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Following van Saarloos [1], to calculate v we firstly linearise the
Fisher-KPP equation.

∂u

∂t
(x , t) = D

∂2u

∂x2
(x , t) + ru(x , t)

Then, we look for solutions of the form
u(x , t) = exp(−iω(k)t + ikx) where ω(k) is the dispersion relation
of the Fourier modes and k is the wavenumber.
Substituting this solution into the linearised Fisher-KPP equation
gives

ω(k) = i(r − Dk2).

[1] W. van Saarloos. Front propagation into unstable states. Physics Reports, 29(222):3042, August 2003



Discuss Fisher-KPP equation

There are two equations for the asymptotic invasion speed v . They
are derived from the assumptions that the front does not grow or
decay in a frame moving at speed v and from a saddle point
approximation in a contour integral. They are



Discuss Fisher-KPP equation

There are two equations for the asymptotic invasion speed v . They
are derived from the assumptions that the front does not grow or
decay in a frame moving at speed v and from a saddle point
approximation in a contour integral. They are

v =
dω(k)

dk
,

and

v =
Im(ω(k))

Im(k)
.



Discuss Fisher-KPP equation

There are two equations for the asymptotic invasion speed v . They
are derived from the assumptions that the front does not grow or
decay in a frame moving at speed v and from a saddle point
approximation in a contour integral. They are

v =
dω(k)

dk
,

and

v =
Im(ω(k))

Im(k)
.

Equating these two equations and solving for k gives the
asymptotic invasion speed v = 2

√
rD.
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Add nonlocal competition

There are four conditions on K (x).

◮ K (x) is non-negative everywhere

◮ K (x) is symmetric about the origin

◮ K (x) is monotonically decreasing away from the origin

◮ K (x) integrates to 1
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Highlight pattern formation
Initially, we set K (x) to be a tophat function with width parameter
w .
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When we did this, we found patterns forming.
w = 200

Location
0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
op

ul
at

io
n 

de
ns

ity

-1

0

1

2

3

4

5

6

7

8

9



Highlight pattern formation

These patterns occur when the steady state u(x , t) = 1 becomes
unstable. Linear stability analysis can be used to determine when
this occurs.



Highlight pattern formation

These patterns occur when the steady state u(x , t) = 1 becomes
unstable. Linear stability analysis can be used to determine when
this occurs.

For small ǫ and general function v(x , t), we make the substitution
u(x , t) = 1 + ǫv(x , t) in the Fisher-KPP equation to get



Highlight pattern formation

These patterns occur when the steady state u(x , t) = 1 becomes
unstable. Linear stability analysis can be used to determine when
this occurs.

For small ǫ and general function v(x , t), we make the substitution
u(x , t) = 1 + ǫv(x , t) in the Fisher-KPP equation to get

∂v

∂t
(x , t) = D

∂2v

∂x2
(x , t)−

∫

x+w/2

x−w/2
v(y , t)

1

w
dy −O(ǫ).



Highlight pattern formation

These patterns occur when the steady state u(x , t) = 1 becomes
unstable. Linear stability analysis can be used to determine when
this occurs.

For small ǫ and general function v(x , t), we make the substitution
u(x , t) = 1 + ǫv(x , t) in the Fisher-KPP equation to get

∂v

∂t
(x , t) = D

∂2v

∂x2
(x , t)−

∫

x+w/2

x−w/2
v(y , t)

1

w
dy −O(ǫ).

We let ǫ → 0, take Fourier transforms with Fourier variable k , and
simplify to get the following instability condition:



Highlight pattern formation

These patterns occur when the steady state u(x , t) = 1 becomes
unstable. Linear stability analysis can be used to determine when
this occurs.

For small ǫ and general function v(x , t), we make the substitution
u(x , t) = 1 + ǫv(x , t) in the Fisher-KPP equation to get

∂v

∂t
(x , t) = D

∂2v

∂x2
(x , t)−

∫

x+w/2

x−w/2
v(y , t)

1

w
dy −O(ǫ).

We let ǫ → 0, take Fourier transforms with Fourier variable k , and
simplify to get the following instability condition:

4Dπ2k2 +
1

wπk
sin(2πkw) < 0



Highlight pattern formation

These patterns occur when the steady state u(x , t) = 1 becomes
unstable. Linear stability analysis can be used to determine when
this occurs.

For small ǫ and general function v(x , t), we make the substitution
u(x , t) = 1 + ǫv(x , t) in the Fisher-KPP equation to get

∂v

∂t
(x , t) = D

∂2v

∂x2
(x , t)−

∫

x+w/2

x−w/2
v(y , t)

1

w
dy −O(ǫ).

We let ǫ → 0, take Fourier transforms with Fourier variable k , and
simplify to get the following instability condition:

4Dπ2k2 +
1

wπk
sin(2πkw) < 0

We are interested in determining how nonlocal competition, and
the resulting patterns, affect the population invasion speed.
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We will consider the following nonlocal competition kernel
functions

◮ Top hat

◮ Pyramid

◮ Normal distribution
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w = 1
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Conclusion

We have found that the asymptotic invasion speed is unaffected by
the nonlocal competition.

However, the nonlocal competition does affect how quickly the
asymptotic invasion speed is achieved.

In particular, a population with nonlocal competition takes longer
to reach the asymptotic invasion speed than a population with
local competition.
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