Pattern formation in the visual cortex

Grégory Faye

CNRS, Institut de Mathématiques de Toulouse

EDP & Probabilités pour les sciences du vivant CIRM – 4/8 Juillet 2016

http://www.math.univ-toulouse.fr/~gfaye/CoursM2/cirm16.pdf

Geometric visual hallucinations

Redrawn from Oster 70, Siegel-Jarvik 75, Siegel 77 and Tyler 78.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Other types of visual hallucinations

A D > A P > A D > A D >

- 3

Oster 70 and Siegel 77

Retinotopy – Log-polar map

(b)

Visual hallucinations – Turing patterns in the visual cortex

Visual cortex

Visual field

(日) (四) (日) (日) (日)

Primary visual cortex (V1)

Primary visual cortex (V1)

Laminar organization

Figure 1. Same area of cerebral cortex stained by three different methods to illustrate different neuronal elements. Refer also to DeArmond Fig. 84.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(Source: The Human Brain, J. Nolte, 2nd Ed. Mosby, 1988)

Laminar organization

Figure 1. Same area of cerebral cortex stained by three different methods to illustrate different neuronal elements. Refer also to DeArmond Fig. 84.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

(Source: The Human Brain, J. Nolte, 2nd Ed. Mosby, 1988)

Different spatial scales: neuronal level

@ 2000 John Wiley & Sons, Inc.

Neuron

Synapse

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Different spatial scales: neuronal level

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Different spatial scales: cortical columns

Anatomical column. Buxhoeven 02.

Functional column. Kandel 00.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Different spatial scales

Туре	Spatial scale	# neurons	Modeling scale
Neuron	μ m	1	Microscopic
Anatomical column	40µm	80-100	Microscopic
Functional column	200-400µm	2.5e3-1e4	Micro/Meso-scopic
Hypercolumn	1mm	2e4-1e5	Mesoscopic
Primary visual cortex (V1)	2cm	4e6	Macroscopic

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Different spatial scales

Туре	Spatial scale	# neurons	Modeling scale
Neuron	μ m	1	Microscopic
Anatomical column	40µm	80-100	Microscopic
Functional column	200-400µm	2.5e3-1e4	Micro/Meso-scopic
Hypercolumn	1mm	2e4-1e5	Mesoscopic
Primary visual cortex (V1)	2cm	4e6	Macroscopic

Goal

How to model at a mesoscopic or macroscopic scale?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Neural fields: key references

Neural Field Equation (NFE)

$$\partial_t V(x,t) = -V(x,t) + \int_{\Omega} W(x,x') S(V(x',t)) dx' + I_{\text{ext}}(x,t)$$

- pioneer work: Wilson-Cowan 72, 73 and Amari 77,
- reviews: Ermentrout 98, Coombes 05 and Bressloff 12,
- rigorous derivation: Buice-Cowan 06-07, Bressloff 09, Touboul 12,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

One population Ermentrout-Cowan model

We consider a 2D version of the neural field equation:

Neural field equation on the plane $\Omega = \mathbb{R}^2$

$$\partial_t V(\mathbf{r},t) = -V(\mathbf{r},t) + \int_{\mathbb{R}^2} W(\mathbf{r} \mid \mathbf{r}') S(\mu V(\mathbf{r}',t)) \mathrm{d}\mathbf{r}'$$
 (1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- S given by a sigmoidal function
- ▶ V₀ is a homogeneous solution,
- $\blacktriangleright W(\mathbf{r} \mid \mathbf{r}') = W(\|\mathbf{r} \mathbf{r}'\|),$
- ▶ *W* is invariant with respect to the Euclidean group $\mathcal{E}(2)$ (translation, rotation and reflection) \Rightarrow equation (1) is $\mathcal{E}(2)$ -equivariant,
- μ is the bifurcation parameter of the problem (can be increased pharmacologically)

Linear stability of the homogeneous state

Linearizing equation (1) about V_0 by writing $V(\mathbf{r},t)=V_0+U(\mathbf{r})e^{\lambda t}$ leads to

$$\lambda U(\mathbf{r}) = -U(\mathbf{r}) + \mu S'(V_0) \int_{\mathbb{R}^2} W(\|\mathbf{r} - \mathbf{r}'\|) U(\mathbf{r}')\mathbf{r}' = \mathbf{L}_{\mu} U(\mathbf{r})$$

The continuous spectrum is generated by $U(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}$ with dispersion relation

$$\lambda = \lambda(k) = -1 + \mu S'(V_0) \widehat{W}(k), \quad k = \|\mathbf{k}\|.$$

Critical value for μ is at $\mu_c = \left(S'(V_0)\widehat{W}(k_c)\right)^{-1}$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Restriction to doubly-periodic functions

<u>Problem</u>: at the bifurcation $\mu = \mu_c$, there is a full circle $\|\mathbf{k}\| = k_c$ of neutrally stable modes

 \Rightarrow infinite-dimensional center manifold

<u>Solution</u>: restrict the problem to doubly-periodic functions. If ℓ_1, ℓ_2 are two linearly independent vectors of \mathbb{R}^2 and $\ell_i \cdot \mathbf{k}_i = \delta_{i,j}$ then

$$\mathcal{L} = \{ m_1 \ell_1 + m_2 \ell_2 \mid (m_1, m_2) \in \mathbb{Z}^2 \}$$
 (lattice)
 $\mathcal{L}^* = \{ m_1 \mathbf{k}_1 + m_2 \mathbf{k}_2 \mid (m_1, m_2) \in \mathbb{Z}^2 \}$ (dual lattice)

Let \mathcal{D} be the fundamental domain of the lattice, then on the following Banach space $\mathcal{X} = \{f \in L^2(\mathcal{D}) \mid f(\mathbf{r} + \ell) = f(\mathbf{r}), \forall \ell \in \mathcal{L}\} \subset L^2(\mathcal{D})$, the spectrum is now discrete.

 \Rightarrow finite-dimensional center manifold

A D N A 目 N A E N A E N A B N A C N

Restriction to doubly-periodic functions

<u>**Problem:**</u> at the bifurcation $\mu = \mu_c$, there is a full circle $\|\mathbf{k}\| = k_c$ of neutrally stable modes

 \Rightarrow infinite-dimensional center manifold

<u>Solution</u>: restrict the problem to doubly-periodic functions. If ℓ_1, ℓ_2 are two linearly independent vectors of \mathbb{R}^2 and $\ell_i \cdot \mathbf{k}_i = \delta_{i,j}$ then

$$egin{array}{rcl} \mathcal{L} &=& \{m_1\ell_1+m_2\ell_2 \mid (m_1,m_2)\in \mathbb{Z}^2\} \ (ext{lattice}) \ \mathcal{L}^* &=& \{m_1m{k}_1+m_2m{k}_2 \mid (m_1,m_2)\in \mathbb{Z}^2\} \ (ext{dual lattice}) \end{array}$$

Let \mathcal{D} be the fundamental domain of the lattice, then on the following Banach space $\mathcal{X} = \{f \in L^2(\mathcal{D}) \mid f(\mathbf{r} + \ell) = f(\mathbf{r}), \forall \ell \in \mathcal{L}\} \subset L^2(\mathcal{D})$, the spectrum is now discrete.

\Rightarrow finite-dimensional center manifold

Name	Holohedry	Basis of ${\cal L}$	Basis of \mathcal{L}^*
Hexagonal	D ₆	$\ell_1 = (\frac{1}{\sqrt{3}}, 1), \ \ell_2 = (\frac{2}{\sqrt{3}}, 0)$	${f k}_1=(0,1),{f k}_2=(rac{\sqrt{3}}{2},-rac{1}{2})$
Square	D ₄	$\ell_1 = (1,0), \ \ell_2 = (0,1)$	$\mathbf{k}_1 = (1,0), \mathbf{k}_2 = (0,1)$
Rhombic	D ₂	$\ell_1 = (1, -\cot \theta), \ \ell_2 = (0, \cot \theta)$	$k_1 = (1, 0), k_2 = (\cos \theta, \sin \theta)$

Case studied: square lattice

General setting: the center manifold is now 4-dimensional and can be written

$$\mathcal{E}_0 = \left\{ U(\mathbf{r}) = \sum_{j=1}^2 z_j e^{2i\pi \mathbf{k}_j \cdot \mathbf{r}} + ext{c.c} \mid z_j \in \mathbb{C}, \|\mathbf{k}_j\| = 1
ight\} \cong \mathbb{C}^2$$

Symmetry: $\Gamma = D_4 \ltimes \mathbb{T}^2$ is the new symmetry group for (1)

Group action:

Action of Γ on the plane: $\begin{cases}
\xi \cdot \mathbf{r} = \mathcal{R}_{\xi}\mathbf{r} & \text{rotation centered at 0 of angle } \pi/2 \\
\kappa \cdot \mathbf{r} = \kappa \mathbf{r} & \text{reflection of axis } Ox \\
\ell \cdot \mathbf{r} = \mathbf{r} + \ell & \text{translation}
\end{cases}$

For all $\gamma \in \Gamma$, the action on $U \in \mathcal{X}$ is $\gamma \cdot U(\mathbf{r}) = U(\gamma^{-1} \cdot \mathbf{r})$.

Action of
$$\Gamma$$
 on \mathcal{E}_0 :

$$\begin{cases} \xi(\mathbf{z}) = (\bar{z}_2, z_1) \\ \kappa(\mathbf{z}) = (z_1, \bar{z}_2) \\ \ell(\mathbf{z}) = (e^{-2i\pi m_1} z_1, e^{-2i\pi m_2} z_2) & \ell = m_1 \ell_1 + m_2 \ell_2 \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ = のへの

Symmetry-breaking bifurcation

Suppose that we have a differential system on a Banach space $\mathcal X$ of the form

$$rac{dV}{dt} = \mathsf{L}V + \mathsf{R}(V,\mu) = \mathcal{F}(V,\mu) ext{ on } \mathcal{X}$$

Assume that

- \triangleright Γ is a compact group that acts linearly and \mathcal{F} is Γ-equivariant,
- Γ acts absolutely irreducibly on $\mathcal{E}_0 \Rightarrow D_V \mathcal{F}(V_0, \mu) = c(\mu) I d$,
- ▶ L has 0 as an isolated eigenvalue with finite multiplicity at $\mu = \mu_c$.

Theorem (Equivariant Branching Lemma)

If H is an isotropy subgroup of Γ with dim Fix(H) = 1 and if $c'(\mu_c) \neq 0$, then it exists a unique branch of solutions with symmetry H bifurcating off the branch $V = V_0$ at $\mu = \mu_c$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Symmetry-breaking bifurcation

Suppose that we have a differential system on a Banach space $\mathcal X$ of the form

$$rac{dV}{dt} = \mathsf{L}V + \mathsf{R}(V,\mu) = \mathcal{F}(V,\mu) ext{ on } \mathcal{X}$$

Assume that

- \triangleright Γ is a compact group that acts linearly and \mathcal{F} is Γ-equivariant,
- Γ acts absolutely irreducibly on $\mathcal{E}_0 \Rightarrow D_V \mathcal{F}(V_0, \mu) = c(\mu) Id$,
- ▶ L has 0 as an isolated eigenvalue with finite multiplicity at $\mu = \mu_c$.

Theorem (Equivariant Branching Lemma)

If H is an isotropy subgroup of Γ with dim Fix(H) = 1 and if $c'(\mu_c) \neq 0$, then it exists a unique branch of solutions with symmetry H bifurcating off the branch $V = V_0$ at $\mu = \mu_c$.

- When H < Γ, the bifurcating solutions in Fix(H) have lower symmetry than the basic solution V₀. This effect is called spontaneous symmetry breaking,
- references: Golubitsky-Schaeffer 85, Chossat-Lauterbach 00.

Application to the square lattice

Checking the hypotheses:

- $\Gamma = \mathbf{D}_4 \ltimes \mathbb{T}^2$ is compact and acts linearly
- ▶ Γ acts absolutely irreducibly on \mathcal{E}_0 and $c(\mu) = \frac{\mu \mu_c}{\mu_c}$
- L has 0 as an isolated eigenvalue of multiplicity 4.

Isotropy subgroups:

Н	Generators H	Fix(H)	dim $Fix(\Sigma)$	Name
D_4	ξ,κ	(1, 1)	1	Squares/Spots
$\mathbf{O}(2) imes \mathbf{Z}_2$	$\xi^2, \kappa, [0, m_2]$	(1, 0)	1	Rolls/Stripes

<u>Structure of the solutions:</u> $V(\mathbf{r}) \simeq z_1 e^{2i\pi \mathbf{k}_1 \cdot \mathbf{r}} + z_2 e^{2i\pi \mathbf{k}_2 \cdot \mathbf{r}} + c.c$

$$H = \mathbf{D}_4 \quad V(\mathbf{r}) \simeq 2z(\cos(2\pi x) + \cos(2\pi y)) \quad z_1 = z_2 = z$$
$$H = \mathbf{O}(2) \times \mathbf{Z}_2 \quad V(\mathbf{r}) \simeq 2z\cos(2\pi x) \qquad z_1 = z, z_2 = 0$$

Stripes or spots?

We use normal form theory to compute the reduced equations on \mathcal{E}_0

$$\begin{cases} \dot{z}_1 = z_1 \left[\frac{\mu - \mu_c}{\mu_c} + \beta |z_1|^2 + \gamma |z_2|^2 \right] + \text{ h.o.t} \\ \dot{z}_2 = z_2 \left[\frac{\mu - \mu_c}{\mu_c} + \beta |z_2|^2 + \gamma |z_1|^2 \right] + \text{ h.o.t} \end{cases}$$

Lemma

- Spot solution (1,1) is stable if and only if $\beta < -|\gamma| < 0$.
- Stripe solution (1,0) is stable if and only if $\gamma < \beta < 0$.

If
$$s_2 = S''(V_0)$$
 and $s_3 = S'''(V_0)$ then

$$\begin{split} \beta/\mu_c^3 \widehat{W}_{\mathbf{k}_c} &= \mu_c s_2^2 \left[\frac{\widehat{W}_0}{1 - \widehat{W}_0 / \widehat{W}_{\mathbf{k}_c}} + \frac{\widehat{W}_{2\mathbf{k}_c}}{2(1 - \widehat{W}_{2\mathbf{k}_c} / \widehat{W}_{\mathbf{k}_c})} \right] + \frac{s_3}{2} \\ \gamma/\mu_c^3 \widehat{W}_{\mathbf{k}_c} &= \mu_c s_2^2 \left[\frac{\widehat{w}_0}{1 - \widehat{W}_0 / \widehat{W}_{\mathbf{k}_c}} + 2 \frac{\widehat{W}_{\mathbf{k}_1, \mathbf{k}_2}}{1 - \widehat{W}_{\mathbf{k}_1, \mathbf{k}_2} / \widehat{W}_{\mathbf{k}_c}} \right] + s_3 \end{split}$$

Concluding remarks

- geometric visual hallucinations can be explained simply by symmetry-breaking bifurcation (like Turing patterns) on the visual cortex abstracted by R²,
- ► can be extended to incorporate the functional architecture of the visual cortex (ℝ² × S¹), Bressloff et al 01, Bressloff-Cowan 02.

dai 10.1056/jpth-2000.0767

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

THE LOTAL SOCIETY

Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex

Paul C. Bressloff¹, Jack D. Cowan²⁷, Martin Golubitsky³, Peter J. Thomas⁴ and Matthew C. Wiener³

 can be extended to non-Euclidean geometry for texture perception (Subject of my PhD Thesis).

$$\partial_t u(x,t) = -u(x,t) + \int_{\mathbb{R}} W(x-y)S(u(y,t))dy$$

THANK YOU !