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Biological Framework

Amyloid Diseases

I Polymerisation phenomenon

I Aggregation of misfolded proteins



Biological Framework

Experiments

I Slow start, then fast consumption of monomers

I For the same initial concentration of monomers,
big variability of the take-off (hours)



Biological Framework

Experimental Curves (Radford et al.)
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Biological Framework

Goal of the study

I Explain the fluctuations of the take-off of the reaction, also
called lag time, by a simple stochastic model



Biological Framework

The take-off is the only interesting random variable
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Introduction of a simple model


X 1 + X 1

α(X1/N)2−−−−−−→ 2X 2

X 1 + X 2

βX1.X2/N2

−−−−−−−→ 2X 2

where α� β.

I X1(t): number of monomers at time t

I X2(t): number of polymers at time t

I M monomers at t = 0: X1(t) +X2(t) = M

I large volume N

I the initial concentration of monomers M/N ∼ m remains
constant
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Introduction of a simple model

A Classical Approach in Chemistry: Law of Mass Action

A+B
k+



k−
C

is translated by

d[A]

dt
= −k+[A][B] + k−[C],

for large volumes.

(Guldberg &

Waage, 1867)



Introduction of a simple model
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Introduction of a simple model

Associated Markov Process


X 1 + X 1

α(X1/N)2−−−−−−→ 2X 2

X 1 + X 2

βX1.X2/N2

−−−−−−−→ 2X 2

I Transition rates of the Markov Process (X1(t), X2(t)):
(x1, x2) −→ (x1, x2) + (−2, 2) at rate α(x1/N)2

(x1, x2) −→ (x1, x2) + (−1, 1) at rate βx1.x2/N
2



Introduction of a simple model

Asymptotics of the concentration of monomers

Time Scale of Polymerisation

Normal Time Scale

There is no polymerisation yet:

X2(t)

N
−→
N→∞

0

=⇒ The polymerisation is a slow process. It happens on a linear
time scale!



Introduction of a simple model

Asymptotics of the concentration of monomers

Proposition

X1(Nt)

N
∼

N→∞
x1(t) +

1√
N
U(t)

where:

I x1 is solution of the Mass Action Law:

ẋ1 = −αx21 − βx1(m− x1)

I U is a diffusion:

dUt =
β
√
α
√
eβmt + 1

αeβmt + β − α dWt + βm

[
β − α− αeβmt
β − α+ αeβmt

]
Utdt

Proof : Standard Stochastic Calculus Methods
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Introduction of a simple model

Asymptotics of the concentration of monomers

Simulations: X1(Nt)/N and x1(t)
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Introduction of a simple model

Asymptotics of the concentration of monomers

Simulations: UN(t) = (X1(Nt)−Nx1(t))/
√
N
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Introduction of a simple model

Lag Time

Definition of the lag time

TNδ = inf{t > 0, X2(t) ≥ δM}

Corollary

As N tends to infinity :

TNδ
N

= tδ +
1√
N

U(tδ)

−ẋ1(tδ)
+ o

(
1√
N

)

where tδ = x−12 (δm), with x2(t) = limN→∞X2(Nt)/N .
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Introduction of a simple model

Lag Time

Variance of the Lag Time

Proposition

When N tends to ∞:

Var

(
TNδ
N

)
∼ 3

2Mαβm2

where:

I M is the initial number of monomers, M ∼ mN
I m is the initial concentration of monomers



Introduction of a simple model

Limitations of the simple model

Numerical Estimation of Parameters:

m = 122µM

M = 1015

α = 1.33× 10−10h−1.µM−1

β = 1.75× 10−2h−1.µM−1

No variance for experimental volumes

M = 106 =⇒ Var = 1 hour

But: M = 1015 =⇒ Var = 10−4 hour
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Stochastic Averaging Principle

Misfolding of Proteins

A: Normal Prion Protein
B: Diseased Prion Protein

https://www.ucsf.edu/news/2001/08/4709/ucsf-study-finds-two-old-drugs-may-help-fight-prion-diseases



Stochastic Averaging Principle

Adding a Conformation Step


X0

γX0−−−⇀↽−−−−−
γ∗X1

X 1

X 1 + X 1

α(X1/N)2−−−−−−→ 2X 2

X 1 + X 2

βX1/N.X2/N−−−−−−−−→ 2X 2

I XN
0 (t): number of introduced monomers at time t

I XN
1 (t): number of misfolded monomers at time t

I XN
2 (t): number of polymers at time t

I MN introduced monomers: XN
0 (t) +XN

1 (t) +XN
2 (t) = MN

I MN/N ∼ m remains constant
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Stochastic Averaging Principle

Associated Markov Process

I Transition rates of the Markov Process (X0(t), X1(t), X2(t)):



(x0, x1, x2) −→ (x0, x1, x2) + (−1, 1, 0) at rate γx0

(x0, x1, x2) −→ (x0, x1, x2) + (1,−1, 0) at rate γ∗x1

(x0, x1, x2) −→ (x0, x1, x2) + (0,−2, 2) at rate α(x1/N)2

(x0, x1, x2) −→ (x0, x1, x2) + (0,−1, 1) at rate βx1.x2/N
2



Stochastic Averaging Principle
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Stochastic Averaging Principle

Adding a Conformation Step


X0

γX0−−−⇀↽−−−
γ∗X1

X 1

X 1 + X 1

α(X1/N)2−−−−−−→ 2X 2

X 1 + X 2

βX1/N.X2/N−−−−−−−−→ 2X 2

Coexistence of two processes:

I Misfolding (Ehrenfest Urn)

I Polymerisation (Escape of the urn)



Stochastic Averaging Principle

Misfolding of Proteins and Ehrenfest Urn

X0
γX0−−−⇀↽−−−−−
γ∗X1

X 1

X 0 X 1

I Size of the Urn := BN = XN
0 (t) +XN

1 (t)



Stochastic Averaging Principle
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Stochastic Averaging Principle

Misfolding of Proteins and Ehrenfest Urn

Equilibrium of a Ehrenfest Urn of fixed size

I Size of the Urn := BN = XN
0 (t) +XN

1 (t)

Proposition

If BN ∼
N→∞

bN , then at equilibrium, when N tends to ∞:

XN
0

N
∼ γ∗

γ + γ∗
b and

XN
1

N
∼ γ

γ + γ∗
b

In particular:

γ
XN

0

N
∼ γ∗X

N
1

N



Stochastic Averaging Principle
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Stochastic Averaging Principle

Polymerisation of Proteins

Polymerisation: Escape from the Urn

X 1X 0

X 2

I Size of the Urn: BN (t) = MN −XN
2 (t)

I XN
2 (t) is the escape of the urn, i.e the polymerised mass



Stochastic Averaging Principle

Polymerisation of Proteins
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X 2
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Stochastic Averaging Principle

Stochastic Averaging

Coexistence of the two processes

I One slow process: Polymerisation of proteins

I One fast process: Misfolding of proteins which equilibrium depends
on the slow process

Stochastic dynamic

I Operator for the misfolding process (Ehrenfest urn of size b):

Ω[b](f)(x0, x1) = γx0[f(x1+1/N)−f(x1)]

+γ∗x1[f(x1 − 1/N)− f(x1)]

I Operator for the polymerisation process:

∆−(f)(x1) = f(x1 − 2/N)− f(x1)
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Stochastic Averaging
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Stochastic Averaging Principle

Stochastic Averaging

Stochastic Dynamic of the Polymerised Mass

dX2(t) = 2

XN1 (XN1 −1)(s−)/2∑
i=1

N i
α/N2(dt) +

XN1 (s−)XN2 (s−)∑
i=1

N i
β/N2(dt)



Stochastic Averaging Principle

Stochastic Averaging

Stochastic Dynamic of the Polymerised Mass

dX2(t) = 2

XN1 (XN1 −1)(s−)/2∑
i=1

N i
α/N2(dt) +

XN1 (s−)XN2 (s−)∑
i=1

N i
β/N2(dt)

X2(Nt)

N
= α

∫ t

0

(
X1(Ns)

N

)2

ds+ β

∫ t

0

X1(Ns).X2(Ns)

N2
ds

+MN
t

I (XN
2 (Nt)/N)N is tight =⇒ ∃(Nk), X

Nk
2 (Nkt)/Nk → x2(t)



Stochastic Averaging Principle

Stochastic Averaging
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Stochastic Averaging Principle

Stochastic Averaging

Slow VS fast process

Stochastic Dynamic of the Ehrenfest Urn

f

(
XN

1 (Nt)

N

)
−f
(
XN

1 (0)

N

)
−M1(Nt)

= N2

∫ t

0
Ω

[
m− XN

2 (Nu)

N

]
(f)

(
XN

1 (Nu)

N

)
du

+ αN

∫ t

0
∆−(f)

(
XN

1 (Nu)

N

)(
XN

1 (Nu)

N

)2

du

+ βN()



Stochastic Averaging Principle

Stochastic Averaging

Let µN be the following random Radon measure on R3
+:

〈µN , g〉 =

∫
R+

g

(
XN

0 (Nu)

N
,
XN

1 (Nu)

N
, u

)
du

Proposition 1

Then µN is tight and any limiting point µ∞ satisfies:

〈µ∞, g〉 =

∫
R+

∫
[0,m]2

g(x, y, u)πu(dx,dy) du

where for each u ≥ 0, πu is a random Radon measure on R2
+.
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Stochastic Averaging Principle

Stochastic Averaging

Proposition 2

If µ∞ is a limiting point of µN with the previous representation,
then:∫ t

0

∫
R2
+

(γ∗y − γx)

(
∂

∂x
f(x, y)− ∂

∂y
f(x, y)

)
πu(dx,dy) du = 0

In particular, ∫ t

0

∫
R2
+

(γ∗y − γx)2πu(dx,dy) du = 0



Stochastic Averaging Principle

Stochastic Averaging

Proposition: Local Equilibrium

The measure πu is concentrated on the {(x, γ/γ∗x) : 0 ≤ x ≤ m}:

“πu = δ(x0(u),γ/γ∗x0(u))”

πu = δ( γ∗
γ+γ∗ (m−x2(u)),

γ
γ+γ∗ (m−x2(u)

)
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Stochastic Averaging Principle

Stochastic Averaging

Intuition

Where:

“x0(t) = lim
N→∞

XN
0 (Nt)

N
”

=
γ∗

γ + γ∗
(m− x2(t))

=⇒ x0(t) is the limit of the concentration of monomers of type
X0 in an Ehrenfest Urn of size M −XN

2 (t) ∼ N(m− x2(t)).



Stochastic Averaging Principle

Conclusion and Comparison to the Simple Model

X2(Nkt)

Nk
= α

∫ t

0

(
X1(Nks)

Nk

)2

ds+ β

∫ t

0

X1(Nks).X2(Nks)

N2
k

ds

= α

∫ t

0

∫
[0,m]2

y2µNk(dx, dy,du) + β

∫ t

0

∫
[0,m]2

...

−→
k→∞

α

∫ t

0

∫
[0,m]2

+...

=

(
γ

γ + γ∗

)2 ∫ t

0
(m− x2(u))2 du+ ...



Stochastic Averaging Principle
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Stochastic Averaging Principle

Conclusion and Comparison to the Simple Model

Proposition

Let r := γ/(γ + γ∗).

The process (X2(Nt)/N)t converges in
distribution to (x2(t))t solution of:

ẋ2 = αr2(m− x2)2 + βr(m− x2)x2

(Recall the simple model: ẋ2 = α(m− x2)2 + β(m− x2)x2)
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Stochastic Averaging Principle

Conclusion and Comparison to the Simple Model

I Same diffusion as the simple model where α becomes αr2,
and β, βr

I Same variance formula:

Var

(
TNδ
N

)
∼ 3

2Mαr2βrm2
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Conclusion

Perspectives

I numerical estimation of the parameters

I adding a scaling in the reaction rates



Conclusion

Second Approach


X 1 + X 1

α/Nν .(X1/N)2−−−−−−−−−→ 2X 2

X 1 + X 2

βX1.X2/N2

−−−−−−−→ 2X 2



Conclusion

Merci


	Biological Framework
	Introduction of a simple model
	Asymptotics of the concentration of monomers
	Lag Time
	Limitations of the simple model

	Stochastic Averaging Principle
	Misfolding of Proteins and Ehrenfest Urn
	Polymerisation of Proteins
	Stochastic Averaging
	Conclusion and Comparison to the Simple Model

	Conclusion

