Modelling of cross linked fiber networks: from agent-based to continuum models

Diane PEURICHARD

Faculty of mathematics, Wien university

In collaboration with:

- P. DEGOND (Imperial College London)
- F. DELEBECQUE (Institut Mathematiques de Toulouse)
- L. CASTEILLA (STROMALab)
- A. LORSIGNOL (STROMALab)
- C. BARREAU (STROMALab)
- J. ROUQUETTE(ITAV)
- X. DESCOMBES (INRIA CRI-SAM)

Summary

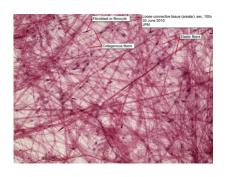
1. Context of the research

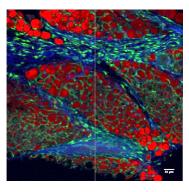
2. Microscopic model for interconnected fiber networks

- 3. Derivation of a macroscopic model for interconnected fibers
- 4. Summary/perspectives

Biological Framework

Goal: Model the Extra-Cellular Matrix as a network of cross-linked fibers having the ability to reorganize





Derive a hierarchy of models to account for several scales

Use it as a component of a model of tissue self-organization

Modelling process

Goal: Mathematical modelling of cross-linked networks

	Microscopic scale Agent based models	Macroscopic scale Continuum models
Variables	Agent position, speed	Density, mean variables
	$(X_i(t), v_i(t)), i \in [1, N] \dots$	$\rho(x,t), \bar{\theta}(x,t)\dots$
Advantages	- Description of each interaction	- Computationally efficient
	- Link with experimental data	- Mathematical framework
Drawbacks	- Computationally challenging	- Lost of information
	- Lack of theoretical results	at the agent scale

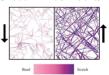
Intermediate scale : Mesoscopic scale (Kinetic models)

Variables: probability density f(x, t)

Literature: Microscopic and Macroscopic models for cells in fibrous networks

Microscopic models

Cross-linked fibers/ lattice spring models



[Astrom et al], [Broedersz et al], [Head et al], [Buxton and Clarke],

Fiber flocking model [Alonso et al]...

Macroscopic models

Phenomenological continuum models

[Joanny, Jülicher, Kruse, Prost, New J. Phys. 07], [Oelz, Schmeiser, Small, Cell Adh Migr 08], ...

Micro to macro approaches: [Degond et al], [Barocas and Tranquillo], [Cacho et al], [Gasser], ...

Microscopic model for an interconnected fiber network

Biological features:

- ► Fiber cross-linking/unlinking
- ▶ Random motion and reorientation

Mechanical features:

- ▶ External potential
- ► Cross-linked fibers retraction force
- ► Cross-linked fiber alignment force

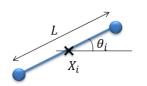
Global potential:

$$W_{\text{tot}} = W_{\text{ext}} + W_{\text{links}} + W_{\text{align}} + W_{\text{noise}}.$$

Motion (overdamped regime):

 μ and λ are mobility coefficients.

$$\frac{dX_i}{dt} = -\mu \nabla_{X_i} W_{\text{tot}}, \qquad \frac{d\theta_i}{dt} = -\lambda \partial_{\theta_i} W_{\text{tot}}, \qquad i \in \{1, \dots, N\}$$

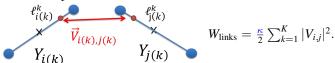


$$W_{\text{tot}} = W_{\text{ext}} + W_{\text{links}} + W_{\text{align}} + W_{\text{noise}}.$$

External potential U

Fiber links:

► Retraction potential between linked fibers



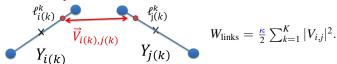
▶ Alignment force between linked fibers:

$$W_{ ext{align}} = rac{lpha}{2} \sum_{k=1}^{K} |\sin(heta_i - heta_j)|.$$

$$W_{\mathrm{tot}} = W_{\mathrm{ext}} + \frac{W_{\mathrm{links}}}{W_{\mathrm{links}}} + W_{\mathrm{align}} + W_{\mathrm{noise}}.$$

External potential *U* Fiber links:

► Retraction potential between linked fibers



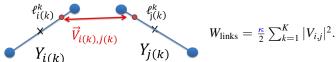
► Alignment force between linked fibers:

$$W_{\mathrm{align}} = \frac{\alpha}{2} \sum_{k=1}^{K} |\sin(\theta_i - \theta_j)|.$$

$$W_{\mathrm{tot}} = W_{\mathrm{ext}} + W_{\mathrm{links}} + W_{\mathrm{align}} + W_{\mathrm{noise}}.$$

External potential *U* Fiber links:

► Retraction potential between linked fibers



► Alignment force between linked fibers:

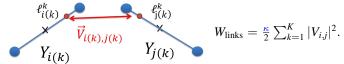
$$W_{ ext{align}} = rac{lpha}{2} \sum_{k=1}^{K} |\sin(heta_i - heta_j)|.$$

$$W_{\text{tot}} = W_{\text{ext}} + W_{\text{links}} + W_{\text{align}} + W_{\text{noise}}.$$

External potential U

Fiber links:

► Retraction potential between linked fibers



▶ Alignment force between linked fibers:

$$W_{ ext{align}} = rac{lpha}{2} \sum_{k=1}^{K} |\sin(heta_i - heta_j)|.$$

Kinetic model

Density distributions: One and two particle distribution functions

- $f^N(x, \theta, t)$: density distribution of the N individual fibers
- ▶ $g^K(x_1, \theta_1, \ell_1, x_2, \theta_2, \ell_2, t)$: density distribution of the K fiber links.

For all observable function $\Phi(x,\theta)$, $\Psi(x_1,\theta_1,\ell_1,x_2,\theta_2,\ell_2)$:

$$\langle f^N, \Phi \rangle = \frac{1}{N} \sum_{i=1}^N \Phi(X_i(t), \theta_i(t))$$
$$\langle g^K, \Psi \rangle = \frac{1}{K} \sum_{i=1}^K \Psi(X_{i(k)}(t), \theta_{i(k)}(t), \ell_{i(k)}^k, X_{j(k)}, \theta_{j(k)}, \ell_{j(k)}).$$

Théorème P. Degond, F. Delebecque, D.P.

In the formal limit $K, N \to \infty$, $\frac{K}{N} \to \xi$, where $\xi > 0$ is a fixed parameter, the kinetic equation for the density distribution of individual fibers reads:

$$egin{aligned} rac{df}{dt} - \mu igg(
abla_x \cdot ((
abla_x U_{ext})f) + \xi
abla_x \cdot F_1 + d\Delta_x f igg) \\ - \lambda igg(\partial_{ heta} ((\partial_{ heta} U_{ext})f) + \xi \partial_{ heta} F_2 + d\partial_{ heta}^2 f igg) = 0, \end{aligned}$$

where

$$F_1(x_1, \theta_1) = \int g \nabla_{x_1} V \ d\ell_1 d\ell_2 \frac{d\theta_2}{\pi} dx_2,$$

$$F_2(x_1, \theta_1) = \int g(\partial_{\theta_1} V + \partial_{\theta_1} b) d\ell_1 d\ell_2 \frac{d\theta_2}{\pi} dx_2$$

Théorème P. Degond, F. Delebecque, D.P.

In the formal limit $K, N \to \infty$, $\frac{K}{N} \to \xi$, where $\xi > 0$ is a fixed parameter, the kinetic equation for the density distribution of individual fibers reads:

$$\frac{df}{dt} - \mu \left(\nabla_{x} \cdot ((\nabla_{x} U_{ext}) f) + \xi \nabla_{x} \cdot F_{1} + d\Delta_{x} f \right) \\ - \lambda \left(\partial_{\theta} ((\partial_{\theta} U_{ext}) f) + \xi \partial_{\theta} F_{2} + d\partial_{\theta}^{2} f \right) = 0,$$

where

$$F_1(x_1, \theta_1) = \int g \nabla_{x_1} V \, d\ell_1 d\ell_2 \frac{d\theta_2}{\pi} dx_2,$$

$$F_2(x_1, \theta_1) = \int g (\partial_{\theta_1} V + \partial_{\theta_1} b) d\ell_1 d\ell_2 \frac{d\theta_2}{\pi} dx_2$$

External potential U_{ext} .

Théorème P. Degond, F. Delebecque, D.P.

In the formal limit $K, N \to \infty$, $\frac{K}{N} \to \xi$, where $\xi > 0$ is a fixed parameter, the kinetic equation for the density distribution of individual fibers reads:

$$\frac{df}{dt} - \mu \left(\nabla_x \cdot ((\nabla_x U_{ext}) f) + \xi \nabla_x \cdot F_1 + d\Delta_x f \right) - \lambda \left(\partial_\theta ((\partial_\theta U_{ext}) f) + \xi \partial_\theta F_2 + d\partial_\theta^2 f \right) = 0,$$

where

$$F_1(x_1, \theta_1) = \int g \nabla_{x_1} V d\ell_1 d\ell_2 \frac{d\theta_2}{\pi} dx_2,$$

$$F_2(x_1, \theta_1) = \int g (\partial_{\theta_1} V + \partial_{\theta_1} b) d\ell_1 d\ell_2 \frac{d\theta_2}{\pi} dx_2$$

Restoring force between linked fibers V: force terms F_1 and F_2 .

Théorème P. Degond, F. Delebecque, D.P.

In the formal limit $K, N \to \infty$, $\frac{K}{N} \to \xi$, where $\xi > 0$ is a fixed parameter, the kinetic equation for the density distribution of individual fibers reads:

$$\frac{df}{dt} - \mu \left(\nabla_x \cdot ((\nabla_x U_{ext}) f) + \xi \nabla_x \cdot F_1 + d\Delta_x f \right)
- \lambda \left(\partial_\theta ((\partial_\theta U_{ext}) f) + \xi \partial_\theta F_2 + d\partial_\theta^2 f \right) = 0,$$

where

$$F_1(x_1, \theta_1) = \int g \nabla_{x_1} V \, d\ell_1 d\ell_2 \frac{d\theta_2}{\pi} dx_2,$$

$$F_2(x_1, \theta_1) = \int g (\partial_{\theta_1} V + \partial_{\theta_1} b) d\ell_1 d\ell_2 \frac{d\theta_2}{\pi} dx_2$$

Alignment force between linked fibers b: force term F_2 .

Théorème P. Degond, F. Delebecque, D.P.

In the formal limit $K, N \to \infty$, $\frac{K}{N} \to \xi$, where $\xi > 0$ is a fixed parameter, the kinetic equation for the density distribution of individual fibers reads:

$$\frac{df}{dt} - \mu \left(\nabla_x \cdot ((\nabla_x U_{ext}) f) + \xi \nabla_x \cdot F_1 + d\Delta_x f \right) - \lambda \left(\partial_\theta ((\partial_\theta U_{ext}) f) + \xi \partial_\theta F_2 + d\partial_\theta^2 f \right) = 0,$$

where

$$F_1(x_1, \theta_1) = \int g \nabla_{x_1} V \, d\ell_1 d\ell_2 \frac{d\theta_2}{\pi} dx_2,$$

$$F_2(x_1, \theta_1) = \int g (\partial_{\theta_1} V + \partial_{\theta_1} b) d\ell_1 d\ell_2 \frac{d\theta_2}{\pi} dx_2$$

Random motion and reorientation: diffusion terms.

Equation for *g*

System for g has a similar structure

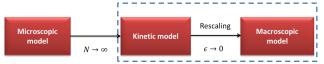
$$\partial_t g - \mu \nabla_{x_1} \cdot \left[g \left(\nabla_x (U + d \log f) + \xi(F_1/f) \right) |_{(x_1, \theta_1)} \right]$$
$$- \lambda \partial_{\theta_1} \left[g \left(\partial_{\theta} (U + d \log f) + \xi(F_2/f) \right) |_{(x_1, \theta_1)} \right]$$
$$- \mu \nabla_{x_2} \cdot [\dots] - \lambda \partial_{\theta_2} [\dots] = S(g)$$

Source term S(g) describes link creation/removal:

$$S(g) = \nu_f f(x_1, \theta_1) f(x_2, \theta_2) \delta_{\ell(x_1, \theta_1, x_2, \theta_2)}(\ell_1) \delta_{\ell(x_2, \theta_2, x_1, \theta_1)}(\ell_2) - \nu_d g$$

$$\ell(x_1, \theta_1, x_2, \theta_2) = \ell(x_2, \theta_2, x_1, \theta_1)$$

Rescaling



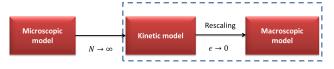
Macroscopic scaling and scaling assumptions:

$$\tilde{x} = \sqrt{\varepsilon}x$$
, $\tilde{t} = \varepsilon t$, $f^{\varepsilon} = \frac{f}{\varepsilon}$ $g^{\varepsilon} = \frac{g}{\varepsilon^3}$,

- ► External potential: $U(x, \theta) = U^0(x) + \varepsilon U^1(\theta)$
- ▶ Alignment potential between linked fibers: $\alpha = O(\varepsilon^{-1})$,
- Restoring force between linked fibers: $\kappa = O(\varepsilon)$,
- ▶ Random motion and reorientation: $d, \xi = O(1)$.
- ▶ process of linking/unlinking is supposed to occur at a very fast time scale, i.e. $\tilde{\nu}_f = \varepsilon^2 \nu_f$ and $\tilde{\nu}_d = \varepsilon^2 \nu_d$.

 \Rightarrow simplification of g^{ε}

$$g^{\varepsilon} = \frac{\nu_f}{\nu_d} f(x_1, \theta_1) f(x_2, \theta_2) \delta_{\ell(x_1, \theta_1, x_2, \theta_2)}(\ell_1) \delta_{\ell(x_2, \theta_2, x_1, \theta_1)}(\ell_2)$$



$$\partial_t f^{\varepsilon} - \nabla_x \cdot (\nabla_x U^0 f^{\varepsilon}) - \partial_{\theta} \left(\left[\partial_{\theta} U^1 + \xi G[f^{\varepsilon}](x, \theta) \right] f^{\varepsilon} \right) - d\Delta_x f^{\varepsilon} = \frac{1}{\varepsilon} Q(f^{\varepsilon}),$$
(1)

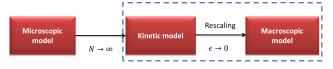
where $Q(f^{\varepsilon})$ is the collision operator:

$$Q(f^{\varepsilon}) = \xi \partial_{\theta} \left(\partial_{\theta} \Phi[f^{\varepsilon}](x, \theta) f^{\varepsilon} \right) + d \partial_{\theta}^{2} f^{\varepsilon}$$

External potential

Fibers links:

- ▶ Restoring force between linked fibers.
- ► Alignment force between linked fibers.



$$\partial_t f^{\varepsilon} - \nabla_x \cdot (\nabla_x U^0 f^{\varepsilon}) - \partial_{\theta} \left(\left[\frac{\partial_{\theta} U^1}{\partial_{\theta} U^1} + \xi G[f^{\varepsilon}](x, \theta) \right] f^{\varepsilon} \right) - d\Delta_x f^{\varepsilon} = \frac{1}{\varepsilon} Q(f^{\varepsilon}),$$
(1)

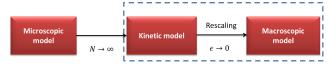
where $Q(f^{\varepsilon})$ is the collision operator:

$$Q(f^{\varepsilon}) = \xi \partial_{\theta} \left(\partial_{\theta} \Phi[f^{\varepsilon}](x, \theta) f^{\varepsilon} \right) + d \partial_{\theta}^{2} f^{\varepsilon}$$

External potential

Fibers links:

- ▶ Restoring force between linked fibers.
- ► Alignment force between linked fibers.



$$\partial_{t}f^{\varepsilon} - \nabla_{x} \cdot (\nabla_{x}U^{0}f^{\varepsilon}) - \partial_{\theta} \left(\left[\partial_{\theta}U^{1} + \xi G[f^{\varepsilon}](x,\theta) \right] f^{\varepsilon} \right) - d\Delta_{x}f^{\varepsilon} = \frac{1}{\varepsilon} Q(f^{\varepsilon}),$$
(1)

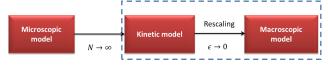
where $Q(f^{\varepsilon})$ is the collision operator:

$$Q(f^{\varepsilon}) = \xi \partial_{\theta} \left(\partial_{\theta} \Phi[f^{\varepsilon}](x, \theta) f^{\varepsilon} \right) + d \partial_{\theta}^{2} f^{\varepsilon}$$

External potential

Fibers links:

- ▶ Restoring force between linked fibers.
- ► Alignment force between linked fibers.



$$\partial_t f^{\varepsilon} - \nabla_x \cdot (\nabla_x U^0 f^{\varepsilon}) - \partial_{\theta} \left(\left[\partial_{\theta} U^1 + \xi G[f^{\varepsilon}](x, \theta) \right] f^{\varepsilon} \right) - d\Delta_x f^{\varepsilon} = \frac{1}{\varepsilon} Q(f^{\varepsilon}), \tag{1}$$

where $Q(f^{\varepsilon})$ is the collision operator:

$$Q(f^{\varepsilon}) = \xi \partial_{\theta} \left(\partial_{\theta} \Phi[f^{\varepsilon}](x, \theta) f^{\varepsilon} \right) + d \partial_{\theta}^{2} f^{\varepsilon}$$

External potential

Fibers links:

- ► Restoring force between linked fibers.
- ► Alignment force between linked fibers.

Equilibria

Equilibria of the collision operator:

$$Q(f^0) = 0 \Rightarrow f^0 = \rho M_{\theta_0}(\theta)$$
 (equilibrium),

with $M_{\theta_0}(\theta)$ a generalized Von Mises distribution of θ with θ_0 mean and variance r:

$$M_{\theta_0} = \frac{e^{r\cos 2(\theta - \theta_0)}}{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{r\cos 2(\theta - \theta_0)} \frac{d\theta}{\pi}},$$
$$\mathcal{E}\alpha L^2 \rho c(r) \nu_f \qquad \qquad \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 2\theta e^{r\cos 2\theta} e^{r\cos 2\theta} d\theta$$

$$r = \frac{\xi \alpha L^2 \rho c(r) \nu_f}{4 d \nu_d}, \quad c(r) = \frac{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 2\theta e^{r \cos 2\theta} \frac{d\theta}{\pi}}{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{r \cos 2\theta} \frac{d\theta}{\pi}}.$$

Need for two equations BUT momentum not preserved \Rightarrow Generalized Collision Invariants: function Ψ_{θ_0} such that for functions f with local orientation θ_0

$$\int Q(f)\Psi_{\theta_0}d\theta=0$$

To find Eqs. for ρ and θ_0 :

- ► Integrate Eq (1)
- ▶ Multiply (1) by GCI associated with $\theta_{f^{\epsilon}}$ and integrate

Continuum model

General case:

$$\begin{split} \partial_t \rho - \nabla_x \cdot (\nabla_x U^0 \rho) - d\Delta_x \rho &= 0, \\ \rho \partial_t \theta_0 - \rho \nabla_x U^0 \cdot \nabla_x \theta_0 - 2\alpha_2 \nabla_x \rho \cdot \nabla_x \theta_0 - \alpha_2 \rho \Delta_x \theta_0 \\ + \alpha_3 (\rho \nabla_x^2 \theta_0 + \nabla_x \theta_0 \otimes \nabla_x \rho + \nabla_x \rho \otimes \nabla_x \theta_0) : [\omega_0 \otimes \omega_0 - \omega_0^{\perp} \otimes \omega_0^{\perp}] \\ + (2\rho \alpha_3 \nabla_x \theta_0 \otimes \nabla_x \theta_0 - \alpha_4 \nabla_x^2 \rho) : [\omega_0 \otimes \omega_0^{\perp} + \omega_0^{\perp} \otimes \omega_0] + \alpha_5 \rho \langle \partial_\theta U^1 \rangle &= 0, \end{split}$$

where $\alpha_2, \ldots, \alpha_5$ are fully determined by the model parameters.

Special case:
$$\rho = Constant$$
, $U^0 = 0$

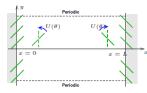
$$\partial_t \theta_0 - \alpha_2 \rho \Delta_x \theta_0 + \alpha_3 \nabla_x^2 \theta_0 : [\omega_0 \otimes \omega_0 - \omega_0^{\perp} \otimes \omega_0^{\perp}]$$

$$+ 2\alpha_3 \nabla_x \theta_0 \otimes \nabla_x \theta_0 : [\omega_0 \otimes \omega_0^{\perp}]^s + \alpha_5 \langle \partial_{\theta} U^1 \rangle = 0$$

- ▶ Problem is parabolic
- ► Existence of solutions to the stationary problem

Buckling

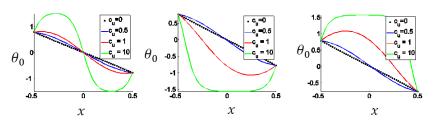
Experimental setting:



Numerical method:

Finite differences, Newton algorithm, Continuation method

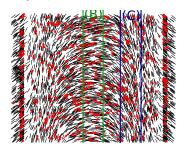
Simulation results:



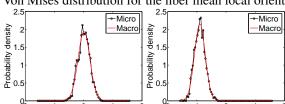
Typical behavior of non linear elastic media

Numerical Micro-Macro comparison: Von Mises distribution

Goal: Compare Individual-based VS Continuum model in the case of homogeneous fiber density



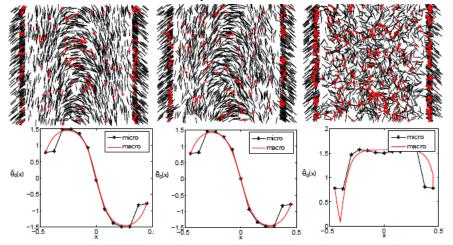
Von Mises distribution for the fiber mean local orientation



Numerical Micro-Macro comparison: case of small link concentration

Methodology:

- ▶ Fit the order parameter from the microscopic simulation
- ▶ Use the value for the macroscopic model

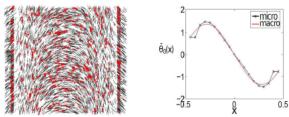


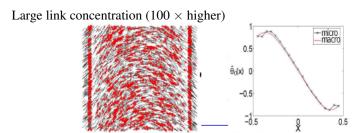
Micro-Macro comparison: case of large link concentration

Methodology:

- ► Fit the order parameter from the microscopic simulation does not work
- ▶ Fit the order parameter such that macro simulation match

Medium link concentration (10 \times higher)





Conclusions/perspectives of the works

Summary:

- Derivation of a physically relevant macroscopic model for interconnected fibers
- ► Macroscopic model in good agreement with the microscopic dynamics

Future works:

- ▶ Rigorous derivation of the macroscopic model
- ▶ Numerical and theoretical analysis for a non homogeneous fiber density
- ► Case of non instantaneous linking/unlinking

Acknowledgments

Pierre Degond, Professor at Imperial College London

ITAV

Louis Casteilla. Professor at Stromal ab

Fanny Delebecque University of Toulouse

STROMALah Anne Lorsignol,

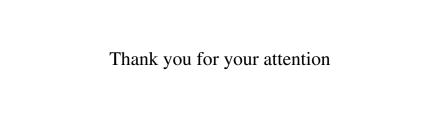
Stromal ab

de Toulouse

INSTITUT de MATHEMATIQUES

Sebastien Motsch Arizona State University

Work partially supported by the CNRS under 428 PEPS MATH (Modelling Adipose Tissue Homeostasis) and by the "Région Midi 429 Pyrénées", under grant APRTCN 2013



Equations for ρ and θ_0

Main tools:

▶ Integrate in θ ($\int Q(f^{\varepsilon})d\theta = 0$):

$$\int_{\theta} \left(\partial_t f^{\varepsilon} - \nabla_x \cdot (\nabla_x U^0 f^{\varepsilon}) - \partial_{\theta} \left(\left[\partial_{\theta} U^1 + \xi G[f^{\varepsilon}](x, \theta) \right] f^{\varepsilon} \right) - d\Delta_x f^{\varepsilon} \right) d\theta = 0,$$

Equations for ρ and θ_0

Main tools:

▶ Integrate in θ ($\int Q(f^{\varepsilon})d\theta = 0$):

$$\int_{\theta} \left(\partial_t f^{\varepsilon} - \nabla_x \cdot (\nabla_x U^0 f^{\varepsilon}) - \partial_{\theta} \left(\left[\partial_{\theta} U^1 + \xi G[f^{\varepsilon}](x, \theta) \right] f^{\varepsilon} \right) - d\Delta_x f^{\varepsilon} \right) d\theta = 0,$$

▶ Integrate against Collision Invariants Ψ :

$$\int_{\theta} \left(\partial_t f^{\varepsilon} - \nabla_x \cdot (\nabla_x U^0 f^{\varepsilon}) - \partial_{\theta} \left(\left[\partial_{\theta} U^1 + \xi G[f^{\varepsilon}](x, \theta) \right] f^{\varepsilon} \right) - d\Delta_x f^{\varepsilon} \right)$$

$$= \frac{1}{\varepsilon} Q(f^{\varepsilon}) \Psi d\theta,$$

Problem: Momentum **not** preserved \Rightarrow integrate against **Generalized** collision invariant Ψ_{θ_0} , i.e function Ψ_{θ_0} such that for functions f with local orientation θ_0

$$\int Q(f)\Psi_{\theta_0}d\theta=0$$