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Review
What is concentration?

“A random variable that depends in a smooth way on many
independent random variables (but not too much on any of
them) is essentially constant.”
- M. Talagrand, 1996.

If Z is a function of many independent variables X1, X2, . . . , Xn,
under what conditions can we say typical deviations of Z are small?

Low variance captured by a general theorem: tensorization of
variance
We saw how the entropy method and log-Sobolev inequalities
showed sub-Gaussian tails
Today, we’ll study the transportation method which uses a
beautiful idea of coupling
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Transportation lemma

Let P be a probability measure on Ω and Z : Ω 7→ R be any
random variable.

The following are equivalent:

logEeλ(Z−EZ) ≤ λ2σ2

2
, ∀ λ > 0

EQZ − EZ ≤
√

2σ2D(Q||P ), ∀ Q << P

Proof on board.

Coupling

Given two probability distributions P and Q on Ω, a
coupling M of P and Q is a probability distribution on

Ω× Ω whose marginals are respectively P and Q.

Let C (P,Q) be the set of all couplings of P and Q
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If dTV(P,Q) = sup
A

|P (A)−Q(A)|, then

dTV(P,Q)2 ≤ 1

2
D(Q||P ).

This is the Csiszár-Kemperman-Kullback-Pinsker inequality and
follows from Hoeffding’s lemma and the transportation inequality.

This approach also shows that the constant 1

2
is tight.

Let σ2
p =

1− 2p

2 log 1−p
p

for p ∈ (0,
1

2
) ∪ (

1

2
, 1).

Kearns-Saul ’98: If Z ∈ {0, 1} and Z ∼ Ber(p), then

logEeλ(Z−EZ) ≤
λ2σ2

p

2
∀ λ ∈ R

Ordentlich-Weinberger ’05: If P = Ber(p), Q = Ber(q), then
dTV(Q,P )2 ≤ 2σ2

pD(Q||P ) ∀ q, 0 ≤ q ≤ 1

The two statements above are equivalent.
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Kearns-Saul bound plots
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Transportation method for bounded
differences inequality

Suppose f satisfies the bounded difference property: a change in
the ith co-ordinate can change f by at most ci.

EQZ − EZ =EM [f(Y )− f(X)]

≤EM [

n∑
i=1

ci1Xi ̸=Yi
]

=

n∑
i=1

ciPM [Xi ̸= Yi]

≤

√√√√ n∑
i=1

c2i

√√√√ n∑
i=1

PM [Xi ̸= Yi]2
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Marton’s transportation inequality

If P = P1 × P2 × . . .× Pn, and Q << P, and

X = (X1, X2, . . . , Xn) ∼ P,

Y = (Y1, Y2, . . . , Yn) ∼ Q,

then

inf
M∈C (P,Q),(X,Y )∼M

n∑
i=1

PM (Xi ̸= Yi)
2 ≤ 1

2
D(Q||P ),

where C (P,Q) is the set of all couplings of P and Q.

n = 1: follows from Pinsker’s inequality, since
inf

M∈C (P,Q),(X,Y )∼M
PM (X ̸= Y ) = dTV(P,Q)
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Optimal coupling

inf
M∈C (P,Q),(X,Y )∼M

PM (X ̸= Y ) = dTV(P,Q)

|P (A)−Q(A)|
=|EM [1X∈A − 1Y ∈A]|
≤EM [|1X∈A − 1Y ∈A|]
=EM [|1X∈A − 1Y ∈A|1X ̸=Y ]

≤EM [1X ̸=Y ]

=PM [X ̸= Y ]

Thus,
dTV(P,Q) ≤ PM [X ̸= Y ]

If dTV (P,Q) = V, purple area = 1− V

M(x, y)

= (1− V ) · min{p(x), q(x)}1x=y

1− V

+V · (p(x)− q(x))+
V

· (q(y)− p(y))+
V
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Sketch of induction argument for n > 1 :
Suppose

inf
Mi∈C (Pi,Qi),(Xi,Yi)∼Mi

PMi(Xi ̸= Yi)
2 ≤ 1

2
D(Qi||Pi) ∀ Qi << Pi.

Given Q = QY1,Y2(y1, y2), generate X1, Y1, X2, Y2 as follows:

Let M1 be an optimal coupling corresponding to P1 and QY1 .
Generate (X1, Y1) according to M1, say (x1, y1).
Let M2 be an optimal coupling corresponding to P2 and
QY2|Y1

(y2|y1). Generate (X2, Y2) according to M2, say
(x2, y2).

(X1, X2) and (Y1, Y2) have right marginals.
PM (X1 ̸= Y1)

2 ≤ D(Q1||P1)
PM (X2 ̸= Y2|Y1 = y1)

2 ≤ D(QY2|Y1
(·|y1)||P1)

Average over y1, apply Jensen on LHS and chain rule of relative
entropy on RHS:

2∑
i=1

PM (Xi ̸= Yi)
2 ≤ 1

2
D(Q||P )
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The most powerful concentration inequality (in this tutorial)

Suppose f(y)− f(x) ≤
n∑

i=1

ci(x)1xi ̸=yi and
n∑

i=1

c2i (x) ≤ σ2.

If Z = f(X1, . . . , Xn) and X1, X2 . . . , Xn are independent,
then Z is σ2-sub-Gaussian:

logEeλ(Z−EZ) ≤ λ2σ2

2
, ∀ λ ∈ R

Then, P[Z − EZ ≥ t],P[Z − EZ ≤ −t] ≤ e−
t2

2σ2 , ∀t > 0

Prove sub-Gaussianity by the equivalent transportation description:

EQZ − EZ ≤
√

2σ2D(Q||P ), ∀ Q << P
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EQZ − EZ = EM [f(Y )− f(X)]

≤ EM [

n∑
i=1

ci(X)1Xi ̸=Yi
]

=

n∑
i=1

E [ci(X)PM [Xi ̸= Yi|X]]

=
n∑

i=1

√
E[ci(X)2]

√
E [PM [Xi ̸= Yi|X]2]

≤

√√√√ n∑
i=1

Eci(X)2

√√√√ n∑
i=1

E[PM [Xi ̸= Yi|X]2]

≤
√
σ2

√√√√ n∑
i=1

E [PM [Xi ̸= Yi|X]2]

Need to show the second quantity in √ is ≤ 2D(Q||P )
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Follow a similar procedure:

n = 1 : inf
Mi∈C (Pi,Qi)

E
[
PMi [Xi ̸= Yi|Xi]]

2
]
= E

[(
1− qi(X)

pi(X)

)2

+

]
RHS is also called Marton’s divergence.

Optimal coupling identical to that for total variation distance!

E

[(
1− qi(X)

pi(X)

)2

+

]
≤ 2D(Qi||Pi)

Induction argument also applies to give a coupling M so that
n∑

i=1

E
[
PM [Xi ̸= Yi|X]2

]
≤ 2D(Q||P )

Similarly, we can show
n∑

i=1

EM

[
PM [Xi ̸= Yi|Y ]2

]
≤ 2D(Q||P )

This gives BOTH left and right tails!
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Spectral norm of a random matrix

Populate an m× n matrix A by independent entries,
each taking values in [0, 1].

Z = f(A) = ∥A∥ = sup
∥v∥2=1

∥Av∥2

Previously, we showed Var(Z) ≤ 1.

Now, we get logEeλ(Z−EZ) ≤ λ2

2
∀ λ ∈ R

So, P[|Z − EZ| ≥ t] ≤ 2e−t2/2 ∀ t > 0
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Largest eigenvalue of a random matrix

Let A be an n× n symmetric matrix with independent
entries Xij , 1 ≤ i ≤ j ≤ n independent, −1 ≤ Xij ≤ 1.

Let Z = λmax(A) = max
∥w∥=1

wTAw = uTAu

for some u that depends on the Xij ’s.

Previously, we showed Var(Z) ≤ 16

Now, we get logEeλ(Z−EZ) ≤ λ2(16)

2
∀ λ ∈ R.

So, P[|Z − EZ| ≥ t] ≤ 2e−t2/32 ∀t > 0
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Talagrand’s convex distance inequality

Suppose P = P1 × P2 × . . .× Pn is a product measure.

For α ∈ Rn
+, ∥α∥2 = 1, define dα(x, x

′) :=
n∑

i=1

αi1x ̸=x′
i

Let dα(x,A) = inf
x′∈A

dα(x, x
′)

Define dT (x,A) = sup
α≥0,∥α∥2=1

dα(x,A)

Let At = {x : dT (x,A) ≤ t}.

Then, P (A)P (Ac
t) ≤ e−t2/4 ∀ t > 0

Proof on board!
If V (x,A) =

{(
1xi ̸=x′

i

)n

i=1
: x′ ∈ A

}

⊆ [0, 1]n,

then dT (x,A) is the minimum Euclidean distance of the origin from
the convex hull of V (x,A) (hence the name ‘convex distance’).
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Application: Longest increasing subsequence problem

Let X1, X2, . . . , Xn be independent, each drawn uniformly
from [0, 1].

A sequence i1 < i2 < . . . < ir constitutes an increasing
subsequence if Xi1 < Xi2 < . . . < Xir .

What is the behavior of the length Z = f(X1, X2, . . . , Xn)
of the longest increasing subsequence?
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Erdös-Szekeres theorem (1935)

If m2 + 1 people of different heights stand in a line, there
exists among them either a monotonically increasing

subsequence of length m+ 1 or a monotonically decreasing
subsequence of length m+ 1

Therefore, EZ ≥ ⌊
√
n− 1⌋
2
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P[Z ≥ k]

= P[at least one increasing subsequence of length = k]

≤ E[number of increasing subsequences of length k]

=
1

k!

(
n

k

)
≤ nk

(k/e)2k

Choose k = 2e
√
n to get

EZ ≤ P[Z ≤ k]k + P[Z ≥ k]n

≤ 2e
√
n+O(e−c

√
n)

Thus, EZ = Θ(
√
n).
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Z = f(X1, X2, . . . , Xn) where the function f has the property
that a change in any one co-ordinate can alter the value of f by at

most 1

Thus, by bounded differences inequality, Z is σ2-sub-Gaussian with
σ2 =

n

4

However, this is not satisfactory, since this gives typical deviation
O(

√
n) and we know EZ = Θ(

√
n)

Talagrand’s convex distance inequality can show sub-Gaussian tail
bounds with typical deviation O(n1/4)
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Fix any b and t, let A = {y : f(y) < b− t
√
b}, let

B = {x : f(x) ≥ b}.
Pick any sequence x ∈ B, so now f(x) ≥ b.

Suppose dT (x,A) ≤ t i.e. sup
α≥0:∥α∥2=1

dα(x,A) ≤ t.

∃ y ∈ A such that
∑
i∈red

1√
b
1xi ̸=yi ≤ t

Impossible since for each y ∈ A, f(y) < b− t
√
b.

Thus, dT (x,A) > t and so, B ⊆ Ac
t .
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By Talagrand’s inequality, P[Z ≤ b− t
√
b]P[Z ≥ b] ≤ e−t2/4

Choose b = MZ so P[Z ≥ MZ] ≥ 1/2,P[Z ≤ MZ] ≥ 1/2

Then, P[Z −MZ ≤ −t
√
MZ] ≤ 2e−t2/4

Similarly, MZ = b− t
√
b gives upper tail bounds

Arguments we made earlier to show c1
√
n ≤ EZ ≤ c2

√
n also

show c1
√
n ≤ MZ ≤ c2

√
n

Therefore, typical deviation = O(n1/4) with sub-Gaussian tail
bounds

Actually, Z = 2
√
n+O(n1/6) and the limiting distribution of

Z − 2
√
n

n1/6
is known (Baik, Deift, Johansson, 1999)
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Summary
What is concentration?

“A random variable that depends in a smooth way on many
independent random variables (but not too much on any of
them) is essentially constant.”
- M. Talagrand, 1996.

Tensorization of variance property: bounds on variance
Entropy method: a general tool to show sub-Gaussian tails (in
conjunction with log-Sobolev inequalities)
Transportation method: uses idea of coupling to show
sub-Gaussian tails
Talagrand’s convex distance inequality: extremely powerful
inequality for product measures

(All slides available on my webpage)
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