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Neurodegenerative diseases

Neurodegenerative diseases are quite a concern for our
society. No effective treatment for them —not even to slow
down their progression— is currently known.
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Neurodegenerative diseases

Neurodegenerative diseases are quite a concern for our
society. No effective treatment for them —not even to slow
down their progression— is currently known.

Many such neurodegenerative diseases (e.g. Alzheimer’s,
Prion) belong to the group of amyloid diseases, being
characterized by an abnormal accumulation of protein
aggregates.

The infectious agent causing these diseases is (strikingly)
believed to be a protein.
(Griffith 1967 — Prusiner 1982 Nobel prize)
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An example of neurodegenerative diseases: Prion

Disease (Scrapie) in sheep

Healthy vs infected limph nodes




Prion replication and fibril formation
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(Picture authorship: Joanna Masel, wikipedia)
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Fibril formation in neurodegenerative diseases

The intrinsic mechanisms of these chain reactions are currently
not very well known.
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Fibril formation in neurodegenerative diseases

The intrinsic mechanisms of these chain reactions are currently
not very well known.

The processes may involve an infinite number of species
-polymer sizes- and reactions (e.g. nucleation,
(de)polimerization, fragmentation, etc).
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Fibril formation in neurodegenerative diseases

The intrinsic mechanisms of these chain reactions are currently
not very well known.

The processes may involve an infinite number of species
-polymer sizes- and reactions (e.g. nucleation,
(de)polimerization, fragmentation, etc).

We want to understand what are the main reaction
mechanisms and which are secondary. Currently this cannot be
achieved solely on an experimental basis.
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Fibril formation in neurodegenerative diseases

The intrinsic mechanisms of these chain reactions are currently
not very well known.

The processes may involve an infinite number of species
-polymer sizes- and reactions (e.g. nucleation,
(de)polimerization, fragmentation, etc).

We want to understand what are the main reaction
mechanisms and which are secondary. Currently this cannot be
achieved solely on an experimental basis.

Mathematical models can forecast the consequences of
modeling assumptions at time and size scales that nowadays
are not accesible to experiments.
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Continuous (in vitro) models for protein polimerization

Polymerization + fragmentation

Let V(t) be the quantity of monomers. We use the variable
x > 0 to represent polymer size, being u(t, x) the density of

polymers of size x:
—V/ a(x)u(t, x) dx
0

ou 0
Tt Vaatu) = ~Bau 2 [ Byk(y. xulty) .

(Priss, Pujo—Menjouet, Webb, Zacher, Disc. Cont. Dyn. Syst. B 2006)
(Calvez, Lenuzza, Doumic, Deslys, Mouthon, Perthame, J. Biol. Dynamics 2010)
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Conservation of mass (in vitro)

@ x — u(x) gives the size distribution, thus

o(t) = /OOO u(t, x) dx

yields the number of polymers,
@ x — x u(x) is the polymerized mass distribution, and hence

/OOO x u(x)dx

amounts for the polymerized mass,
@ The total mass of the system is a conserved quantity,

M:= V() + /Oooxu(t,x) dx.
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Experimental measurements
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(Xue, Homans, Radford, PNAS 2008)

@ For a given protein concentration, a significant variant in
the lag time is observed. (previous talks)

@ The steepness of the transitions indicates the presence of
“secondary processes” accelerating the reaction.
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Experimental measurements
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@ Analyze continuous models combining some basic
ingredients: To what extent do we get similar dynamics?

@ Here we will combine: Polimerization, nucleation,
fragmentation and/or depolimerization.
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A slight diversion: Lifshitz—Slyozov’s model

Kinetics of precipitation from supersaturated solid solutions:
Cluster grow/diminish solely by the attachment/detachment of
monomers.

:_v/ alx txdx+/ d(x)u(t, x) dx

ou 0
57+ 3 (G)V = d(x)u) =0.

Usual physical setting: g(x) = x'/3, d(x) = 1. No need for a
boundary condition.

(Niethammer, Pego, Velazquez, Goudon, Tine, Lagoutiere, Collet, Vasseur, Poupaud,
Laurencot, Mischler...)
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Ostwald ripening

Large clusters tend to become larger and larger at the extent of
small ones

Teos ?w\lm; ey

(Niethammer, Pego, Velazquez, Goudon, Tine, Lagoutiere, Collet, Vasseur, Poupaud,

Laurencot, Mischler...)
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Ostwald ripening

Large clusters tend to become larger and larger at the extent of
small ones

Teo= ?«\V@ <doy

(Niethammer, Pego, Velazquez, Goudon, Tine, Lagoutiere, Collet, Vasseur, Poupaud,

Laurencot, Mischler...)
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Lifshitz—Slyozov revisited

When describing fibrils we expect to have g(x) = 1 and d(x) to
be increasing. This requires a boundary condition at zero size.

No nucleation case (J.C., M. Doumic, B. Perthame)

Let0 < a < d < fand g(x) = 1. Assume that V(0) > d(0).
Consider a solution (u, V) of Lifshitz—Slyozov equations
together with the following boundary condition:

(V(t) — d(0))u(t, 0)xv(t)-d)>0 = O
Then, there holds that

tlim V(t)=d(x) and tlim u(t, x) = ppd(x — X)

weakly as measures, being X the unique solution of

M = poX + d(X).
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Lifshitz—Slyozov revisited (no nucleation)
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Lifshitz—Slyozov revisited Il

When describing fibrils we expect to have g(x) = 1 and d(x) to
be increasing. This requires a boundary condition at zero size.

Nucleation case (J.C., M. Doumic, B. Perthame)

Let0 < a < d < fand g(x) = 1. Assume that V(0) > d(0).
Consider a solution (u, V) of Lifshitz—Slyozov equations
together with the following boundary condition:

(V(t) — d(0)u(t, 0)xv(t)-d)>0 = @V (1) xv(t)-d(0)>0-
Then, there holds that

lim V(t) = d(0),  lim p(t) = +oc

t—o0

and (fibril instability)

lim x u(t,x) =(M—d(0))o(x) weakly as measures.

t—o0
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Lifshitz—Slyozov revisited Il (with nucleation)
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Lifshitz—Slyozov revisited Il (with nucleation)
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Adding fragmentation

:—V/ a(x l‘xdx+0 d(x)u(t, x) dx.

%%X((g( OV-d()u)-Blx)u =2 [~ B)K(y. 2u(t.y) .

Lifshitz—Slyozov+fragmentation (J.C., M. Doumic, B. Perthame)

Let0 < o < d’ < g and g(x) = 1. Assume that V(0) > d(0).
Consider a solution (u, V) of Lifshitz—Slyozov equations with
fragmentation, with or without nucleation. Then, as before,

lim V(t) = d(0), lim p(t) =400

t—o0 t—o0

and (fibril instability)

tlim xu(t,x) =(M—d(0))i(x) weakly as measures.
—00
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Adding fragmentation |l

If we consider Lifshitz—Slyozov plus fragmentation with
decreasing depolymerization then nucleation stops after a
while.

Lifshitz—Slyozov+fragmentation (J.C., M. Doumic, B. Perthame)

Let d(x) be decreasing and g(x) = 1. Assume that

V(0) > d(0). Then, under balance assumptions for B, k and d
there exists a unique steady state solution (U, V) of
Lifshitz—Slyozov+fragmentation,

\7/0 g(x)U(t, x) dx_/ d(x)U(t, x) dx.

%((g(x)\_/—d(x))U)— U(x) = / B(y)k(y: x)U(y) dy,

Depolimerization may stabilize the system.
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Adding fragmentation |l

Ter= 3@\/&)_ ley
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@ We have consider different theoretical designs for fibril
formation reaction pathways in the framework of
continuous polimerization models.

@ Our models considered combinations of the following:
Polimerization, nucleation, fragmentation and/or
depolimerization.

@ The only combination so far that led to useful dynamics
was polimerization+ decreasing depolimerization
+fragmentation.
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@ We have consider different theoretical designs for fibril
formation reaction pathways in the framework of
continuous polimerization models.

@ Our models considered combinations of the following:
Polimerization, nucleation, fragmentation and/or
depolimerization.

@ The only combination so far that led to useful dynamics
was polimerization+ decreasing depolimerization
+fragmentation.

These results were obtained under the framework of the ERC
grant SKIPPERA? (2013-2017)
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