theorem [Boivin, Bonnefon, Hosono, R. 2014] If c* is nonlinearly determined:

1) if $u(t,x) = U(x - c^* t)$ is a fast-decay wave, then it is a pushed wave;

2) if $u(t,x) = U(x - c^* t)$ is a slow-decay wave, then it is a pulled wave. (should never occur)



Strong competitor \rightarrow maintenance of diversity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction Pulled/pushed waves F-KPP waves Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Application 4: delayed reaction-diffusion equations

(ロ)、(型)、(E)、(E)、(E)、(O)()

Traveling waves in delayed PDEs

• Equation: $\partial_t u = d \partial_{xx} u + \mathcal{F}[u]$.

• Growth term: $F(u(t - \tau, x), u(t, x)) = u(t - \tau, x)(1 - u(t, x)).$

• Interpretation: non-reproductive and motionless juvenile stage.

• Traveling waves: $u(t, x) = U_c(x - c t)$ for all $c \ge c^*(\tau)$ (Schaaf, 1987)

Slow vs fast decay at $+\infty$

Lemma [Bonnefon, Garnier, Hamel, R. 2013] There exists $\overline{c}(\tau) \in (c^*(\tau), +\infty)$ such that: 1) the waves with speeds $c \in (c^*(\tau), \overline{c}(\tau))$ are fast-decay waves;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

2) the waves with speeds $c \geq \overline{c}(\tau)$ are slow-decay waves.

Inside dynamics of delayed waves

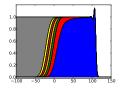
Equation satisfied by the components of the wave:

$$\begin{cases} \partial_t \mu(t,x) = \partial_{xx} \mu(t,x) + \frac{\mu(t-\tau,x)}{u(t-\tau,x)} F(u(t-\tau,x), u(t,x)), & t > 0, \\ \mu(t,x) = \mu_0(x-ct), & t \in [-\tau,0]. \end{cases}$$

(日) (四) (日) (日) (日)

Theorem [Bonnefon, Garnier, Hamel, R. 2013] All of the waves with speeds $c > c^*(\tau)$ are pulled.

 \rightarrow Same dynamics as in the non-delayed case.



Application 4: integro-differential equations The effect of long-distance dispersion

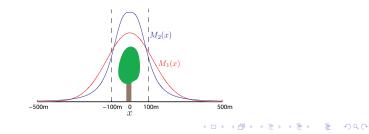
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Traveling waves and other solutions

- Equation: $\partial_t u = \mathcal{D}[u] + f(u)$.
- Growth term: KPP or monostable (e.g. f(u) = u(1-u)).
- Dispersion term: $\mathcal{D}[u]$: nonlocal linear operator

$$\mathcal{D}[u] = \mathcal{D}[u](t,x) = \int_{\mathbb{R}} J(|x-y|) \left(u(t,y) - u(t,x) \right) dy.$$

Dispersion kernel $J(\lambda)$: probability to move at a distance λ .



Traveling waves and other solutions

- Equation: $\partial_t u = \mathcal{D}[u] + f(u)$.
- Growth term: KPP or monostable (e.g. f(u) = u(1 u)).
- Dispersion term: $\mathcal{D}[u]$: nonlocal linear operator

$$\mathcal{D}[u] = \mathcal{D}[u](t,x) = \int_{\mathbb{R}} J(|x-y|) \left(u(t,y) - u(t,x) \right) dy.$$

Dispersion kernel $J(\lambda)$: probability to move at a distance λ .

Thin-tailed dispersion kernel: local dispersion \rightarrow TW with constant speeds (Carr and Chmaj, 2004; Coville and Dupaigne, 2007)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Traveling waves and other solutions

- Equation: $\partial_t u = \mathcal{D}[u] + f(u)$.
- Growth term: KPP or monostable (e.g. f(u) = u(1 u)).
- Dispersion term: $\mathcal{D}[u]$: nonlocal linear operator

$$\mathcal{D}[u] = \mathcal{D}[u](t,x) = \int_{\mathbb{R}} J(|x-y|) \left(u(t,y) - u(t,x) \right) dy.$$

Dispersion kernel $J(\lambda)$: probability to move at a distance λ .

Fat-tailed dispersion kernel: long-distance dispersion \rightarrow acceleration (Garnier, 2011) and flattening [Garnier, Hamel, R., 2016].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Thin-tailed and fat-tailed kernels

General assumptions:

 $J \in \mathcal{C}^0(\mathbb{R}), \quad J \geq 0, \quad J(x) = J(-x), \text{ and } \int_{\mathbb{T}} J(x) dx = 1.$

Definition (Thin-tailed dispersion kernels) The dispersion kernel J is a *thin-tailed* kernel if

there exists
$$\lambda > 0$$
, such that $\int_{\mathbb{R}} J(x) e^{\lambda x} dx < \infty$.

Definition (Fat-tailed dispersion kernels) The dispersion kernel J is a *fat-tailed* kernel if

for all $\eta > 0$, there exists $x_{\eta} \in \mathbb{R}$ such that $J(x) \ge e^{-\eta x}$ in $[x_{\eta}, +\infty)$.

Inside dynamics of traveling waves

Theorem [Bonnefon, Coville, Garnier, R. 2014] If J is a thin-tailed kernel and f is of KPP type, all of the waves u(t,x) = U(x - c t), with $c \ge c^*$, are pulled

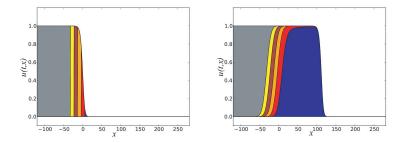


Figure: TW solution in the case of the thin-tailed kernel $J(x) = (1/2) e^{-|x|}$, at t = 0 (left) and t = 40

 \rightarrow same dynamics as in the reaction-diffusion case (Fisher-KPP equation).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pulled/pushed accelerating solutions Level set: for any level $\lambda \in (0, 1)$ and t > 0:

 $E_{\lambda}(t) = \{x \in \mathbb{R}, u(t,x) = \lambda\}.$

Initial condition u_0 with support (x_0^-, x_0^+) . Definition (Pulled solution (to the right)) For any component μ with $\overline{Supp(\mu_0)} \subset [x_0^-, x_0^+)$, there holds

 $\sup_{x>0\in E_\lambda(t)}\mu(t,x)\to 0, \ \text{ as } t\to +\infty, \ \text{ for any level } \lambda\in(0,1).$

Definition (Pushed solution to the right) For all component μ such that $\overline{Supp(\mu_0)} \subset [x_0^-, x_0^+)$, there is a level $\lambda \in (0, 1)$ such that

 $\limsup_{t\to+\infty} \sup_{x>0\in E_{\lambda}(t)} \mu(t,x) > 0.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Inside dynamics for very fat kernels

Consider the Cauchy kernel:

$$J(x)=rac{eta}{\pi(eta^2+x^2)} ext{ for some } eta>0,$$

and a monostable function f.

Theorem [Bonnefon, Coville, Garnier, R. 2014] The solutions of the integro-differential equation $\partial_t u = \int_{\mathbb{R}} J(|x-y|) (u(t,y) - u(t,x)) dy + f(u)$ are pushed in any direction:

$$rac{\mu(t,x)}{u(t,x)}\geqlpha>0 ~~ ext{for all}~~t\geq au~~ ext{and}~~x\in\mathbb{R}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Inside dynamics for very fat kernels

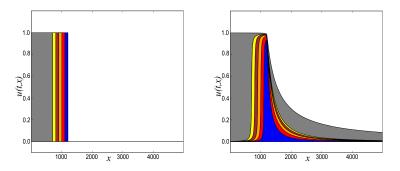


Figure: Solution starting from a step-function with $\beta = 1$, at t = 0 (left) and t = 6 (right).

Long-distance dispersion \rightarrow better maintenance of diversity.

Conclusions

Biological mechanisms have been identified as possible causes of pushed propagation waves:

- Allee effect;
- competition with a resident species;
- existence of moving climate barriers (Garnier and Lewis, 2016).

In all cases, they contribute to reduce the advantage of being in the leading edge of the wave.

Consequence: diversity is maintained during the colonization.

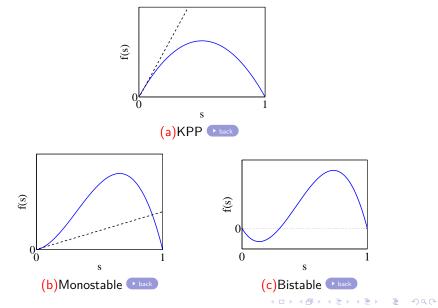
From a mathematical viewpoint:

- new notions of pulled and pushed waves;
- these notions are consistent with previous notions, but more general;
- could be applied to other classes of equations, e.g. with nonlinear dispersion terms.

Introduction Pulled/pushed waves F-KPP waves Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Thank you for your attention!

Types of growth functions that we will consider in this talk: • back



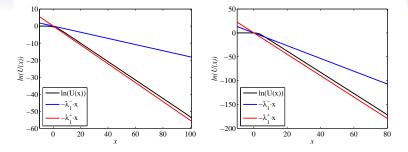


Figure: Comparison of $\ln(U(x))$ with $-\lambda_1^- x$ and $-\lambda_1^+ x$. Left: the parameter values are $a_1 = 0.9$, $a_2 = 2$ and d = r = 1, leading to $c^* \simeq 0.73 > c_0 \simeq 0.63$. Right: the parameter values are $a_1 = 0.7$, $a_2 = 2$, d = 0.1 and r = 1, leading to $c^* \simeq 0.358 > c_0 \simeq 0.346$.

with

$$\lambda_1^{\pm} = \frac{c^* \pm \sqrt{(c^*)^2 + 4 d (a_1 - 1)}}{2 d}$$

ヘロト 人間ト 人間ト 人間ト

э

back