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Itô stochastic differential equation

Consider d ≥ 1 and r ≥ 1, and continuous functions

b B (bi)1≤i≤d : Rd → Rd , σ B (σi j) 1≤i≤d
1≤ j≤r

: Rd → Rd⊗r . (1)

The Itô stochastic differential equation (SDE) with coefficients (1),
driven by a Rr-valued Brownian motionW B (Wt)t∈R+ ,
with solution a Rd-valued continuous process X B (Xt)t∈R+ , is

dXt = b(Xt) dt + σ(Xt) dWt , (2a)

i.e., since X and b andW are column vectors, for 1 ≤ i ≤ d,

dX i
t = bi(Xt) dt +

r∑
j=1

σi j(Xt) dW j
t . (2b)
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Remarks

If σ ≡ 0 then this reduces to an

ordinary differential equation (ODE) with vector field b

and we are trying to define the flow of a dynamical system.

What about jumps ?!
Jumps will be modeled and added in later. We are defining first the
diffusion between the jumps (if any).
If σ ≡ 0 this will encompass what some people call PDMP, which
were studied far before this acronym was invented (kinetic equations
such as neutron transport equations, etc.).

What about PDE ?!
PDE and PIDE will be introduced later, when the time is ripe.
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Heuristic infinitesimal interpretation
The Brownian motionW is a continuous process with stationary
independent increments, andWt ∼N(0, tIr), i.e., is Gaussian,

E[Wt ] = 0 , E[WtW
∗
t ] = tIr , E[W i

tW
j
t ] =

{
t , i = j ,
0 , i , j .

The drift vector b indicates that, for an “infinitesimal time” dt > 0,

E[ Xt+dt − Xt | (Xs,Ws)s≤t ] ≈ b(Xt) dt .
The dispersion matrix σ yields the diffusion matrix

a B (ai j)1≤i, j≤d , σσ∗ , i.e. , ai j ,
r∑

k=1

σikσ jk ,

which is such that, for an “infinitesimal time” dt > 0,

E[ (Xt+dt−Xt−b(Xt) dt)(Xt+dt−Xt−b(Xt) dt)∗ | (Xs,Ws)s≤t ] ≈ a(Xt) dt
of the same order as the expectation, and cannot be neglected.



Modeling perspective

Thus, it should be derived from the model:

The fact that the evolution is continuous.
Else jumps will be added in adequately later,
and the SDE will model what happens in-between jumps.

The drift vector field b describing the mean evolution, or trend.

The diffusion matrix a describing the covariance of the noise.
Since a is symmetric and non-negative, it is always possible for
r ≥ d to find σ such that a = σσ∗.
Seldom can a dispersion matrix σ be derived from the model.

An initial condition under the form of an initial law π0
which may be given or implicit.
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Probabilistic modeling, weak solution

We need to make precise the meaning of the SDE (2).

The coefficients b and σ and an initial law π0 are given.
We seek a filtered probability space (Ω, F, (Ft)t≥0, P) and

a (Ft)t≥0-Brownian motionW,
a (Ft)t≥0-adapted continuous process X ,

such that X0 has law π0 and

Xt = X0 +

∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs , (3a)

i.e., for 1 ≤ i ≤ d,

X i
t = X i

0 +

∫ t

0
bi(Xs) ds +

r∑
j=1

∫ t

0
σi j(Xs) dW j

s . (3b)

This is the notion of weak solution.
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Weak existence and weak uniqueness notions

Definition (Weak existence)
Weak existence is said to hold for SDE (2) if:
For each initial law π0, there exists some (Ω, F, (Ft)t≥0, P,W, X)
satisfying the above. Then:

(Ω, F, (Ft)t≥0, P,W, X) is called a weak solution of SDE (2).
By abuse of notation, X and (W, X) are also called weak
solutions, with an implicit probabilistic set-up.
The law P of X on the path-space C(R+, Rd) is the actual
subject of study, also called a weak solution, or a solution in law.

Definition (Weak uniqueness)

Weak uniqueness, or uniqueness in law, is said to hold for SDE (2) if:
For each initial law π0, there exists at most one law P on the
path-space C(R+, Rd) which is a weak solution as above.
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Diffusion operator

Let the 2nd order differential operator D act on f ∈ C2
b(Rd, R) as

Df (x) =
d∑
i=1

bi(x) ∂i f (x) + 1

2

d∑
i, j=1

ai j(x) ∂2i j f (x)

= b(x) · ∇ f (x) + 1

2
tr[a(x)∇∇∗ f (x)] , x ∈ Rd . (4)

This can be written in divergence form as

Df (x) = b(x) · ∇ f (x) − 1

2
[∇∗a(x)]∇ f (x) + 1

2
∇ · a(x)∇ f (x)

with an adequate corrective term.
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Itô formula

The Itô formula applied to a weak solution X of SDE (2) writes

f (Xt) = f (X0) +
∫ t

0
Df (Xs) ds +

d∑
i=1

r∑
j=1

∫ t

0
σi j(Xs) ∂i f (Xs) dW j

s

= f (X0) +
∫ t

0
Df (Xs) ds +

∫ t

0
1r · σ

∗(Xs)∇ f (Xs) dW j
s .

The last term is a local martingale,
and under suitable integrability controls, is a martingale
with null conditional expectation of increments, w.r.t. past.
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Decomposition

The evolution of f (X) is thus decomposed into:

a “predictable” trend described using the operator D,
an unpredictable part described by this local martingale.

This is the semi-martingale decomposition of the process.

The Doob-Meyer bracket of the local martingale is given by

d∑
i, j=1

∫ t

0
ai j(Xs) ∂i f (Xs) ∂j f (Xs) dt =

∫ t

0
∇ f (Xs) · a(Xs)∇ f (Xs) dt

=

∫ t

0
[Df 2(Xs) − 2 f (Xs)Df (Xs)] dt

and describes its “covariance” using the « opérateur carré du champ ».
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Martingale problems

This leads to the notion of martingale problem (MPbm)
brilliantly initiated by Stroock and Varadhan.¹

One could mimic the statements for the SDE using some

(Ω, F, (Ft)t≥0, P, X)
but this would be quite cumbersome.

¹ Daniel W. Stroock and S. R. Srinivasa Varadhan (2006). Multidimensional
diffusion processes. Reprint of 1997 Ed., 1st Ed. 1979.

Carl Graham (CMAP) Diffusions with jumps, simulation, PIDE EDP probabilités sciences vivant 11



Canonical space, filtration, and process

The proper probabilistic set-up and notation is provided by the
canonical space

Ω̂ = C(R+, Rd) , F̂= B(Ω̂) ,
with the canonical process X̂ = (X̂t)t≥0 given by the projections

X̂t : ω = (ωt)t≥0 ∈ Ω̂ 7→ X̂t(ω) = ωt ,

and the canonical filtration (F̂t)t≥0 given by

F̂t = σ(X̂s : s ≤ t) .
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Martingale problem on canonical space

Definition (Martingale problem)

A law P on (Ω̂, F̂, (F̂t)t≥0) is a solution to the martingale problem
for the operator D in (4) with initial law π0 if:

The law under P of X̂0 is π0.

For any f in C2
b(Rd, R),

f (X̂t) − f (X̂0) −
∫ t

0
Df (X̂s) ds , t ≥ 0 , (5)

is a local martingale under P for (F̂t)t≥0.
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Toward the SDE

Note that the Doob-Meyer bracket of this local martingale for any f
can be readily computed by applying the martingale problem to f 2

and using the « opérateur carré du champ ».

Actually, using the Itô formula it is enough to consider functions
which are adequate C2

b truncations of

x ∈ Rd 7→ xi ∈ R , x ∈ Rd 7→ xix j ∈ R , 1 ≤ i, j ≤ d .
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Weak SDE and martingale problem

Theorem (Equivalence SDE-MPbm)

Assume that b and σ as in (1) and a : Rd → Rd×d
sym+ are such that

a = σσ∗ .

Then, for a law P on Ω̂ = C(R+, Rd), the two following statements
are equivalent:

1 The law P is a weak solution of the SDE (2) with coeffs b and σ.
2 The law P is a solution of the martingale problem (5) for the

operator D defined with coeffs b and a.

Proof.
⇒ : Apply the Itô formula; has already been seen.
⇐ : Use a martingale representation result. �
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Pathwise constructions imply weak existence . . .

A modern probabilistic perspective tends to favor pathwise
constructions. It is obvious how this may translate into weak
existence results.

Pathwise constructions hold mainly under Cauchy-Lipschitz type
assumptions and, in dimension 1, under Hölder-1/2 assumptions
on σ, yielding results for the Feller and Fischer-Wright diffusions

dZt = αZt dt +
√

2βZt dWt , on R+ ,

dXt = α0(1 − Xt) − α1Xt dt +
√

2βXt(1 − Xt) dWt , on [0, 1] ,
which are so important in biology, see Yamada and Watanabe.²

² Toshio Yamada and Shinzo Watanabe (1971). “On the uniqueness of
solutions of stochastic differential equations.” In: J. Math. Kyoto Univ.
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From a modeling perspective, the main point is weak uniqueness.

Many other techniques (PDE techniques, Girsanov tranforms, etc.)
and sets of assumptions ensure

weak existence and/or weak uniqueness.

The beautiful Yamada-Watanabe Theorem³ gives the whole picture.

Ikeda and Watanabe⁴ and Karatzas and Shreeve⁵ are good reference
books for all these notions. Never underestimate Stroock and
Varadhan,⁶ though.

³ Toshio Yamada and Shinzo Watanabe (1971). “On the uniqueness of
solutions of stochastic differential equations.” In: J. Math. Kyoto Univ.

⁴ Nobuyuki Ikeda and Shinzo Watanabe (1989). Stochastic differential
equations and diffusion processes. 2nd Ed., 1st Ed. 1981.

⁵ Ioannis Karatzas and Steven E. Shreve (1991). Brownian motion and
stochastic calculus. 2nd Ed., 1st Ed. 1988.

⁶ Daniel W. Stroock and S. R. Srinivasa Varadhan (2006). Multidimensional
diffusion processes. Reprint of 1997 Ed., 1st Ed. 1979.
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Pathwise uniqueness implies weak uniqueness !

Definition (Pathwise uniqueness)

The SDE (2) with coefficients b and σ has the
pathwise uniqueness property if:
For all x ∈ Rd ,
if and X and X′ are weak solutions with initial law π0 = δx
constructed on the same (Ω, F, (Ft)t≥0, P,W), then X = X′, P-a.s.

This actually implies that this holds true for arbitrary initial laws π0.

Theorem (Yamada-Watanabe)
Pathwise uniqueness implies weak uniqueness.

There is an additional statement about strong solutions, but these
mainly come into play in the proof of the Yamada-Watanabe Thm.
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Marginal laws

A law P on Ω̂ = C(R+, Rd) induces by projection a flow of
marginals (πt)t≥0 on Rd . Then πt is the law of X̂t under P.

For the duality bracket between (M(Rd) , ‖·‖TV) and
(Bb(Rd) , ‖·‖∞) given by

〈µ , f 〉 =
∫
Rd

f dµ ,

it holds that

〈πt , f 〉 = EP[ f (X̂t) ] B
∫
C(R+,Rd)

f (ωt) P(dω) , f ∈ Bb(Rd) .
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Probabilistic information

Then P ∈M1
+(C(R+, Rd)) implies that (πt)t≥0 ∈ C(R+,M1

+(Rd)).
The law P contains much more information than (πt)t≥0 !
(Don’t get a probabilist started on this subject.)

Nevertheless the information in (πt)t≥0 can be very relevant.

The law P of a Markov process can be reconstructed from its
marginals (πt)t≥0, since its transition kernel (Pt(x, dy))x∈Rd is
given by

Pt(x, dy) = πt(dy) for π0 = δx .
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Existence and uniqueness, flow of operators

If the martingale problem has both the existence and the uniqueness
property, it is said to be well-posed.

If so, let (Pt)t≥0 be the family of operators

Pt : f ∈ Bb(Rd) 7→ Pt f ∈ Bb(Rd)
given by

Pt f (x) , EPx [ f (X̂t) ] , Ex[ f (X̂t) ] = 〈Pt(x, ·) , f 〉 .
With abuse of notation, one often speaks of a solution P on
C(R+, Rd) without specifying π0, and writes that, under P,

Pt f (x) = Ex[ f (Xt) ] = E[ f (Xt) | X0 = x ] .
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Markov property, semi-group, generator

Theorem (Markov characterization by MPbm)

Assume that the martingale problem is well-posed.
Then the solutions P on (Ω̂, F̂, (F̂t)t≥0) correspond to
a Markov process, and (Pt)t≥0 is its semi-group:

Under P, for t ≥ 0 and s ≥ 0,

E[ f (X̂t+s) | F̂t ] = Ps f (X̂t) , f ∈ Bb(Rd) ,
and hence Pt+s = PtPs (semi-group property). The generator of the
Markov process or of its semi-group is D so that, for f ∈ C2

b(Rd),

Df (x) = lim
ε→0+

Ex[ f (X̂ε) ] − f (x)
ε

= lim
ε→0+

Pε f (x) − f (x)
ε

.
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Relations with partial differential equations

We are now ready to introduce some of the relations
between SDE and MPbm on the one hand and PDE on the other.

Good reference books on the subject and on its practical applications
are Kushner⁷ and Robert Dautray, Pierre-Louis Lions, Étienne
Pardoux, et al.⁸.

⁷ Harold J. Kushner (1977). Probability methods for approximations in
stochastic control and for elliptic equations. Mathematics in Science and
Engineering, Vol. 129.

⁸ Robert Dautray et al. (1989). Méthodes probabilistes pour les équations de
la physique.
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Taking expectations

Assume that the law P on Ω̂ = C(R+, Rd) and f ∈ C2
b(Rd, R)

satisfy that

f (X̂t) − f (X̂0) −
∫ t

0
Df (X̂s) ds , t ≥ 0 ,

is an actual martingale, and take expectations. Then

E[ f (X̂t) ] = E[ f (X̂0) ] +
∫ t

0
E[ Df (X̂s) ] ds , t ≥ 0 . (6)

Note that some probabilistic information is lost.
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Forward Kolmogorov eqn, Fokker-Planck eqn
Using the duality bracket E[ g(X̂s) ] = 〈πs , g〉, eq. (6) writes

〈πt , f 〉 = 〈π0 , f 〉 +
∫ t

0
〈πs , Df 〉 ds

= 〈π0 , f 〉 +
∫ t

0
〈D∗πs , f 〉 ds . (7a)

Thus, in weak (distributional) sense (πt)t≥0 is a solution of the
forward Kolmogorov (or Fokker-Planck) equation, in M(Rd),{ d

dtµt = D∗µt ,

µ0 = π0 .
(7b)

If ever µt(dx) = m(t, x) dx, we obtain the functional PDE

∂tm = D∗m .

Such eqns are derived by balance or conservation considerations in
many applications, and may thus be given a Markov representation.



Computing the adjoint

In distributional sense, and by integration by parts when OK,

D∗µ(dx) = −
d∑
i=1

∂i[bi(x) µ(dx)] + 1

2

d∑
i, j=1

∂2i j[ai j(x) µ(dx)] (8a)

= −

(
∇ · b(x) − 1

2
tr[∇∇∗a]

)
µ(dx) − b(x) · ∇µ(dx)

+
1

2
[∇∗a(x)]∇µ(dx) + 1

2
∇ · [a(x)∇µ(dx)] (8b)

= −

(
∇ · b(x) − 1

2
tr[∇∇∗a]

)
µ(dx) − b(x) · ∇µ(dx)

+ [∇∗a(x)]∇µ(dx) + 1

2
tr[a(x)∇∇∗µ(dx)] (8c)

where (8b) is in divergence form.
The leading 2nd order term is the same as that of D, see (8c).
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Backward Kolmogorov equation

Another perspective on (6): using Ex[ g(X̂s) ] = Psg(x) and
Pt+ε − Pt

ε
= Pt

Pε − Id
ε

=
Pε − Id
ε

Pt −−−−→
ε→0+

PtD = DPt

then (6) writes – if all goes well –

Pt f (x) = f (x) +
∫ t

0
PsDf (x) ds

= f (x) +
∫ t

0
DPs f (x) ds . (9a)

Thus
Pt f : x ∈ R

d 7→ Pt f (x) = Ex[ f (X̂t) ]
is a solution of the backward Kolmogorov equation, in C2

b(Rd),{ d
dtut = Dut ,

u0 = f .
(9b)
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Feynman-Kac formula

The derivation of the backward Kolmogorov equation involves a
differentiation backwards in time. This leads us to revert time.

Thus, the backward parabolic PDE{ d
dtut + Dut = 0 , 0 ≤ t ≤ T ,

uT = f ,
(10)

has a probab. representation of solution (wt)0≤t≤T = (PT−t f )0≤t≤T :
wt(x) = Ex[ f (X̂T−t) ] = E[ f (XT) | Xt = x ] , 0 ≤ t ≤ T , x ∈ Rd .

This is a special case of the Feynman-Kac formula.
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A general backward parabolic PDE

Consider the backward parabolic PDE, with terminal value,{ d
dtut + Dtut + ctut + dt = 0 , 0 ≤ t ≤ T ,

uT = f ,
(11)

with time-dependent coefficients

a : (t, x) ∈ R+ ×Rd 7→ at(x) ∈ Rd⊗d
sym+ ,

b : (t, x) ∈ R+ ×Rd 7→ bt(x) ∈ Rd ,

c : (t, x) ∈ R+ ×Rd 7→ ct(x) ∈ Rd ,

d : (t, x) ∈ R+ ×Rd 7→ dt(x) ∈ Rd ,

and operators Dt acting on g ∈ C2
b(Rd) as

Dtg(x) = bt(x) · ∇g(x) + 1

2
tr[at(x)∇∇∗g(x)] , x ∈ Rd .
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Feynman-Kac formula, general version

Theorem (Feynman-Kac formula)

Assume that this backward parabolic PDE has a nice solution (wt)t≥0
(see Dautray et al.a, e.g.). Let (Xt)t≥0 be a solution of the
time-dependent SDE for Dt. Then, for 0 ≤ t ≤ T and x ∈ Rd ,

wt(x) = E

[
e
∫ T
t cs(Xs) ds f (XT) +

∫ T

t
e
∫ r
t cs(Xs) dsdr(Xr) dr

�����
Xt = x

]
.

This is the Feynman-Kac probabilistic representation formula.

a Robert Dautray et al. (1989). Méthodes probabilistes pour les
équations de la physique.

An existence result for the SDE yields a uniqueness result for the PDE
(typical of duality), as well as a Monte-Carlo method using the
simulation of its solutions starting at time t at x for a duration T − t.
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Feynman-Kac formula, proof

For 0 ≤ t ≤ u ≤ T , the Itô formula yields that

Yt,u , e
∫ u
t cs(Xs) dswu(Xu) +

∫ u

t
e
∫ r
t cs(Xs) dsdr(Xr) dr

=wt(Xt) + Mu − Mt

+

∫ u

t
e
∫ r
t cs(Xs) ds �

d
drwr(Xr)+Drwr(Xr)+cr(Xr)wr(Xr)+dr(Xr)�︸                                                  ︷︷                                                  ︸

= 0 using (11)

dr

and hence
E[Yt,T | Xt = x ] =wt(x)

so that

wt(x) = E

[
e
∫ T
t cs(Xs) ds f (XT) +

∫ T

t
e
∫ r
t cs(Xs) dsdr(Xr) dr ���� Xt = x

]
. �
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Simulation of Itô SDE

Very seldom does an Itô SDE have an explicit solution.

In certain situations (typically one-dimensional) it is possible to
perform the so-called exact simulation of the Itô SDE.
The known methods are not very practical and can seldom be
extended to higher dimensions. This is an active field of research.

Thus, discretization methods are typically used in order to simulate
approximate solutions of the SDE.
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Euler method

The grand father of such methods is the explicit Euler scheme.

We introduce a discretization step ε > 0, and compute the values of
an approximate simulation on the grid 0, ε, 2ε, · · · , by freezing the
arguments of the coefficients in-between the grid-points.

This yields a sequence (Xεt )t=0,ε,2ε, ··· as follows:
Explicit Euler scheme:

Draw Xε0 according to π0.
For n ∈ N draw W(n+1)ε −Wnε according to N(0, εIr)
and set

Xε(n+1)ε = Xεnε + b(Xεnε) ε + σ(Xεnε) (W(n+1)ε −Wnε) .
The Brownian motion (Wt)t∈R is mathematic fiction.
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Three interpolations

Here are 3 ways to interpolate (Xεt )t=0,ε,2ε··· to obtain (Xεt )t∈R+:
1 The step-process interpolation

Xεt = Xεbt/εcε .
Obvious, adapted, but discontinuous, and Skorohod comes in.

2 The linear interpolation

Xεt = Xεbt/εcε + (t/ε − bt/εc) (Xε(bt/εc+1)ε − Xεbt/εcε) .
Natural, computable, continuous, but not adapted.

3 The Brownian interpolation

Xεt = Xεbt/εcε + b(Xεbt/εcε) (t − bt/εcε) + σ(Xεbt/εcε) (Wt −Wbt/εcε)
= Xε0 +

∫ t

0
b(Xεbs/εcε) ds +

∫ t

0
σ(Xεbs/εcε) dWs .

Natural, continuous, adapted, but not directly computable.
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Convergence

Theorem
Assume that the martingale problem is well-posed (existence and
uniqueness) and that b and a appearing in D are continuous.
Let P on Ω̂ = C(R+, Rd) be the solution of the martingale problem
with initial law π0 on Rd .
Let (Xεt )t∈R+ for ε > 0 be one of these continuous interpolations of the
Euler scheme, and Pε be their laws on the path-space C(R+, Rd).
Then

Pε
weak
−−−→
ε→0

P in M1
+(C(R+, Rd)) .
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Central limit theorem

Under suitable additional assumptions, there is a functional central
limit theorem.

Assume that X B (Xt)t∈R+ is the solution of the SDE
and X0 = Xε0 and Xε B (Xεt )t∈R+ are the Brownian interpolations of
the Euler schemes, and that all use the same Brownian motionW.
Then

1√
ε
(X − Xε) in law

−−−−→
ε→0

Z ,

where Z B (Zt)t≥0 is the unique weak solution of either of the SDE,
with initial data 0,

dZt = b′(Xt)Zt dt +
√
σ′(Xt)2(Zt)2 + 1

2
σ(Xt)2σ′(Xt)2 dWt ,

dZt = b′(Xt)Zt dt + σ′(Xt)Zt dW1
t +

1
√
2
σ(Xt)σ′(Xt) dW2

t .
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Higher-order schemes

Among others, Milstein⁹ presented several higher-order schemes.

One of these is known as the Milstein scheme. It applies the Itô
formula to σ(Xs) − σ(Xbs/εcε) to attain order O(ε).
Unfortunately its algorithmic complexity is usually much larger than
the one for the Euler scheme: it involves the partial derivatives of σ,
as well as the stochastic integrals∫ (n+1)ε

nε
(W i

s −W i
nε) dW j

s

which are not easily simulatable when i , j.
⁹ G. N. Milstein (1978). “A method with second order accuracy for the

integration of stochastic differential equations”. In: Teor. Verojatnost. i Primenen.
2; G. N. Milstein (1995). Numerical integration of stochastic differential
equations. Translated and revised from the 1988 Russian original.
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The Milstein scheme

Since ∫ (n+1)ε

nε
(W i

s −W i
nε) dW i

s =
1

2

��
W i

(n+1)ε −W i
nε

�2
− ε

�

this problem vanishes when r = 1, and we may use the following.

Explicit Milstein scheme, 1-dim.:
Draw Xε0 according to π0.
For n ∈ N draw W(n+1)ε −Wnε according to N(0, εIr)
and set

Xε(n+1)ε = Xεnε + b(Xεnε) ε + σ(Xεnε) (W(n+1)ε −Wnε)
+

1

2
[∇σ∗(Xεnε)]σ(Xεnε)

��
W(n+1)ε −Wnε

�2
− ε

�
.

A similar simplification exists for r > 1 under a commutativity
hypothesis on σ and ∇σ∗.
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The Lévy measure : Jumps at last !

The jumps of a process (Xt)t≥0 with sample paths in D(R+, Rd) can
be specified through the Lévy kernel (L(x, dh))x∈Rd satisfying

L(x, dh) ∈M+(Rd) , loc. bdd in x , L(x, {0}) = 0 .

The non-negative function and probability kernel given resp. by

λ(x) , L(x, Rd) , l(x, dh) , L(x, dh)
λ(x) 1{λ(x),0} + δ0(dh)1{λ(x)=0} ,

describe the instantaneous intensity of jumps at position x and the
law of the (potential) jumps from x to x + h as follows:

P{ no jumps on [u, v ] } = e−
∫ v
u λ(Xt) dt , 0 ≤ u ≤ v ,

and in case of jump at time t then

the law of jumps from Xt− to Xt = Xt− + h is l(Xt−, dh) .
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An equivalent formulation

We may equivalently use a “jump kernel” (K(x, dh))x∈Rd satisfying

K(x, dy) ∈M+(Rd) , loc. bdd in x , K(x, {x}) = 0 .

The non-negative function and probability kernel given resp. by

λ(x) = K(x, Rd) , k(x, dy) , K(x, dy)
λ(x) 1{λ(x),0}+δx(dh)1{λ(x)=0} ,

describe the instantaneous intensity of jumps at position x and the
law of the (potential) jumps from x to y as follows:

P{ no jumps on [u, v ] } = e−
∫ v
u λ(Xt) dt , 0 ≤ u ≤ v ,

and in case of jump at time t then

the law of jumps from Xt− to Xt = y is k(Xt−, dy) .
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Image measures

The kernels (L(x, dh))x∈Rd and (K(x, dh))x∈Rd are image measures
of one another, and satisfy that∫

Rd
f (y) K(x, dy) =

∫
Rd

f (x + h) L(x, dh) , f ∈ Bb(Rd) .

Intermediate versions of these two formulations may be used to
alleviate notation in modeling.
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Diffusion with jumps

Consider a process which evolves according to D in between jumps,
and jumps according to a Lévy kernel L or a jump kernel K as
described above.

One can try to specify this through

either an Itô-Tanaka SDE involving a Poisson point process,

or a SDE involving time-changed marked Poisson processes,

but this may be awkward.

Using these representations and the Itô formula,
or by direct computation, it will be seen what follows.
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Martingale problem

Let Jdenote the integral operator acting on f in Bb(Rd, R) as
If (x) =

∫
Rd
[ f (x + h) − f (x)] L(x, dh)

=

∫
Rd
[ f (y) − f (x)] K(x, dy) , x ∈ Rd .

This determines L up to mass at 0 and K(x, ·) up to mass at x,
which were assumed to be null. Define

L= D+J on C2
b(Rd, R) .

Then for any f in a suitable subset of C2
b(Rd, R),

f (Xt) − f (X0) −
∫ t

0
Lf (Xs) ds , t ≥ 0 , (12)

should be a local martingale (we need to control large jumps).
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A neuroscience caricature

We model a caricature of a neural network as a jump diffusion using
a martingale problem.

There are d neurons, each with potential in R. Let (ej)1≤ j≤d denote
the the canonical basis of Rd . The generator writes

Lf (x) =
∑

1≤i≤d

Li f (x) (where Li acts and depends only on xi)

+
∑

1≤i≤d

∫
h∈R+

[
f

(
x−h ei+

∑
1≤ j,i≤d

wi j(h, x j) ej
)
− f (x)

]
Li(xi, dh)

wherewi j(h, x) quantifies the effect of a discharge of amplitude h
of neuron i on neuron j , i having potential x, through an
excitatory synapse ifwi j > 0 and an inhibitory synapse ifwi j < 0.

There should be mean-field limits under suitable assumptions.
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An individual-based SISR model

We model a system of N individuals with global generic state
x = (xkn)1≤k≤K,1≤n≤N in RK⊗N , where x·n , (xkn)1≤k≤K in RK

represents the state of the n-th individual as follows:
if x1n = 0, 1, or −1, then it is Susceptible, Infected, or Removed,
and x = (xkn)2≤k≤K describes its position, anti-body count,
vaccination status, viral load, phenotype, age, etc.

For h ∈ RK let h·n ∈ R
K×N be s.t. [h·n]·,n = h and [h·n]·, p = 0 if

p , n. The generator writes (healing, removal, etc., is in the Ln)

Lf (x) =
∑

1≤n≤N

Ln f (x) (where Ln acts and depends only on x·n)

+
∑

1≤m,n≤N

∫
h∈RK

[ f (x + h·n) − f (x)] Lmn((x·m, x·n), dh) .

There should be mean-field limits under suitable assumptions.
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Partial integro-differential equations

The results on the forward and backwards Kolmogorov equations
and on the Feynman-Kac Formula can be suitably adapted using

L= D+J, L∗ = D∗ +J∗ ,

instead of D and D∗.

This leads to partial integro-differential equations (PIDE).

For the forward equation, a quick computation shows that

J∗µ(dx) =
∫

y∈Rd
[K(y, dx) µ(dy) − K(x, dy) µ(dx)]

=

∫
y∈Rd

K(y, dx) µ(dy) − λ(x) µ(dx)
which has a natural interpretation
as a balance or conservation equation.
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Construction and simulation

The question now is how to construct and simulate such a diffusion
with jumps, which is Markov process in case the above martingale
problem is well-posed.

In order to construct a Markov process (Xt)t≥0, the natural idea is

to construct the process between jump instants according to the
(well-posed) martingale problem for D,

and to determine successively the jump instants, as well as
either the jump amplitudes according to the Lévy kernel L,
or the jump locations according to the jump kernel K.

This method of construction will succeed if jump instants do not
accumulate in finite time, yielding existence as well as uniqueness.

We shall see several ways to do so.
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The method of true jumps

True jumps method:
1 Draw X0 according to π0. Set n = 1 and T0 = 0.
2 When the process (Xt)0≤t≤Tn−1 has been constructed:

Draw E according to E(1) (exponential law).
Construct (Xt)Tn−1≤t<Tn according to D for

Tn = inf

{
u ≥ Tn−1 :

∫ u

Tn−1
λ(Xt) dt ≥ E

}
.

Draw y according to k(XTn−, dy) and set XTn = y.
Set n = n + 1 and go back to 2).

The Tn for n ≥ 1 which are finite are the true jump instants of the
process. None of the draws of the E(1) is wasted.
This construction corresponds to the SDE
involving time-changed marked Poisson processes.
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Advantages and inconvenients

From a theoretical point of view the only problem is that these jump
instants may accumulate in finite time, i.e.,

P

{
lim
n→∞

Tn < ∞
}
> 0 .

A simple sufficient condition for this not to happen is that

sup
x∈Rd

λ(x) < ∞ ,
but there are many other conditions, for instance based
on infinite returns in a set on which λ is bounded.

From a practical point of view, computing the integrals∫ u

Tn−1
λ(Xt) dt

may be very computationally expensive.
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The method of fictitious jumps

Assume that you know a bound β such that

sup
x∈Rd

λ(x) ≤ β < ∞ .

Fictitious jumps method:
1 Draw X0 according to π0. Set n = 1 and T0 = 0.
2 When the process (Xt)0≤t≤Tn−1 has been constructed:

Draw E according to E(β) ∼ E(1)/β.
Construct (Xt)Tn−1≤t<Tn according to D where

Tn = Tn−1 + E .

With probability
λ(XTn−)

β draw y according to

k(XTn−, dy) and set XTn = y, else set XTn = XTn−.
Set n = n + 1 and go back to 2).
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Advantages and inconvenients

The (Tn)n≥1 are the jump instants of a Poisson process of intensity β.
This simulation corresponds to the SDE with Poisson point process.

The actual jump instants of (Xt)t≥0 are a thinning of (Tn)n≥1 only
involving minimal computations.

The main inconvenient of this method is that not only it requires that

sup
x∈Rd

λ(x) ≤ β < ∞ ,

but if the bound is poor, many draws are lost.

If β is large and λ varies widely over Rd , then the time-step is small
and this method corresponds to a costly worst-case scenario.
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The method of subdomains

If λ varies widely over Rd , and even if it is unbounded, the method
of subdomains can be used. The space Rd is first partitioned in
subdomains Oi on which λ is bounded by βi and varies little.

Method of subdomains:
The fictitious jump method with intensity βi is
used while the process remains in Oi.
It is necessary to detect when the process crosses
over to another subdomain Oj, and stop it at the
boundary.
The simulation must be then restarted using the
fictitious jump method with intensity β j, or
perhaps βi ∨ β j as long as the simulated process
remains close to the boundary.

Refining the partition approximates the true jump method.
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