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Theorem [Wigderson, Yehudayoff FOCS 2012]: 
There is a quasi-polynomial time algorithm for any µ, 
η > 0 (lossy, noisy) 

Theorem [Batman et al RANDOM 2013]: There is 
a polynomial time algorithm for any µ > 0.30 (lossy) 

Theorem [Moitra, Saks FOCS 2013]: There is a 
polynomial time algorithm for any µ > 0 (lossy) 
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Restriction Access (Dvir et al) 

DNF: 

New Model:  Set each bit independently with prob 
1-µ, given the restricted formula 

Each clause that survives, we get a fragment of its 
variables 

(x1∧x3∧x5)∨(x2∧x3∧x8)…  

Corollary: There is a polynomial time algorithm for 
learning DNFs in the Restriction Access Model for 
any µ > 0. 
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If we are given an approx b, can we just compute 
A-1b and take its first coordinate? (i.e. e0A-1b) 

No, condition number of A is exponentially large! 
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Set x = e0A-1, then xb = e0A-1Aq = q0 

But x has exponentially large norm, so we’d 
need to know b within exponentially small error 

Idea: Add a perturbation (vector) η so that 

Set x = (e0+η)A-1, then x b = (e0+η)A-1Aq = q0+ηq 

Can we perturb e0 s.t. (e0+η)A-1 has bdd norm? 
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Theorem [Batman et al]: The same robust local 
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doesn’t work for µ < 1/4 

Theorem [Moitra, Saks]: There is a robust local 
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[1, α, α2, α3, … αn-1] 
 

This transforms the constraints of the LP to be 
monomials of a polynomial 

Hence the dual program wants to construct a 
certain type of polynomial 

If we can prove no such polynomial exists 

There is a good RLI, which we can find via an LP 

Basis: 
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Claim: ||p||coeff ≥ supx in D |p(x)|, where D is the unit 
complex disk 
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Theorem: There is a polynomial time algorithm for 
lossy population recovery for any µ > 0 

Theorem: There is a robust local inverse for Aµ 
(binomial) at e0 any µ > 0, even though its condition 
number is exponentially large 

Corollary: There is a polynomial time algorithm for 
learning DNFs in the Restriction Access Model for 
any µ > 0. 
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Summary and Open Questions 

We solved an inverse problem, despite 
exponentially large condition number! 

…using tools from complex analysis 

Can RLIs be useful for other problems in statistical 
inference? 

Is there a polynomial time algorithm for noisy  
population recovery? 
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Further Discussion 

Previously, even the sample complexity was 
unknown (still open for noisy)? 

General issue: Why can’t there be two different 
sets of parameters that yield almost the same distr? 

Here we designed a family of contrast functions 
via complex analysis 

Can other tools from analysis lead to 
fundamentally new estimators/algorithms? 



Thanks!  
 
 
 
Any Questions? 

  


