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Discrete movement representation ...
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(LAD), 0
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... and sampling Issue.



Mean Sqguared Net Displacement (MSND)

= [ifj CDS(%)J +[ifj sin(ﬁj)J ZEE +22 ZEE cos(8, — 6,)

j=1k=j+l
Assuming that step lengths / are not autn correlated and
not cross-correlated with directions 8, ohe gets:

E(R)=nE(l")+2E(D)’ Z Z E|[ CDS(Z{xh) = nE(I")+ 2E(D’ Z(n m)c,

j=1lk=j+l
Example ]: Biased Random Walk (with goal at infinity)
HZ_:(”— m)c,, = n(n-1)yc/2
=1

Example 2: Systematic square walk
Hi(ﬂ— m)c,, = 1- Sﬁl[(zn+1)9(}0]_n
m=1

Example 3: Balanced Cormrelated Random Walk

i(ﬂ_m)c ¢ l-c ) ( Brownian motion: ¢=0)
= S, ( e ( Long-term dispersal: 71 = 00)

Benhamou, Ecology 2006



Mean Squared Net Displacement (MSND)

Balanced Comnrelated Random Walk

1 —c | s

E(R?) = nE@1*) + E(1)* - [n—l_cn]

with path length L,=nE(])
2 . : - 3 . e ~
+b ) = 4Dt and coefficient of variation of
step length b (E(/?) = E([)*(1+b%))

1+ c

E(R,), = LHEG)[

l1-c

Transport mean free path /*
For a non-correlated RW (BM: ¢=0) with step length /*

l+c+b°(1-c)
(1+b5)(1-c)

E(R)=LE1+b*) = E(*) = E(l)
Particular cases:

Constant step length (5=0) for both BM and CRW: [*=I(1+c)/(1-c)
Exponential distribution (5=1) for both BM and CRW:  E(/*)=E(/)/(1-c¢)



How to compute the path tortuosity
of random search movements?

Sinuosity index for CRW: S

_ p D: coefficient of diffusion
D=VIS t: time, V: mean speed
1_ 2 L2
EQRY) =LED| —S_"_+p* | = 4Dr
n’a M (1 . C)_I_SE
Balanced CRWV:
-0.5
Modelling S=72 {E(Z)Gf—j +sz } ~ r.j(c:::)/\fE(Z) for ¢ >0.5
5 0.5
Analysis S = h tan [i (1-g) ﬂ ~ 118 rJ(u::-t,j,,.)/\flr for ¢ >0.5
e

Bovet & Benhamou. J. Theor. Biol. 1988
Benhamou, J. Theor. Biol. 2004 , Ecology 2006
























Real World vs. World Models

”

Ceci nest nas une jufle .




Real World vs. World I\/Iodels

Serastruma lujae
(small ant)

Initial recording
(video 25 i/s)

Rediscretization
M with a constant
1Y . steplength (1.5 cm)




Real World vs. World I\/Iodels

Serastruma fujae
(small ant)

Initial recording
(video 25 i/s)

Rediscretization
M with a constant
1Y . steplength (1.5 cm)

Cecl nest pas une fufie. This is not a path

Movement Process == Pattern (path) => Path representation

* Inference




Various patterns generated by ...
a single process

Advection
(direction
stationarity)

Search-loops

(location
stationarity)

- m\.

' K/
r‘_,l_ '
Diffusion iv’* “
(spreading /
stationarity)

Benhamou, Ecol Let 2014




Similar patterns generated by ...
quite different processes

N ,
Levy Walk
(scale-free, single mode)
p(0) = (2m)" z e
p(L) = (D)L LY 67 RS |

1< p=2 <3
~ p(0) = (2n)"

p(L) = 1T exp(-L/1)

/ Ainter = 19 Aintra

' o
h:kinter Wllth pinter: 0 ]-
A= hintra With p. = 0.9

_ Composite
v _ Brownian Motion

(two scales, two modes)
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Consider a gas molecule ina bo”;tle
How many movement scales”

"‘Jh?‘
'l




EVIDENCE FOR SPATIAL SCALE-SPECIFIC
MOVEMENT PROCESSES

NAVIGATION BEHAVIOUR

Because of a trade-off between working range and accuracy,
several (usually three) scales can be distinguished:

+ small scale: pinpointing the goal location
+ medium scale: navigating through a familiar environment
+ |large scale: navigating through large unfamiliar environments

These scales are usually uncoupled and used sequentially



EVIDENCE FOR SPATIAL SCALE-SPECIFIC
MOVEMENT PROCESSES

NAVIGATION BEHAVIOUR

Because of a trade-off between working range and accuracy,
several (usually three) scales can be distinguished:

+ small scale: pinpointing the goal location
+ medium scale: navigating through a familiar environment
+ |large scale: navigating through large unfamiliar environments

These scales are usually uncoupled and used sequentially

FORAGING BEHAVIOUR

Because of the heterogeneity of the environment, at least two
scales can be distinguished:

+ small scale: search for prey items between and within patches
+ large scale: patch to patch movement

These scales may be partly coupled and are used simultaneously



Sequential search modes and simultaneous spatial scales

small -scale, intensive search (intra-patchj:
lowly diffusive or subdiffusive

small-scale, extensive search (inter-patch):
highly diffusive or advective
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Sequential search modes and simultaneous spatial scales

small -scale, intensive search (intra-patchj:
lowly diffusive or subdiffusive

small-scale, extensive search (inter-patch):
highly diffusive or advective

large-scale movement (sequence of visited patches):
diffusive (random search)
advective (migration)
self-constrained (home range)



Multi-scale space-use approach



Multi-scale space-use approach
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Multi-scale space-use approach
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Multi-scale space-use approach




Back to basics
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Relative frequency
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Using the classical but naive "significant turn” approach ...
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... results in a strange two-mode two-scale mixure

(v



The resutling move length distribution seems to be heavy-tailed
" ... as if movement was a scale-free Lévy walk

0.150

0.125

Relative frequency




Observed or Survival frequency
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Mean squared net displacement (MSND)
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LEVY WALK

YES

Draw an integer random number L>1
from a power-law distribution with 1<u<3

Walk 1 unit length in a random direction

Walk 1 unit length
INn the same direction

YES

Length moved = L 7



TRUNCATED LEVY WALK

Draw an integer random number L>1

from a power-law distribution with 1<u<3 - L=Tor
item detected?

Walk 1 unit length
INn the same direction

Walk 1 unit length in a random direction

YES

Length moved = L
or item detected?”



TRUNCATED COMPOSITE BROWNIAN WALK

With probability p, set L=1,
or with g=1-p, draw an integer random

L=1 or
item detected?

number L with E(L) >>1 and finite V(L)
Walk 1 unit length in a random direction

Walk 1 unit length
INn the same direction

YES

Length moved = L
or item detected?”



CUE-DRIVEN COMPOSITE BROWNIAN WALK

item detected?

Walk 1 unit length
N a random direction

Reset length moved

YES
INTENSIVE MODE

Length moved < GUL 7

Walk 1 unit length
N a random direction

EXTENSIVE MODE

Walk1 unit length In
g
the same direction

YES

item detected?




detection width
)

1 unit length

ltems located in the blue area are all detected



Giving-up length (CBW)

Relative efficiency
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detection width
)

1 unit length

ltems located In the blue area
are detected with probability p<1

ltems located in red areas are all detected
There Is a temporal cost for scanning red areas



COST = 1

EFFICIENCY X 1000

COST =10
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Benhamou & Collet, J. Theor. Biol., 2015
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Location-based KD

UD based on locations
assumed to be independent

h = 500m

3 km







Locations interpolated with a constant activity time

h2(m)=h,, 2+ 2m/n(1-m/n)DT  n=4
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COMPUTATION OF CONDITIONAL PROBABILITIES

Proba (z, | z,) x Proba (z;|z,, z,)

Proba (z,| z,, 2;) =
Proba (z; | z,)

Proba (z, | z,) = J\.(av (Z, t2) ~ N(zytvt, 2D 1)

Proba (z; | z,) = Jﬁv (Z, T'|2,) ~ N(zy+VT, 2D, T)
Proba (z;| 2y, z,) = f (27, T-1 |2) ~ N(z+V(T-1), 2D(T-1))

Proba (z,| z,, z;) = J; (z, 1] 2o, 27) ~ N(2o+ (27 — 2)t/T, 2D #(1-1/T))



Movement-based KD

........
------
(]

UD based on interpolated locations
using Biased Random Bridges

. D = 450 m?4/min

3 km
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% Benhamou,
PLoS One
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Utilization Distribution UD w;=1
Recursion Distribution RD  w; = 1/y(i)

Intensity Distribution ID  w;=1/¢(i)

| (i) Residence time
£(1) Visit number

Benhamou & Riotte-Lambert,
Ecol. Model. 2012
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Encounter "probability” of two animals
moving independently of each other

What does mean "encounter"?
- to be In the same area
- to be within a given distance of the other one

here are four situations that are worth considering:

1) At a given time and at a given place (in the same area)

2) At any time and at a given place (in the same area)

3) At a given time at any place (within a given distance)

4) At any time and at any place (within a given distance)



1) At a given time and at a given place (in the same area)

Consider a circular area Z with centre C and radius R,
and 2 animals A and B

Encounter Prob. =P(Aisin Z attimet) x P(Bis in Z at time t)

Let the locations of A and B at any time ¢ follow a circular bivariate
Gaussian distribution with means pa(t) and ps(f)
and standard deviations ca(f) and os({).

Let C be at distances 7.a(f) of pa(f) and 7s(t) of us(f)
The probability density for an animal to be at distance o of C is given by

the Rice distribution: f(0) = d8/52 exp[-(0%+1.2)/(26°)] Io(10/c2)
where Ip Is the modified Bessel function of the first kind with order zero

Probability to be iIn Z: F(R) = I: f(0)do (using numerical integration)

(If Z is not circular, the prob. can be estimated by computer simulations)



2) At any time and at a given place (in the same area)

Consider an area Z of any shape (nhot necessarily circular)

Time integration of movement to compute the UDs of the two animals
=> computation of the proportion of time spent by each animal in area Z

Encounter "prob." = PPtion of time (A in Z) x PPtion of time (B in 2)



3) At a given time at any place (within a given distance D)

Let the locations of A and B at any time t follow a circular bivariate
Gaussian distribution with means pa(f) and [s({)

and variances ca?%(f) and cs2(f).

=> the difference follows a circular bivariate Gaussian distribution
with mean pa(f) = pa(f) — ps(f) and variance ca2(t) = 6a2(t) + o82(f)

he probability density for an animal to be at distance o of another
animal at time t is given by the Rice distribution:

f(0)= 52 exp[-(2+||Hal[2)/(2642)] To(||Hal|T5a2)

Probability to be within D of each other:
F(D)= J? f(o)do (by numerical integration)



4) At any time and at any place (within a given distance D)

Compute the "difference distribution™ at any time, as previously:

=> Circular bivariate Gaussian distribution

with mean Ja(t) and variance ca2(t)

Integrate over time (e.g. using kernel approach) => "difference UD"

Then, compute the proportion of time spent in a circular area

centred on (0, O) with radius D
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TAKE HOME MESSAGES

1) DO NOT CONFOUND PATTERNS (OBSERVED) AND PROCESSES (INFERRED)

2) THE SCALE-FREE MOVEMENT APPROACH IS USUALLY MEANINGLESS
MULTI-SCALE MOVEMENT PATTERNS CAN LOOK LIKE SCALE-FREE
SCALE-FREE MOVEMENT PROCESSES ARE USUALLY POORLY EFFICIENT

3) PAY ATTENTION TO THE SCALE

OBSERVATION SCALE (PATTERN LEVEL)
BIOLOGICALLY RELEVANT SCALES (PROCESS LEVEL)

4) EXPLORING THE PLAY BETWEEN SCALES AT THE INTERFACE
PATTERN-PROCESS MAY PROVIDE A MECHANISTIC BASIS
TO STATISTICAL DESCRIPTION OF PATTERNS

9) JOINT SPATIAL DISTRIBUTION OF 2 (OR MORE) INDIVIDUALS OPENS
INTERESTING BUT TRICKY PERSPECTIVES






