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Review

What is concentration?

“A random variable that depends in a smooth way on many
independent random variables (but not too much on any of
them) is essentially constant.”

- M. Talagrand, 1996.

If Z is a function of many independent variables X1, X5, ..., X,
under what conditions can we say typical deviations of Z are small?
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Review

What is concentration?

“A random variable that depends in a smooth way on many
independent random variables (but not too much on any of
them) is essentially constant.”

- M. Talagrand, 1996.

If Z is a function of many independent variables X1, X5, ..., X,
under what conditions can we say typical deviations of Z are small?

@ Low variance captured by a general theorem: tensorization of
variance

@ We saw how the entropy method and log-Sobolev inequalities
showed sub-Gaussian tails

o Today, we'll study the transportation method which uses a
beautiful idea of coupling



Transportation lemma

Let P be a probability measure on €2 and Z : Q2 — R be any
random variable.
The following are equivalent:

2 2
logEe’\(Z_]EZ) < )\Ta, YA>0

EqZ —EZ < \/202D(Q||P), ¥V Q << P

Proof on board.



Transportation lemma

Let P be a probability measure on €2 and Z : Q2 — R be any
random variable.
The following are equivalent:

2 2
logEe’\(Z_]EZ) < )\Ta, YA>0

EqZ —EZ < \/202D(Q||P), ¥V Q << P

Proof on board.

Coupling

Given two probability distributions P and @ on €2, a
coupling M of P and @ is a probability distribution on
Q) x  whose marginals are respectively P and Q.

Let € (P, Q) be the set of all couplings of P and @
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If drv(P,Q) =sup|P(A) — Q(A)], then
A

1
drv(P,Q) < ;D(QIP).
This is the Csiszar-Kemperman-Kullback-Pinsker inequality and
follows from Hoeffding's lemma and the transportation inequality.

1
This approach also shows that the constant 3 is tight.

1—2p 1. 1
Let 02 = ——— f €0,-)U(=,1).
€ UP QIOglp%p orp (72) (27 )
Kearns-Saul '98: If Z € {0, 1} and Z ~ Ber(p), then

)\ 2
log EeMZ—E2) < 5 2% yaeR

Ordentlich-Weinberger '05: If P = Ber(p), @ = Ber(g), then
drv(Q, P)? <20, D(Q|IP)V ¢,0 < g <1

The two statements above are equivalent.
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Transportation method for bounded
differences inequality

Suppose f satisfies the bounded difference property: a change in
the i'" co-ordinate can change f by at most ¢;.

EqZ —EZ =En[f(Y) — f(X)]

n
<Eum[)  cilx,2v]
=1

= Z cilPu[X; # Yi
i=1

Mz[#]

i=1



Marton's transportation inequality
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where €(P, Q) is the set of all couplings of P and Q.

n = 1: follows from Pinsker’s inequality, since
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Optimal coupling
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Optimal coupling

MG%(P,ér)l,(X,Y)NM m(X #Y) =drv(P,Q)

IP(4) — Q(A) . ‘\
=Enm[lxea — lyea]l ey \\
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Sketch of induction argument for n > 1 :
Suppose
1
inf Pu,(X; #Y;)? < =D(Qi||P) ¥V Q; << P
MiE‘b”(Pi,QliI)l,(Xi,n)NMi Mz( i £ z) =3 (Qz” z) Qi i
Given Q = Qv, v, (Y1, y2), generate X1, Y1, X2,Y5 as follows:

@ Let M; be an optimal coupling corresponding to P; and Qy;.
Generate (X1, Y1) according to My, say (z1,¥1).

@ Let M5 be an optimal coupling corresponding to P» and
Qy,v; (Y2ly1). Generate (X2,Y2) according to Ma, say
(2,92)-

(X1, X2) and (Y71, Y2) have right marginals.
P (X1 # Y1)? < D(Q1]|Py)
Py (Xa # Ya[Y1 = y1)* < D(Qyy v (y1) || P1)
Average over y1, apply Jensen on LHS and chain rule of relative
entropy on RHS:

S Ru(x £ < Lo@ie)

=1
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The most powerful concentration inequality (in this tutorial)

n
Suppose f(y ) < ch g,y and Zcf(x) <o?
i=1

If Z = f(Xy1,...,X,) and X1, Xo..., X, are independent,
then Z is o2-sub-Gaussian:

)\2 2
log Ee*Z-E2) < TU vV AcR

+2

Then, P[Z —EZ > t],P[Z —EZ < —t] < e 22, V¢t >0

Prove sub-Gaussianity by the equivalent transportation description:

EoZ —EZ < \/202D(Q||P), ¥ Q << P
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3

<Euy ch 1X7éy
i=1
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— ZE [ci(X)Par[Xi # Yi|X]]
1

i

=Y VEE(X)VE PulX; # Vi X2
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3

=1

> Ecl-(X)QJ > EPu[X; # Vil X]?]
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EqZ —EZ = En([f(Y) — f(X)]
En> ] ci(X)1x,2vi]
i=1

= ZE[CZ'(X)PM[XZ' # Y| X]]
i=1

= Y VERX)IVERMX, £ ViXT]

=1

3

n

> B(x JZEPMX £ Vi|X]2)

L

- mJ STE[PylX; # Vil X))

i=1



E@Z —EZ =Em[f(Y) -

n
En[) eilX
=1

n

F(X]

)x,4v;]

— ZE [ci(X)Par[Xi # Yi|X]]

=1

3

=Y VE[e(

=1

)2VE [Par[X; # Vil X]?]

n

Z Ec; (X

L

JZEPMX # Y| X]?]

- mJ STE[PylX; # Vil X))

=1

Need to show the second quantity in ,/ is <2D(QI|P)
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(1_

¢ (X)
pi(X)

)

2

+
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et g & [Pl # KX

RHS is also called Marton's divergence.
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)

2

+
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RHS is also called Marton's divergence.

Optimal coupling identical to that for total variation distance!

E <1— Qi(X)>2] <2D(Qil|P)

pi(X) +
Induction argument also applies to give a coupling M so that
n
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Follow a similar procedure:

=1: inf  E[Py[X; #Y|X]]?] =E
"= el ) B X # VI

(266

RHS is also called Marton's divergence.

Optimal coupling identical to that for total variation distance!

E (1— qZ‘X))Q] < 2D(Qi|P)

pi(X) +
Induction argument also applies to give a coupling M so that
n

> E[PulX; # Vil X]*] <2D(Q||P)

=1

Similarly, we can show ZIEM [IP’M[Xi #+ YE|Y]Q] <2D(Q||P)
i—1

This gives BOTH left and right tails!
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Let A be an n X n symmetric matrix with independent
entries X;;,1 <17 < j < n independent, —1 < X;; < 1.

Let Z = Amax(4) = |m|ax wrAw = uT Au
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Suppose P = P; X P, X ... X P, is a product measure.

For o € RY, |lerl|2 = 1, define do(z, z') ZO‘Z v,

Let do(x, A) = inf dy(x, ")
z’'€A

Define dp(z, A) =  sup  du(x, A)
a>0,||lall2=1

Let Ay = {z : dp(x, A) < t}.
Then, P(A)P(AS) < e ¥/t vt >0

Proof on board!
If Ve, A) = {<1¢):1 2 € A} c[0,1]",

then dp(z, A) is the minimum Euclidean distance of the origin from
the convex hull of V(x, A) (hence the name ‘convex distance’).



Application: Longest increasing subsequence problem

Let X1, Xo,..., X, be independent, each drawn uniformly
from [0, 1].

A sequence i1 < 19 < ... < i, constitutes an increasing
subsequence if X;, < X;, <...< X, .

What is the behavior of the length Z = f(X1, Xo,..., X,)
of the longest increasing subsequence?
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Erdos-Szekeres theorem (1935)

If m2 + 1 people of different heights stand in a line, there
exists among them either a monotonically increasing
subsequence of length m + 1 or a monotonically decreasing
subsequence of length m + 1

vn—1
Therefore, EZ > MQJ
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P[Z > k]
= P[at least one increasing subsequence of length = k]

< E[number of increasing subsequences of length k]

-5 (1)

nk

~ (k/e)**

N

Choose k = 2e+y/n to get

EZ < P[Z < K|k + P[Z > K]n
< 2ev/n+ O(e™V™)

Thus, EZ = ©(Vn).
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Z = f(X1,Xa,...,X,) where the function f has the property
that a change in any one co-ordinate can alter the value of f by at
most 1

Thus, by bounded differences inequality, Z is o>-sub-Gaussian with
o’ ==

However, this is not satisfactory, since this gives typical deviation
O(v/n) and we know EZ = ©(y/n)

Talagrand's convex distance inequality can show sub-Gaussian tail
bounds with typical deviation O(n'/*)
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Fix any b and ¢, let A = {y: f(y) <b—tVb}, let
B={z:f(z) > b}
Pick any sequence z € B, so now f(x) > b.

Suppose dr(z,A) <t i.e. sup  do(z, A) < t.
a>0:]all2=1

1
Jy € A such that — 1y, <t
) i;d \/B iFYi
Impossible since for each y € A, f(y) < b— tVb.
Thus, dr(z, A) >t and so, B C Aj.
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Arguments we made earlier to show c;v/n < EZ < ¢o4/n also
show c1v/n < MZ < cav/n

Therefore, typical deviation = O(nl/d‘) with sub-Gaussian tail
bounds
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Choose b =MZ so P[Z > MZ]| > 1/2,P[Z <MZ] > 1/2
Then, P[Z — MZ < —tVMZ] < 2¢ /4
Similarly, MZ = b — tV/b gives upper tail bounds

Arguments we made earlier to show c;v/n < EZ < ¢o4/n also
show c1v/n < MZ < cav/n

Therefore, typical deviation = 0(72/1/4) with sub-Gaussian tail
bounds

Actually, Z = 2v/n 4+ O(n'/®) and the limiting distribution of

Z —2
T\/ﬁ is known (Baik, Deift, Johansson, 1999)
n
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- M. Talagrand, 1996.
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@ Transportation method: uses idea of coupling to show
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o Talagrand’s convex distance inequality: extremely powerful
inequality for product measures

(All slides available on my webpage)



