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[ Biological Framework

Amyloid Diseases

a-Synuclein Fibrils

» Polymerisation phenomenon

> Aggregation of misfolded proteins



[ Biological Framework

Experiments

» Slow start, then fast consumption of monomers

» For the same initial concentration of monomers,
big variability of the take-off (hours)



[ Biological Framework

Experimental Curves (Radford et al.)
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[ Biological Framework

Goal of the study

» Explain the fluctuations of the take-off of the reaction, also
called lag time, by a simple stochastic model



[ Biological Framework

The take-off is the only interesting random variable

Superimposition of experimental data at t =0
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|—Introduction of a simple model

2
X, +x, SN oy,
2
X+ X, M)QXQ

where o < .

» Xi(t): number of monomers at time t

» X5(t): number of polymers at time t



Llntroduction of a simple model

X1/N)?
X, +x, SN oy,
2
X+ X, M) 2X,
where o < .
» Xi(t): number of monomers at time t

v

Xo(t): number of polymers at time t
M monomers at t = 0: X;(t) + Xao(t) = M

large volume N

v

v

v

the initial concentration of monomers M /N ~ m remains
constant



LIntroduction of a simple model

A Classical Approach in Chemistry: Law of Mass Action

kt
A+B=C
—
is translated by
dlA
A8 a8+ k0], |
Lo Guedtors. ﬂ/’”"/
for large volumes. =
(Guldberg &

Waage, 1867)



Llntroduction of a simple model

X1/N)?
X, +x, SN oy,
2
X+ X, M) 2X,
where o < .
» Xi(t): number of monomers at time t

v

Xo(t): number of polymers at time t
M monomers at t = 0: X;(t) + Xao(t) = M

large volume N

v

v

v

the initial concentration of monomers M /N~m remains
constant



Llntroduction of a simple model

Associated Markov Process

a 2

X +x, SO ox,
2

voax, PO

» Transition rates of the Markov Process (X (t), Xs(t)):

(r1,22) — (w1,22) + (—2,2) at rate a(z1/N)?

(x1,22) —> (z1,22) + (—1,1) at rate ﬂxl.mg/Nz




Llntroduction of a simple model

LAsymptotics of the concentration of monomers

Time Scale of Polymerisation

Normal Time Scale

There is no polymerisation yet:

Xo(t)
N N-o

= The polymerisation is a slow process. It happens on a linear
time scale!



|—Introduction of a simple model

|—Asymptotics of the concentration of monomers

Proposition

X1 (Nt)

N

~Y
N—o0

xl(t) +



Llntroduction of a simple model

LAsymptotics of the concentration of monomers

Proposition
X1(Nt) 1
T N:;oo 3)1(t) I \/_NU(t)
where:
» 27 is solution of the Mass Action Law:
T = —a:cl Bxy(m — x1)

» U is a diffusion:

By/avelmt 4+ 1 B—a— aefm™
dUy = dW —— | Uydt
b aefmt g —a " +pm B — o+ aefmt b



Llntroduction of a simple model

LAsymptotics of the concentration of monomers

Proposition
X1(Nt) 1
N N:oo l‘l(t) I \/_NU(t)
where:
» 27 is solution of the Mass Action Law:
T = —a:cl Bxy(m — x1)

» U is a diffusion:

\/ pBmt 1 _ _ Bmt
dUt _ B\/a € + th + ﬁm M—ae Utdt
aefmt + 3 — B —a+ aefmt

Proof : Standard Stochastic Calculus Methods



|—Introduction of a simple model

LAsymptotics of the concentration of monomers

Simulations: X1 (Nt)/N and x1(t)

a=10"%=1,M =108

Quantity of Polymers
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|—Introdut:tion of a simple model

|—Asymptotics of the concentration of monomers

Simulations: Uy (t) = (X1(Nt) — Nx1(t))/vVN
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|—Introduction of a simple model
|—Lag Time

Definition of the lag time

TY = inf{t > 0, Xo(t) > M}



Llntroduction of a simple model
LLag Time

Definition of the lag time
TY = inf{t > 0, Xo(t) > M}

Corollary

As N tends to infinity :

TN 1 U(ts) 1
V= R *"(m)

where t5 = x5 1 (dm), with z9(t) = limyx 0 Xo(Nt)/N.



Llntroduction of a simple model
LLag Time

Variance of the Lag Time

Proposition

When N tends to oo:

i 3
Var 28 ) ~ — 2
ar( N ) 2M afm?
where:

» M is the initial number of monomers, M ~ mN

» m is the initial concentration of monomers



Llntroduction of a simple model

LLimitations of the simple model

Numerical Estimation of Parameters:

m =122 uM

M =10
a=133x10"0" 1yt
B=1.75x10"2r"t.uM?

No variance for experimental volumes

M =105 = Var=1 hour
But: M =10 = Var=10"* hour
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L Stochastic Averaging Principle

Misfolding of Proteins

A: Normal Prion Protein
B: Diseased Prion Protein

https://www.ucsf.edu/news/2001/08/4709/ucsf-study-finds-two-old-drugs-may-help-fight-prion-diseases



L Stochastic Averaging Principle

Adding a Conformation Step

7Xo
0 v X1 !
2
X o+x, SN oy,
X+ A, BX1/N.X2/N 2,

» XJV(t): number of introduced monomers at time t
» X (t): number of misfolded monomers at time t

» X2V (t): number of polymers at time t



LStochastic Averaging Principle

Adding a Conformation Step

7Xo
0 v X1 !
2
X+ A a(X1/N) 2,
X, + X, BX1/N.X2/N 2,

v

X3 (t): number of introduced monomers at time t

v

XN (t): number of misfolded monomers at time t

v

X (t): number of polymers at time t
My introduced monomers: XV () + XN (¢) + X3V (t) = My

Mpy/N ~ m remains constant

v

v



L Stochastic Averaging Principle

Associated Markov Process

» Transition rates of the Markov Process (Xo(t), X1 (t), Xa(t)):

( (20,21, 72) — (@0, 21, 22) + (—1,1,0) at rate vz

(zo, 21, 72) — (0,71, 22) + (1,—1,0) at rate y*z;




LStochastic Averaging Principle

Associated Markov Process

» Transition rates of the Markov Process (Xo(t), X1(t), X2(t)):

( (20,21, 72) — (@0, 21, 22) + (—1,1,0) at rate vz

(zo, 21, 72) — (0,71, 22) + (1,—1,0) at rate y*z;

(zo,21,22) — (w0, x1,22) + (0,—2,2) at rate Oz(:vl/N)2

L (z0,21,72) — (20,21, 22) + (0, —1,1) at rate Bz1.29/N?



L Stochastic Averaging Principle

Adding a Conformation Step

7Xo
0 v X1 !
2
X+ A a(X1/N) 2,
X, + X, BX1/N.X2/N 2,

Coexistence of two processes:

» Misfolding (Ehrenfest Urn)

» Polymerisation (Escape of the urn)



L Stochastic Averaging Principle
|—Misfolding of Proteins and Ehrenfest Urn




L Stochastic Averaging Principle
|—Misfolding of Proteins and Ehrenfest Urn

XO Xl

» Size of the Urn := By = XV (¢) + XV (1)



LStochastic Averaging Principle
LMisfoIding of Proteins and Ehrenfest Urn

Equilibrium of a Ehrenfest Urn of fixed size

» Size of the Urn := By = X' () + X{V (¢)

Proposition
If By ~ ©bN, then at equilibrium, when N tends to oo:
N—o0
XN * XN
2o 7 and 4,7

b
N v+ N v+



LStochastic Averaging Principle
LMisfolding of Proteins and Ehrenfest Urn

Equilibrium of a Ehrenfest Urn of fixed size

» Size of the Urn := By = XV () + XV (1)

Proposition

If By ~ ©bN, then at equilibrium, when N tends to oo:
N—o0

X_év,\, gl b X{VN Y
N v+ N v+

In particular:



L Stochastic Averaging Principle

[ Polymerisation of Proteins

Polymerisation: Escape from the Urn
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L Stochastic Averaging Principle

L Polymerisation of Proteins

Polymerisation: Escape from the Urn

o ©
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» Size of the Urn: By(t) = My — XV (t)

» XV(t) is the escape of the urn, i.e the polymerised mass



L Stochastic Averaging Principle
L Stochastic Averaging

Coexistence of the two processes

> One slow process: Polymerisation of proteins



L Stochastic Averaging Principle
L Stochastic Averaging

Coexistence of the two processes

> One slow process: Polymerisation of proteins

> One fast process: Misfolding of proteins which equilibrium depends
on the slow process



LStochastic Averaging Principle
LStc>chastic Averaging

Coexistence of the two processes

> One slow process: Polymerisation of proteins

> One fast process: Misfolding of proteins which equilibrium depends
on the slow process

Stochastic dynamic
» Operator for the misfolding process (Ehrenfest urn of size b):
QI(f)(z0, 21) = ywo[f(z1+1/N)—f(21)]

vz [f(z — 1/N) — f(z1)]

» Operator for the polymerisation process:

A™(f)(x1) = f(x1 —2/N) — f(z1)



R

L Stochastic Averaging Principle
L Stochastic Averaging

Stochastic Dynamic of the Polymerised Mass

xN(xN-1)(s-)/2 xPN(s—)x (s-)

dX,(t) = 2 > Nipe(d)+ Y Njye(dt)



L Stochastic Averaging Principle
L Stochastic Averaging

Stochastic Dynamic of the Polymerised Mass

X -ne-y/2 XX =)
dXs(t) =2 Z o/n2(dt) + Z N /w2 (dt)
i=1 i=1

Xa(N?) =a/0t(X1(NS))2ds+ﬂ/0t Xl(NSJ)\;;(z(NS) ds

+ MY



L Stochastic Averaging Principle
L Stochastic Averaging

Stochastic Dynamic of the Polymerised Mass

xN(xN -1)(s—)/2 . XV (s—)x (s-)
dXs(t) =2 Z o/n2(dt) + Z N /w2 (dt)
=i\ =i\

N N N2
+ MY

Xa(Nt) _ /Ot (Xl(Ns))2 ds + 4 /Ot X1(Ns). Xa(Ns)

> (XJ'(N1)/N)y is tight = I(Ny), X3* (Nit) /Ny, — wa(t)



L Stochastic Averaging Principle
L Stochastic Averaging

Slow VS fast process

Stochastic Dynamic of the Ehrenfest Urn

f <M) —f (M> — M;(Nt)

N N
=N2/Otﬂ {m_ XéVJ(VNu)] ) (X{V](VNU)) "
N OtA_(f) (X{V](\[Nu)> (X{V](\[Nu))2du



L Stochastic Averaging Principle
L Stochastic Averaging

Let un be the following random Radon measure on Ri:

(1w, g) = /}R+ g (X‘J)V](VN“), X{V](\,Nu),u) du




LStochastic Averaging Principle
LStochastic Averaging

Let un be the following random Radon measure on Ri:

(un,g) = /R+ g (XéV](VNU), X{V](\,Nu),u> du

Proposition 1

Then p v is tight and any limiting point o satisfies:

(Hoor g / / (z,y, u)my(dz,dy) du
Ry J[0,m]?

where for each v > 0, 7, is a random Radon measure on ]R%r.



L Stochastic Averaging Principle
L Stochastic Averaging

Proposition 2

If tioo is a limiting point of un with the previous representation,
then:

/Ot /11\22 (v'y — vx) (%f(x,y) — %f(x,y)) 7y (dz, dy) du =0

In particular,

t
/ / (v*y — y2)?mu(dz, dy) du = 0
0 JR

2
a4



L Stochastic Averaging Principle
L Stochastic Averaging

Proposition: Local Equilibrium

The measure 7, is concentrated on the {(z,v/7*z) : 0 < x < m}:



L Stochastic Averaging Principle
L Stochastic Averaging

Proposition: Local Equilibrium

The measure 7, is concentrated on the {(z,7/7y*z): 0 <z < m}:

“Tu = O(zo(u)y/v*z0(w))”

fu = 5(7—;%(m—x2<u>>,ﬁ7—*<m—m2(u))



L Stochastic Averaging Principle
L Stochastic Averaging

Proposition: Local Equilibrium

The measure 7, is concentrated on the {(z,7/7y*z): 0 <z < m}:

“Tu = O(zo(u)y/v*z0(w))”

ffu = 5(7—;%(m—x2<u>>,ﬁ7—*<m—m2(u))



L Stochastic Averaging Principle
L Stochastic Averaging

Intuition
Where:
XV(Nt)
«“ )= 1 0 )
.’Eo( ) N—I>noo N
,y*
= o (m—a()

= z(t) is the limit of the concentration of monomers of type
Ao in an Ehrenfest Urn of size M — X2V () ~ N(m — xa(t)).
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L Stochastic Averaging Principle

LConclusion and Comparison to the Simple Model

N, N,

_a/ /[Om y2un, (dz, dy, du) _|_5/ /Om
el L
- (’Y+'y ) /O(m—xz(U))Zdqu...

M X1 (Ngs) X; Nks X2 (Ngs)
—o [ () e ] .
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L Stochastic Averaging Principle

LConclusion and Comparison to the Simple Model

N, N,

_a/ /[Om y2un, (dz, dy, du) _|_5/ /Om
el L
- (’Y+'y ) /O(m—xz(U))Zdqu...

M X1 (Ngs) X; Nks X2 (Ngs)
—o [ () e ] .
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L Stochastic Averaging Principle

|—Conclusion and Comparison to the Simple Model

Proposition

Let r:=/(y+77).
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L Stochastic Averaging Principle

LConclusion and Comparison to the Simple Model

Proposition

Let r := /(v +~*). The process (X2(Nt)/N), converges in
distribution to (x2(t)); solution of:

Zy = ar?(m — 932)2 + Br(m — x2)xs
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L Stochastic Averaging Principle

LConclusion and Comparison to the Simple Model

Proposition

Let r := /(v +~*). The process (X2(Nt)/N), converges in
distribution to (x2(t)); solution of:

Zy = ar?(m — 932)2 + Br(m — x2)xs

(Recall the simple model: 3 = a(m — x2)? + B(m — x3)x2)



R

L Stochastic Averaging Principle

LConclusion and Comparison to the Simple Model

» Same diffusion as the simple model where av becomes a2,

and 3, gr

» Same variance formula:

N
N 2M ar?Brm?2
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|—Conclusion

Perspectives

» numerical estimation of the parameters

» adding a scaling in the reaction rates



|—Conclusion

Second Approach

v 2

X+ X, a/N".(X1/N) 2,
2

X+ X, M}Q}(‘Q
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