Summer school, CIRM, Marseille 2016

Animal movements at various scales

Simon BENHAMOU CEFE - CNRS Montpellier

Discrete movement representation ...

... and sampling issue.

Mean Squared Net Displacement (MSND)

$$R_n^2 = \left(\sum_{j=1}^n l_j \cos(\theta_j)\right)^2 + \left(\sum_{j=1}^n l_j \sin(\theta_j)\right)^2 = \sum_{j=1}^n l_j^2 + 2\sum_{j=1}^{n-1} \sum_{k=j+1}^n l_j l_k \cos(\theta_k - \theta_j)$$

Assuming that step lengths I are not auto-correlated and not cross-correlated with directions θ , one gets:

$$E(R_n^2) = nE(l^2) + 2E(l)^2 \sum_{j=1}^{n-1} \sum_{k=j+1}^n E[\cos(\sum_{h=j}^{k-1} \alpha_h)] = nE(l^2) + 2E(l)^2 \sum_{m=1}^{n-1} (n-m)C_m$$

Example 1: Biased Random Walk (with goal at infinity)

$$\sum_{m=1}^{n-1}(n-m)C_m = n(n-1)c/2$$

Example 2: Systematic square walk

$$\sum_{m=1}^{n-1} (n-m) c_m = \frac{1-\sin[(n+1)90^{\circ}]-n}{2}$$

Example 3: Balanced Correlated Random Walk

$$\sum_{m=1}^{n-1} (n-m)c_m = \frac{c}{1-c} \left(n - \frac{1-c}{1-c}^n \right)$$
 (Brownian motion: $c=0$)
(Long-term dispersal: $n \to \infty$)

Mean Squared Net Displacement (MSND)

Balanced Correlated Random Walk

$$E(R_n^2) = nE(l^2) + E(l)^2 \frac{2c}{1-c} \left(n - \frac{1-c^n}{1-c} \right)$$

$$E(R_n^2)_a = L_n E(l) \left(\frac{1+c}{1-c} + b^2 \right) = 4Dt$$
 with path length $L_n = nE(l)$ and coefficient of variation of step length b $(E(l^2) = E(l)^2(1+b^2))$

Transport mean free path *l**

For a non-correlated RW (BM: c=0) with step length l^*

$$E(R_n^2) = L_n E(l^*) (1+b^2) = E(l^*) = \frac{1+c+b^2(1-c)}{(1+b^2)(1-c)} E(l)$$

Particular cases:

Constant step length (b=0) for both BM and CRW: $l^* = l(1+c)/(1-c)$

Exponential distribution (b=1) for both BM and CRW: $E(l^*)=E(l)/(1-c)$

How to compute the path tortuosity of random search movements?

Sinuosity index for CRW: S

$$D=V/S^2$$
 D: coefficient of diffusion
t: time, V: mean speed

$$E(R_n^2)_a = L_n E(l) \left(\frac{1 - c^2 - s^2}{(1 - c)^2 + s^2} + b^2 \right) = 4Dt$$

Balanced CRW:

Modelling
$$S = 2\left[E(l)\left(\frac{1+c}{1-c} + b^2\right)\right]^{-0.5} \simeq \sigma(\alpha)/\sqrt{E(l)} \quad \text{for } c > 0.5$$

Analysis
$$S = \left[\frac{2}{l_r} \tan \left(\frac{\pi}{2} (1 - c_r) \right) \right]^{0.5} \simeq 1.18 \ \sigma(\alpha_r) / \sqrt{l_r} \quad \text{for } c > 0.5$$

Bovet & Benhamou, J. Theor. Biol. 1988 Benhamou, J. Theor. Biol. 2004, Ecology 2006

Real World vs. World Models

Real World vs. World Models

Real World vs. World Models

Movement Process => Pattern (path) => Path representation inference

Various patterns generated by ... a single process

Search-loops Advection (location (direction stationarity) stationarity)

Diffusion (spreading stationarity)

Similar patterns generated by ... quite different processes Lévy Walk (scale-free, single mode) $p(\theta) = (2\pi)^{-1}$ $p(L) = (\mu-1)L_{min}^{\mu-1} L^{-\mu}$ $1 < \mu = 2 < 3$ $p(\theta) = (2\pi)^{-1}$ $p(L) = \lambda^{-1} \exp(-L/\lambda)$ $\lambda_{inter} = 15 \lambda_{intra}$ $\lambda = \lambda_{\text{inter}} \text{ with } p_{\text{inter}} = 0.1$ $\lambda = \lambda_{\text{intra}} \text{ with } p_{\text{intra}} = 0.9$ Composite Brownian Motion (two scales, two modes)

Consider a gas molecule in a bottle How many movement scales?

EVIDENCE FOR SPATIAL SCALE-SPECIFIC MOVEMENT PROCESSES

NAVIGATION BEHAVIOUR

Because of a trade-off between working range and accuracy, several (usually three) scales can be distinguished:

- + small scale: pinpointing the goal location
- + medium scale: navigating through a familiar environment
- + large scale: navigating through large unfamiliar environments

These scales are usually uncoupled and used sequentially

EVIDENCE FOR SPATIAL SCALE-SPECIFIC MOVEMENT PROCESSES

NAVIGATION BEHAVIOUR

Because of a trade-off between working range and accuracy, several (usually three) scales can be distinguished:

- + small scale: pinpointing the goal location
- + medium scale: navigating through a familiar environment
- + large scale: navigating through large unfamiliar environments

These scales are usually uncoupled and used sequentially

FORAGING BEHAVIOUR

Because of the heterogeneity of the environment, at least two scales can be distinguished:

- + small scale: search for prey items between and within patches
- + large scale: patch to patch movement

These scales may be partly coupled and are used simultaneously

Sequential search modes and simultaneous spatial scales

Sequential search modes and simultaneous spatial scales

large-scale movement (sequence of visited patches):
diffusive (random search)
advective (migration)
self-constrained (home range)

Back to basics

Using the classical but naïve "significant turn" approach ...

... results in a strange two-mode two-scale mixure

LEVY WALK

TRUNCATED LEVY WALK

TRUNCATED COMPOSITE BROWNIAN WALK

CUE-DRIVEN COMPOSITE BROWNIAN WALK

Benhamou & Collet, J. Theor. Biol., 2015

Locations interpolated with a constant activity time

$$h^{2}(m) = h_{loc}^{2} + 2m/n(1 - m/n)DT$$
 $n = 4$

$$u(\mathbf{z}) = \frac{1}{2\pi^N} \sum_{i=1}^{N} \frac{1}{h_i^2} \exp \left[-\frac{\left\| \mathbf{Z}_i - \mathbf{z} \right\|^2}{2h_i^2} \right]$$

COMPUTATION OF CONDITIONAL PROBABILITIES

Proba
$$(\mathbf{z}_{t} | \mathbf{z}_{0}, \mathbf{z}_{T}) = \frac{\text{Proba}(\mathbf{z}_{t} | \mathbf{z}_{0}) \times \text{Proba}(\mathbf{z}_{T} | \mathbf{z}_{0}, \mathbf{z}_{t})}{\text{Proba}(\mathbf{z}_{T} | \mathbf{z}_{0})}$$

Proba
$$(\mathbf{z}_t \mid \mathbf{z}_0) = f_W(\mathbf{z}, t \mid \mathbf{z}_0) \sim \mathcal{N}(\mathbf{z}_0 + \mathbf{v}t, 2\mathbf{D}_{xy}t)$$

Proba $(\mathbf{z}_T \mid \mathbf{z}_0) = f_W(\mathbf{z}_T, T \mid \mathbf{z}_0) \sim \mathcal{N}(\mathbf{z}_0 + \mathbf{v}T, 2\mathbf{D}_{xy}T)$
Proba $(\mathbf{z}_T \mid \mathbf{z}_0, \mathbf{z}_t) = f_W(\mathbf{z}_T, T - t \mid \mathbf{z}) \sim \mathcal{N}(\mathbf{z} + \mathbf{v}(T - t), 2\mathbf{D}_{xy}(T - t))$

Proba
$$(\mathbf{z}_t | \mathbf{z}_0, \mathbf{z}_T) = f_{\mathbf{B}}(\mathbf{z}, t | \mathbf{z}_0, \mathbf{z}_T) \sim \mathcal{N}(\mathbf{z}_0 + (\mathbf{z}_T - \mathbf{z}_0)t/T, 2\mathbf{D}_{xy}t(1-t/T))$$

Encounter "probability" of two animals moving independently of each other

What does mean "encounter"?

- to be in the same area
- to be within a given distance of the other one

There are four situations that are worth considering:

1) At a given time and at a given place (in the same area)

2) At any time and at a given place (in the same area)

3) At a given time at any place (within a given distance)

4) At any time and at any place (within a given distance)

1) At a given time and at a given place (in the same area)

Consider a circular area Z with centre C and radius R, and 2 animals A and B

Encounter Prob. = $P(A \text{ is in } Z \text{ at time } t) \times P(B \text{ is in } Z \text{ at time } t)$

Let the locations of A and B at any time t follow a circular bivariate Gaussian distribution with means $\mu_A(t)$ and $\mu_B(t)$ and deviations $\sigma_A(t)$ and $\sigma_B(t)$.

Let C be at distances $\lambda_A(t)$ of $\mu_A(t)$ and $\lambda_B(t)$ of $\mu_B(t)$

The probability density for an animal to be at distance δ of C is given by the Rice distribution: $f(\delta) = \delta/\sigma^2 \exp[-(\delta^2 + \lambda^2)/(2\sigma^2)] I_0(\lambda\delta/\sigma^2)$ where I_0 is the modified Bessel function of the first kind with order zero

Probability to be in Z: $F(R) = \int_0^R f(\delta) d\delta$ (using numerical integration)

(if Z is not circular, the prob. can be estimated by computer simulations)

2) At any time and at a given place (in the same area)

Consider an area Z of any shape (not necessarily circular)

Time integration of movement to compute the UDs of the two animals => computation of the proportion of time spent by each animal in area Z

Encounter "prob." = PPtion of time (A in Z) \times PPtion of time (B in Z)

3) At a given time at any place (within a given distance D)

Let the locations of A and B at any time t follow a circular bivariate Gaussian distribution with means $\mu_A(t)$ and $\mu_B(t)$ and $\sigma_{A}^2(t)$ and $\sigma_{B}^2(t)$.

=> the difference follows a circular bivariate Gaussian distribution with mean $\mu_{\Delta}(t) = \mu_{A}(t) - \mu_{B}(t)$ and variance $\sigma_{\Delta}^{2}(t) = \sigma_{A}^{2}(t) + \sigma_{B}^{2}(t)$

The probability density for an animal to be at distance δ of another animal at time t is given by the Rice distribution:

$$f(\delta) = \delta/\sigma_{\Delta}^{2} \exp[-(\delta^{2} + ||\mu_{\Delta}||^{2})/(2\sigma_{\Delta}^{2})] I_{0}(||\mu_{\Delta}||\delta/\sigma_{\Delta}^{2})$$

Probability to be within *D* of each other:

$$F(D) = \int_0^D f(\delta) d\delta$$
 (by numerical integration)

4) At any time and at any place (within a given distance D)

Compute the "difference distribution" at any time, as previously:

=> Circular bivariate Gaussian distribution with mean $\mu_{\Delta}(t)$ and variance $\sigma_{\Delta}^{2}(t)$

Integrate over time (e.g. using kernel approach) => "difference UD"

Then, compute the proportion of time spent in a circular area centred on (0, 0) with radius *D*

) DO NOT CONFOUND	PATTERNS (OBSERVED) A	AND PROCESSES (INFERRED)
-------------------	-----------------------	--------------------------

- 1) DO NOT CONFOUND PATTERNS (OBSERVED) AND PROCESSES (INFERRED)
- 2) THE SCALE-FREE MOVEMENT APPROACH IS USUALLY MEANINGLESS
 - MULTI-SCALE MOVEMENT PATTERNS CAN LOOK LIKE SCALE-FREE
 - SCALE-FREE MOVEMENT PROCESSES ARE USUALLY POORLY EFFICIENT

- 1) DO NOT CONFOUND PATTERNS (OBSERVED) AND PROCESSES (INFERRED)
- 2) THE SCALE-FREE MOVEMENT APPROACH IS USUALLY MEANINGLESS
 - MULTI-SCALE MOVEMENT PATTERNS CAN LOOK LIKE SCALE-FREE
 - SCALE-FREE MOVEMENT PROCESSES ARE USUALLY POORLY EFFICIENT
- 3) PAY ATTENTION TO THE SCALE
 - OBSERVATION SCALE (PATTERN LEVEL)
 - BIOLOGICALLY RELEVANT SCALES (PROCESS LEVEL)

- 1) DO NOT CONFOUND PATTERNS (OBSERVED) AND PROCESSES (INFERRED)
- 2) THE SCALE-FREE MOVEMENT APPROACH IS USUALLY MEANINGLESS
 - MULTI-SCALE MOVEMENT PATTERNS CAN LOOK LIKE SCALE-FREE
 - SCALE-FREE MOVEMENT PROCESSES ARE USUALLY POORLY EFFICIENT
- 3) PAY ATTENTION TO THE SCALE
 - OBSERVATION SCALE (PATTERN LEVEL)
 - BIOLOGICALLY RELEVANT SCALES (PROCESS LEVEL)
- 4) EXPLORING THE PLAY BETWEEN SCALES AT THE INTERFACE PATTERN-PROCESS MAY PROVIDE A MECHANISTIC BASIS TO STATISTICAL DESCRIPTION OF PATTERNS

- 1) DO NOT CONFOUND PATTERNS (OBSERVED) AND PROCESSES (INFERRED)
- 2) THE SCALE-FREE MOVEMENT APPROACH IS USUALLY MEANINGLESS
 - MULTI-SCALE MOVEMENT PATTERNS CAN LOOK LIKE SCALE-FREE
 - SCALE-FREE MOVEMENT PROCESSES ARE USUALLY POORLY EFFICIENT
- 3) PAY ATTENTION TO THE SCALE
 - OBSERVATION SCALE (PATTERN LEVEL)
 - BIOLOGICALLY RELEVANT SCALES (PROCESS LEVEL)
- 4) EXPLORING THE PLAY BETWEEN SCALES AT THE INTERFACE PATTERN-PROCESS MAY PROVIDE A MECHANISTIC BASIS TO STATISTICAL DESCRIPTION OF PATTERNS
- 5) JOINT SPATIAL DISTRIBUTION OF 2 (OR MORE) INDIVIDUALS OPENS INTERESTING BUT TRICKY PERSPECTIVES

THAT'S ALL FOLKS

...thanks