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Growth models for populations

Logistic model (Verhulst, 1838)

o u(t) _ u(0) K
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Growth models for populations
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An example of observed data and of logistic "fit"
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Dispersion models for populations
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Random walk: We assume isotropy, and consider a scale of time and
space which is large (w.r.t. the motion of one individual).

Laurent Desvillettes, IMJ-PRG, Université Paris Diderot Spatially structured populations



Dispersion models for populations
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Corresponding law: convergence towards a Gaussian law with variance
proportional to time.
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Dispersion models for populations

Random walk S, = le X;, with X; = Ax and X; = —Ax each of
probability 1/2, and independant.

a+p

Law of S, P(Sp, = qAx) =27P C,? (when |q] < p et g = p[2]).
We consider N(pAt, x) := P(S, € [x — Ax,x + Ax[). Then for
t = pAt:
qtp
N(t,qAx) =277 Cp? .

One uses the following asymptotic expansion:

Lemma:
w 2 ¢

2P C,7 ~

when p — 400, ¢ = o(p?).
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Dispersion models for populations

When At — 0 and At? << Ax3,

At
At e~ sz}

N(t ~2A
(t:) “V ax2 C\2nt

in such a way that 2 — @ and At — 0,

2

N(t,X) . (t ) e~ bt
u(t,x) = ——.
2 Ax VAr Dt

This last quantity is the elementary solution of the heat equation in
dimension 1 with a diffusion coefficient D:

du %u
E(tvx) - Dﬁ(tvx)a U(O7X) - 5O(X)'
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Dispersion models for populations

Diffusion (Fourier, 1822): Heat (diffusion) equation and its
fundamental solution:
du %u

5, (£:X) =D o5 (t.x), u(0, x) = do(x).
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Traveling waves

Invasion model (Fisher; Kolmogoroff-Petrovsky-Piscounoff, 1937)

0“u

ou 2 u(t, x)
E(t,x) = D@(t,X) + ro (1 - K) u(t, x).

Obtained when both diffusion and logistic effects are considered.
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Traveling waves
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In dimension 1: One looks for u(t,x) = N(x — ct) solution of the PDE:

—cN'(z)-DN"(2) = ro (1 - N!(:)) N(z);  N(—o0) = K; N(c0) = 0.

Theorem (Kolmogoroff-Petrovsky-Piscounoff, 1937): Solutions to this
heteroclinic junction problem in ODEs exist when ¢ > ¢y = /21y D,
critical speed of invasion associated to a population.

Those solutions are stable (in a setting to be made precise...) for the
PDE if and only if ¢ = ¢.
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2D Traveling waves of invasion
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Fig. 252, Approximate chronological epresd of the Black Deatk in Burope from 1347-50.
Fre, 63.— Progression du doryphore en Euvope aprds son errivée en 1921, (Redrsv from Langer 1964)

Two examples of propagation of a front: invasion of animals and
epidemiology
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Competition models

Lotka, Volterra, 1925

Unknowns: u:= u(t) >0, v :=v(t) >0, for t > 0.

Equations:
U/(t) = (fl — Si1 U(t) — S V(t)) U(t),

V/(t) = (r2 — 5 Ll(t) — Sx» V(t)) V(t).

S;i > 0: intraspecific competition

Sjj >0, i # j: interspecific competition
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Competition models

Depending on the parameters r;, Sj;, and considering only nonnegative
solutions, one has either (up to exchanging n; and ny):

e Strong competition: The only stable equilibrium for the system of
ODEs is (u, v) = (n10,0) with n1g > 0; competitive exclusion.

o Weak competition: The only stable equilibrium for the system of
ODEs is (u, v) = (mo, nao) with nig > 0, ny > 0; coexistence.
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Competition /Diffusion model

Unknowns: u:= u(t,x) >0, v:=v(t,x) >0, for t >0, x € Q.
Equations:

Oru — Dy Ayu=(rn — S1yu— S1pv) u,

8tv - Dz AXV = (r2 - 521 u— 522 V) V.

No Turing instability for such models: all steady homogeneous solutions
which are stable for the ODEs are also stable for the PDEs; No
segregation of species appears
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Shigesada-Kawasaki-Teramoto (SKT) model, 1979

Equations:

8tu—AX<u |:D1+A11U+A12V:| ) :(r1—511u—512 V)U7

8tVAX<V |:D2+A21U+A22V:| > :(r27521u7522v)v.

A12 > 0,Ap > 0 : cross diffusions (also used in fluid mech. [Maxwell
Stefan))

A11 > 0, Az > 0 : self diffusions (also used in fluid mech. [porous
media/fast diffusion])

If Ao1 = 0, the system is called triangular.
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A typical (2D) Turing pattern

Appearance of stable spatially inhomogeneous equilibria for the PDE:
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Bifurcation diagram (Turing instability)

At the numerical level, cf. lida, lzuhara, Mimura, Ninomiya, and at the
rigorous level, cf. Breden, Lessard, Vanicat, for a model close to that of
SKT.
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Questions of Modelling

Why A, (uv) =V, - (vVyu)+ Vi (uVyv) rather than V, - (vV,u) ?

Answer (proposed by lida; Izuhara; Mimura; Ninomiya) in the case of the
triangular system);

6tu—AX(D1u+A12uv):(r1—511u—512 V) u,

8tv - D2 AXV = (r2 - 521 u— 522 V) V.

Possible interpretation in terms of “microscopic” behavior: The first
species u exists in two states: quiet (ua) and stressed (ug). Individuals
switch from one state to the other with a scale of time € and rates which
depend on the density v of the second species (fast reaction).

For a direct passage from an individual model to cross diffusion PDEs, cf.
Fontbona; Méléard
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Equations for the microscopic model

1
Orup — D1 Ajup = (r1 —Si1 (UA + UB) — S V) ua+ g(k(v) ug — h(V) UA),

1
Orup—(D1+a) Aug = (n—S511 (uat+ug)—S12 v) uBfg(k(v) ug—h(v) ua),

Orv — Dy Ayv = (I‘2 — S5 (UA + UB) -5 V) V.

Possible interpretation in terms of “microscopic” behavior: The first
species u exists in two states: quiet (ua) and stressed (ug). Individuals
switch from one state to the other with a scale of time ¢ and rates which
depend on the density v of the second species (fast reaction).
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Formal asymptotics when the microscopic time scale tends

to 0

1
Oruy—Dy A uf = (n—511 (ua+ug)—S12 vF) uj—i—g(k(v‘s) ug—h(v®) u3z),
so that
k(v®) ug — h(v®) uz = O(e).

Moreover, by adding the two first equations,
0u(us + uB) ~ A (D1 (Ui + ) + )
= (n — 511 (up + ug) — S12v7) (U + u),

OrvE — Dy Ayv® = (rn — Sp1 (uiy + ug) — Spp v©) vE.
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Formal asymptotics when the microscopic time scale tends

to 0

Assuming that v — ua, ug — ug, v¥ = v,
h(v)
k(v) + h(v)

and (ua + ug, v) satisfy the system of reaction-cross diffusion (of two
equations)

k(v)ug = h(v) ua, ug = (ua + ug),

at(UA + UB) — Ay (Dl (UA + UB) + « k(v)—i—v)h(v)

= (n — 511 (ua+ ug) — S12 v) (ua + ug),

Orv — Dy Ayv = (ra — Sp1 (ua + ug) — Sp v) v.
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Formal asymptotics when the microscopic time scale tends

to 0

The Shigesada-Kawasaki-Teramoto model can be recovered by observing
that for u = ua + ug,

h
8tu_AX<Dlu+ak(v):—V)h(v)u> =(n—S1u—Spv)u,

and by choosing h and k such that

A12V:OL

k(v)+ h(v)’
We observe that the equation for v is kept:

8tV — D2 AXV = (I’Q — 521 u— 522 V) V.
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Rigorous result for this asymptotics

lida; Mimura; Ninomiya; Diffusion, cross-diffusion and competitive
interaction. J. Math. Biol. 53 (2006), no. 4, 617-641.

Izuhara; Mimura; Reaction-diffusion system approximation to the
cross-diffusion competition system. Hiroshima Math. J. 38 (2008), no.
2, 315-347.

o
uz—ua=0(), ug—ug=0(), v:—v=0()

under the (not known) assumption

[luallie < Cst, ||ug||lie < Cst, ||v®]||i= < Cst

@ Thorough study of stationary solutions

Laurent Desvillettes, IMJ-PRG, Université Paris Diderot Spatially structured populations



Fast reaction limit of the reaction-diffusion system with

three equations

Theorem (LD, Trescases): Let Q be a smooth bounded domain of RV.
We assume that da, dg, d,,d, >0, ry, ry, rayrp, re, rg >0, a,b,c,d > 0.
We consider functions ¢, h and k lie in C*(R. ) and satisfy, for some
ho > 0,

h(v)

Gt 9 H) 1 k()

= du +¢(V), h(V) > ho, k(V) > ho.

Finally, we consider initial data u;, > 0, v;, > 0 such that u;, € L2(Q),
Vin € L®(Q) N W21%2/9(Q) (and compatibility conditions).
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Fast reaction limit of the reaction-diffusion system with

three equations

Then, for any € €]0, 1], there exists a strong (global, with nonnegative
components) solution (u3, ug, v°) to system

1
Orug—da Asuly = [ru—ra (ua+ug)’—rp (ve)b] uj\—i—g [k(v) ug—h(v) ug],

1
Orug—(da+ds) Axug = [ru—ra (ui+ug)?—rp (ve)b] UE_E [k(ve) ug—h(v®) ugl,

O:vE —d, A v = [rv —re (VE)C —ry (LIZ + UeB)d] ve.

with adapted initial data

and Neumann boundary conditions

On 09, Veua-n=0, Vyug-n=0, V,v-n=0.
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Fast reaction limit of the reaction-diffusion system with

three equations

We assume moreover that a < d, a<1, d <2.

Then, when ¢ — 0, (uj\, ug, v€) converges, up to extraction of a
subsequence, for almost every (t,x) € Ry x Q to a limit (ua, ug, v) lying
in L2([0, T] x Q) x L2([0, T] x ) x L>°([0, T] x Q) (for all T > 0), and
such that uqg >0, ug >0, v > 0. Furthermore,

h(v(t,x)) ua(t,x) = k(v(t,x)) ug(t,x)

and (v := ua + ug, v) is a (global, with nonnegative components) weak
solution of system

O — Dy (dyu+ud(v)) = u(ry — rau® — ryvh),

Ov —dy Dyv=v(r,—rev:—ry ud)7

with Neumann boundary conditions and initial data u;,, vi,.
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Result of existence for the extended triangular SKT model

Theorem (LD, Trescases): Let Q be a smooth bounded domain of RV
(NeN*),and D; >0, r; >0, a,b,c,d > 0 such that d < a (case 1) or
a<d, a<1,d<2(case2). Consider ¢ >0 in V\/,i’coc, and
(nonnegative for each component) initial data such that u;, € LP(Q),
Vin € L(Q) N W21Hm/9(Q) for some py > 1 in case 1 and py = 2 in
case 2 (+ compatibility conditions).

Then, there exists a (nonnegative for each component) weak solution
(u,v) in LPta(0, T] x Q) x L>([0, T] x Q) for all T > 0 (In case 2,
po + a is replaced by 2) to the system

Ot — A (u [Dl + gb(v)D =u(ry—r,u” —rpvh),

Ov—Dy Ayv=v(r—rve—ry ud),

with Neumann boundary conditions and initial data u;,, V.
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Results of existence for the triangular system

Amann: Local (in time) existence in all cases

Matano, Mimura; Shim Global existence in dimension 1 for the original
model

Yagi Global existence in dimension < 2 in the presence of self diffusion,
for the original model

Lou, Ni, Wu Global existence in dimension < 2 without restriction, for
the original model

Choi, Lui, Yamada Global existence in any dimension for small cross
diffusion coefficients, or for any cross diffusion coefficients in the presence
of self diffusion in the first equation, or in the second equation in
dimension < 6; all for the original model

Phan Global existence in dimension < 10 in the presence of self diffusion
in the second equation, for the original model

Yamada Global existence in any dimension under the assumption a > d
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Back to the non triangular SKT model

Equations:

Oruyp — Ay (Ul |:D1 + A ur + A Uz} ) =(n—S11u — S w) u,

Orun — Ay (Uz [Dz + Ao up + A Uz} ) = (r — Sy u1 — Sp w2) W,

Neumann boundary condition (for t > 0, x € 99Q)

Vit (t,x) - n(x) =0, Viyu(t,x)-n(x)=0.

Initial data (for x € Q)

u1(0,x) = u1o(x), w2(0, x) = w20(x).

Assumption: Dl, D2 > 0, A12,A21 > 0, All,A22 > 0.
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Results of existence for the non-triangular SKT system

Amann: Existence of local (in time) solutions

Deuring: Existence of solutions when cross diffusions are small and
without self diffusion

Kim; Masuda, Mimura; Shim: Existence of solutions for various types of
coefficients in dimension 1

Yagi: Existence of solutions when the self diffusion dominates the cross
diffusion

Li, Zhao: Existence of solutions when D; = D».

Chen, Jiingel: Existence of (weak) solutions thanks to the use of the
functional J(uy, o) = a1 [o(ur Inuy —wm + 1)+ [o(u2 Inup — uz +1).
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Computation of the evolution of J

d d
IJ(ul’ up) = I/ [cl (tilnuy —un+ 1)+ Inuy —up + 1)}

_Zc,/lnu, <(D; uj + Ay uy u; + A up 1;)

+C1/ 511 u — 512 U2 uy In uy + ¢ /( 521 u — 522 U2) u» In u»

2 2
—_ClD /lvx 1| /|v Uz‘ 2C All/\V U1| —2C2A22/|v U2|

_/ZC,' (5,'1 uy + 5,'2 U2) u;j In u; —+ /(Cl rn up In up =+ Co I U In U2)
i=1
]

—/U1 7)) |:C1 A

2
vx i

u

v>< uy vx up
u2

vx up

uz

+(c1 Azt+c2 An) +c Ax

A= (Cl A12 — O A21)2.
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Computation of the evolution of J

For c1 = Az, ¢ = A,

d Vot |? Vi t|?
7d J(Ul, U2) = —A21 Dl / 7‘ 1| —A12 D2 / 7‘ 2| -2 A21 A11 / ‘VXU1|2
t u uz

1
—2A12A22/\VXU2|2—/A21 u In U1+/A12

2
vxul v><U2
+A21 r uy In U1+A12 o) up In us.

2
Z Syiuj

i=1

2
E 52,' ui| U In u
i=1

+
up uz

—A1 AZI/UI uz

After integration in time, for any T > 0,

-
sup / <u1 |Inui|+uz|In uz> < 00, / / <|me|2+|vxm|2> < 00
Q o Ja

te[0,T]

T . T .
/ / (u%||n ur|+u3 | In u2> < 00, / / (A11|qu1|2+A22|qu2|2) < 00
0 Q 0 Q
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A more recent result

Generalization of SKT model:

8tu1 — AX |:(D1 +A11 Uixu +A12 U?lz) U1:| = u (rl — 511 Uln — 512 U212),

Ortp — A\ l:(DQ + Arq U?Ql + As» U?m) U2:| = Uy (I’z —So1 Ul21 — Sy U222),
with Neumann boundary conditions
Vx € 09, Vyup - n(x) =0, Vi - n(x) =0,

and A > 0, Ay > 0.
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A more recent result

Theorem (LD, Lepoutre, Moussa) We assume that D; > 0, r; > 0,
A,'j >0, Ao >0, Ay >0, and S,J > 0.
We assume that aq1, @ > 0, a2, 01 €]0, 1], and, for i # j,

0</6),',‘<17 0<ﬁ,-j<oz,-j/2,

Let (u10, Uzo) be initial data in L?(2), then there exists a weak solution
to the system

Oruyp — Ay {(D1 + A1 u™ + A uz™?) Ul:l =u <f1 — Sy upt — 510 U212)7

Ortp — Dy |:(D2 + As Ufm + Ax u?zz) U2:| = U (r2 —5n U121 — 52 u2622)>

with Neumann boundary conditions, and these initial data.
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Main a priori estimates used in the proof

Entropy (Lyapounov) estimate, Q1 := [0, T] x :

2
J*(u1, u2)( +4ZA,JD "“'f +4A12A21 au uos
i#
ay+ 1 1 0 +a, y
+2 ZAUO‘U i TR S J* (10, u20)+C(T, ),
[y ajj + i
where

; . A,JOéU ufaij 1
J*(ur, u2) _Zlau/g [(UJ Oéij) (1 aj )|

i#]
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The entropic structure

General equation
9:U — AJA(U)] = R(U),

with A R: R/ - R/ and U := U(t,x) : Ry x Q(Q Cc RY) — (Ry)".

Forany ¢ : (R.) = R,,if R=0, and (, ) is the Euclidian scalar
product on R/,

d [ g
pr Q¢(U):/Q<V¢(U),AX[A(U)]>
N
== [ @,u. 000D ) < 0.
j=17%

We say that ® is an entropy when (D?>®(U) D(A)(U))¥™ > 0.
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The entropic structure

Proposition (LD, Lepoutre, Moussa, Trescases): Consider
aj, a0 RY — R, two C! functions, and

AX) = ( x1 a1(x2) )

X2 32(X1)
We assume that a;, ap are increasing and Det D(A) > 0, that is

Vxqy,xo > 0, al(xz)ag(xl) — X1 X2 ai(X2) aé(xl).

Then taking
O(X) := ¢1(x1) + ¢2(x),

where ¢; is a nonnegative second primitive of z > ai(z)/z (i # j), we
get an entropy.
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The entropic structure

Proof: We compute

, a(x)
D(A)(X) = < alx) x a1(X2)> . DX(®)(X) = ( o &)) 7

xay(x1)  a(x)

so that

MX) = 02(0) DAY = (7 20E0)

a1(x2)a(x1)

is obviously symmetric. Since the functions a; are increasing, all the
coefficients of M(X) are nonnegative, so that Tr M(X) > 0 ; we also see
that

DetM(X) = DetD?*(®)(X) Det D(A)(X) > 0.
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An even more recent result

Theorem (LD, Lepoutre, Moussa, Trescases) We assume that D; > 0,
r >0, A,JZO, Ap >0, Ay >0, and 5U>0
We assume that a1, a2 >0, ax > 1, ax < 1, and, for i # j,

0</6),',‘<17 0<ﬁ,-j<oz,-j/2,

Let (u10, Uo) be initial data in L! N H=1(Q) x LY2 1 H~1(Q), then there
exists a weak solution to the system

Oruy — Ay {(D1 + A1 u™ + A uz™?) Ul:l =u <f1 — S upt — 510 Ufn)

Ortp — Dy |:(D2 + As Ufm + Aa u?zz) U2:| = U (r2 —5n U121 — 52 u2622)>

with Neumann boundary conditions, and these initial data.
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Other systems for which existence holds

Higher exponents but self-diffusion dominating cross-diffusion

Oruy — Ax[ur (D1 + Arr ug + Az 03)] = 0,
Ortn — A [ua (D2 + Agy g + A u5)] = 0,

with s > 1 and

s—1
s+1

2
A1 Axn > < ) A1 Ass.

Significantly better than the result obtain by Jingel.
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Other systems for which existence holds

More than two equations

Gtul — AX[Ul (D1 + U; + U;)] = O,
Oetr — Dx[uz (Do + u5 + u3)] = 0,
Oruz — Axfuz (D3 + uf + u3)] = 0,

for 0 < s < 1/y/3 and Dy, D, D3 > 0.
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Possible extensions and conjectures

@ Almost nothing is known on systems of three or more equations

@ Existence maybe does not hold when ajs ap; > 1 and when there is
no self diffusion

@ Nothing is known (or even conjectured!) for reaction terms with
higher exponents
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