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What is concentration?

“A random variable that depends in a smooth way on many
independent random variables (but not too much on any of
them) is essentially constant.”
- M. Talagrand, 1996.

If Z is a function of many independent variables X1, X2, . . . , Xn,
how large are typical deviations of Z?

Goal: Quantify by bounding for t > 0,

P [|Z − EZ| ≥ t]
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Applications

Concentration of measure has far-reaching consequences in
Pure and applied probability,
High-dimensional statistics,
Functional analysis,
Computer science,
Machine learning,
Statistical physics,
Complex graphs and networks,
Information theory, communication and coding theory.
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Approaches for Proving Concentration
The martingale approach: Hoeffding (1963), Azuma (1967),
Milman and Schechtman (1986), Shamir and Spencer (1987)
and McDiarmid (1989, 1998), Sipser and Spielman (1996),
Richardson and Urbanke (2001)
Talagrand’s inequalities for product measures: Talagrand
(1996).
Entropy method and log-Sobolev inequalities: Ledoux (1996),
Massart (1998), Lugosi et al. (1999, 2001)
Transportation method: Ahlswede, Gács and Körner (1976),
Marton (1986, 1996, 1997), Dembo (1997), Villani (2003,
2008)
Stein’s method of exchangeable pairs: Chatterjee (2007),
Chatterjee and Dey (2010), Goldstein et al. (2011, 2014)

We will focus on the entropy method and transportation method
where information theoretic techniques shine.
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Undergraduate Graduate
(“informal”) (formal probability)

Probability density, Radon-Nikodym derivative,
Riemann integral Lebesgue integral

Conditional Regular conditional
probability probability

E[X|Y ] conditioning E[X|σ(Y )] conditioning
on random variables on σ-fields

Convergence Also: almost sure,
in distribution in L1, in probability

None Monotone and dominated
convergence theorem

None Non-measurable
subsets of R

4 / 25



Undergraduate

Graduate

(“informal”)

(formal probability)
Probability density, Radon-Nikodym derivative,
Riemann integral Lebesgue integral

Conditional Regular conditional
probability probability

E[X|Y ] conditioning E[X|σ(Y )] conditioning
on random variables on σ-fields

Convergence Also: almost sure,
in distribution in L1, in probability

None Monotone and dominated
convergence theorem

None Non-measurable
subsets of R

4 / 25



Undergraduate Graduate
(“informal”) (formal probability)

Probability density, Radon-Nikodym derivative,
Riemann integral Lebesgue integral

Conditional Regular conditional
probability probability

E[X|Y ] conditioning E[X|σ(Y )] conditioning
on random variables on σ-fields

Convergence Also: almost sure,
in distribution in L1, in probability

None Monotone and dominated
convergence theorem

None Non-measurable
subsets of R

4 / 25



Undergraduate Graduate
(“informal”) (formal probability)

Probability density, Radon-Nikodym derivative,

Riemann integral Lebesgue integral
Conditional Regular conditional
probability probability

E[X|Y ] conditioning E[X|σ(Y )] conditioning
on random variables on σ-fields

Convergence Also: almost sure,
in distribution in L1, in probability

None Monotone and dominated
convergence theorem

None Non-measurable
subsets of R

4 / 25



Undergraduate Graduate
(“informal”) (formal probability)

Probability density, Radon-Nikodym derivative,
Riemann integral Lebesgue integral

Conditional Regular conditional
probability probability

E[X|Y ] conditioning E[X|σ(Y )] conditioning
on random variables on σ-fields

Convergence Also: almost sure,
in distribution in L1, in probability

None Monotone and dominated
convergence theorem

None Non-measurable
subsets of R

4 / 25



Undergraduate Graduate
(“informal”) (formal probability)

Probability density, Radon-Nikodym derivative,
Riemann integral Lebesgue integral

Conditional Regular conditional
probability probability

E[X|Y ] conditioning E[X|σ(Y )] conditioning
on random variables on σ-fields

Convergence Also: almost sure,
in distribution in L1, in probability

None Monotone and dominated
convergence theorem

None Non-measurable
subsets of R

4 / 25



Undergraduate Graduate
(“informal”) (formal probability)

Probability density, Radon-Nikodym derivative,
Riemann integral Lebesgue integral

Conditional Regular conditional
probability probability

E[X|Y ] conditioning E[X|σ(Y )] conditioning
on random variables on σ-fields

Convergence Also: almost sure,
in distribution in L1, in probability

None Monotone and dominated
convergence theorem

None Non-measurable
subsets of R

4 / 25



Undergraduate Graduate
(“informal”) (formal probability)

Probability density, Radon-Nikodym derivative,
Riemann integral Lebesgue integral

Conditional Regular conditional
probability probability

E[X|Y ] conditioning E[X|σ(Y )] conditioning
on random variables on σ-fields

Convergence Also: almost sure,
in distribution in L1, in probability

None Monotone and dominated
convergence theorem

None Non-measurable
subsets of R

4 / 25



Undergraduate Graduate
(“informal”) (formal probability)

Probability density, Radon-Nikodym derivative,
Riemann integral Lebesgue integral

Conditional Regular conditional
probability probability

E[X|Y ] conditioning E[X|σ(Y )] conditioning
on random variables on σ-fields

Convergence Also: almost sure,
in distribution in L1, in probability

None Monotone and dominated
convergence theorem

None Non-measurable
subsets of R

4 / 25



Undergraduate Graduate
(“informal”) (formal probability)

Probability density, Radon-Nikodym derivative,
Riemann integral Lebesgue integral

Conditional Regular conditional
probability probability

E[X|Y ] conditioning E[X|σ(Y )] conditioning
on random variables on σ-fields

Convergence Also: almost sure,
in distribution in L1, in probability

None Monotone and dominated
convergence theorem

None Non-measurable
subsets of R

4 / 25



Why this tutorial?

Many results easy to appreciate from the undergraduate view
Non-asymptotic results: easy to use
Use basic information-theoretic ideas

Role of information theory

“The emphasis put on information theoretic methods is one
main feature of the exposition and there is considerable bene-
fit in this approach for a number of fundamental results [...]”
- M. Ledoux, foreword to ‘Concentration Inequalities’ by
Boucheron, Lugosi, Massart.
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Roadmap

Monday: Variance bounds
Tuesday: Information inequalities
Thursday: Entropy method and log-Sobolev inequalities
Friday: Transportation method

Thanks to Ramon van Handel, Igal Sason, Max Raginsky

Reference: ‘Concentration Inequalities’ by Boucheron, Lugosi,
Massart

Slides available on my homepage:
http://www.princeton.edu/~sukamath/concentration.pdf
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Variance bounds

Say Z is a function of independent random variables
X1, X2, . . . , Xn. An upper bound on Var(Z) gives tail bounds as:

P[|Z − EZ| ≥ t] ≤ Var(Z)

t2

Probability of Z being within 10 standard deviations, i.e.
t = 10

√
Var(Z) of EZ is at least 99%

Trivial example

Let Z = X1+X2+ . . .+Xn where {Xi}ni=1 are independent
and identically distributed (i.i.d.) with finite variance. Then,

EZ = nEX1 Var(Z) = nVar(X1)

Mean = Θ(n), Standard Deviation = O(
√
n).
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Variance bounds: sharper truths

Spectral norm of a random matrix

Populate an m × n matrix A by independent entries, each
taking values in [0, 1]. The random variable Z = ∥A∥ satisfies

Var(Z) ≤ 1

Plug-in entropy estimation

Let Z be the estimate of entropy of an unknown distribu-
tion defined by the entropy of the empirical distribution from
drawing n independent samples.

Var(Z) ≤ log2 n
n
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High-level idea

Obtain a bound for a function of many random variables by
bounds for functions of each individual random variable
Not obvious this is possible
When it is, we say the quantity tensorizes
Quantities that tensorize behave well in high dimension
Variance is such a quantity!
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Tensorization of variance

Let Z = f(X1, X2, . . . , Xn) where X1, X2, . . . , Xn are
independent random variables.

X(i) := (X1, . . . , Xi−1, Xi+1, . . . , Xn)

, E(i)[ · ] := E[ · |X(i)]

Var(i)(Z) := Var(Z|X(i))

gi(x
(i)) = Var(f(x1, . . . , Xi, . . . , xn))

=⇒ Var(i)(Z) = gi(X
(i))

Tensorization of variance (Efron-Stein-Steele inequality)

Var(Z) ≤
n∑

i=1

E[Var(i)(Z)]

=

n∑
i=1

E[(Z − E(i)Z)2]
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Recall: if Y ∈ [a, b], then Var(Y ) ≤ inf
u
E[(Y − u)2] ≤ (b− a)2

4

from u =
1

2
(a+ b).

Simplest application: Bounded differences inequality

Suppose
|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x

′
i, . . . , xn)| ≤ ci.

Then, Var(f(X)) ≤
n∑

i=1

E[Var(i)(Z)] ≤ 1

4

n∑
i=1

c2i

Tight if f(X) =
n∑

i=1

Xi with Xi equiprobable on {−1,+1}
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Bin packing problem

Let X1, X2, . . . , Xn ∈ [0, 1] be i.i.d.

Let Z be the minimum number of bins in to which they can
be packed so that each bin adds to at most 1.

Changing one Xi changes Z = f(X) by at most ci = 1

Therefore, Var(Z) ≤ 1

4

n∑
i=1

c2i =
n

4
.

However, EZ ≥ E

[
n∑

i=1

Xi

]
= nEX1.

Standard deviation = O(
√
n), Mean = Θ(n).
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Plug-in entropy estimation

Entropy of a distribution p = (p1, p2, . . . , pk) is defined as

H(p) =

k∑
r=1

pr log 1

pr

Let X1, X2, . . . , Xn be independent samples from p

Let p̂r =
1

n
|{i : Xi = r}|

, Z =

k∑
r=1

p̂r log 1

p̂r

A change in any one co-ordinate Xi affects two of the p̂r’s.∣∣∣∣a log 1

a
− b log 1

b

∣∣∣∣ ≤ logn
n

if |a− b| = 1

n
.

Thus, Var(Z) ≤
n∑

i=1

c2i /4 = (log2 n)/n

But Z is not really concentrated at H(p) unless n ≳ k.

For n << k, Z is concentrated but somewhere else!
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Warning

We have shown bounds on deviation of Z from EZ
But say nothing about EZ itself!!
Estimating magnitude and fluctuations are two quite distinct
problems
We have a general theorem for bounding fluctuations and
elementary ideas can often bound sensitivity to coordinates,
even if the function itself is complicated
No such general principle for estimating EZ
Can estimate EZ from Monte Carlo methods if Z is
concentrated
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Recall that Var(Z) = inf
u
E[(Z − u)2]

So, Var(i)(Z) = inf
fi(x(i))

E(i)[(Z − fi(X
(i)))2]

Let Zi = fi(X
(i)) for any function fi.

Then, Var(i)(Z) ≤ E(i)[(Z − Zi)
2]

Variant : “guess functions”

Var(Z) ≤
n∑

i=1

E[Var(i)(Z)] ≤
n∑

i=1

E[(Z − Zi)
2]
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Convex Lipschitz functions

Suppose f : [a, b]n 7→ R is convex, differentiable and L-Lipschitz,
i.e. |f(x)− f(y)| ≤ L∥x− y∥2 ∀ x, y.

Choose Zi = inf
xi

f(X1, X2, . . . , xi, . . . , Xn) with inf attained at X ′
i

Zi ≥ Z +
∂f

∂xi
(X)(X ′

i −Xi) 0 ≤ Z − Zi ≤ − ∂f

∂xi
(X)(X ′

i −Xi)

0 ≤ (Z − Zi)
2 ≤

∣∣∣∣ ∂f∂xi (X)

∣∣∣∣2 (b− a)2

Var(Z) ≤
n∑

i=1

E[(Z − Zi)
2] ≤ L2(b− a)2

Differentiability assumption unnecessary:
convolve f with a smooth kernel.
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f(X1, X2, . . . , xi, . . . , Xn) with inf attained at X ′
i

Zi ≥ Z +
∂f

∂xi
(X)(X ′

i −Xi) 0 ≤ Z − Zi ≤ − ∂f

∂xi
(X)(X ′

i −Xi)

0 ≤ (Z − Zi)
2 ≤

∣∣∣∣ ∂f∂xi (X)

∣∣∣∣2 (b− a)2

Var(Z) ≤
n∑

i=1

E[(Z − Zi)
2] ≤ L2(b− a)2

Differentiability assumption unnecessary:
convolve f with a smooth kernel.
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Spectral norm of a random matrix

Populate an m× n matrix A by independent entries,
each taking values in [0, 1].

The function f : [0, 1]m×n 7→ R, given by

Z = f(A) = ∥A∥ = sup
∥v∥2=1

∥Av∥2

is convex and 1-Lipschitz
(hint: spectral norm ≤ Frobenius norm)

With a = 0, b = 1, L = 1 in previous result, we get

Var(Z) ≤ 1.
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Recall if Z,Z ′ are i.i.d., then

Var(Z) =
1

2
E[(Z − Z ′)2]

= E[(Z − Z ′)2+], (a)+ = max{a, 0}

If Z = f(X1, . . . , Xi, . . . , Xn), and Zi = f(X1, . . . , X
′
i, . . . , Xn)

where X ′
i is an independent copy of Xi, then

Var(i)(Z) =
1

2
E(i)[(Z − Zi)

2]

= E(i)[(Z − Zi)
2
+]

Variant: “resampling coordinates”

Var(Z) ≤ 1

2

n∑
i=1

E[(Z − Zi)
2]

=

n∑
i=1

E[(Z − Zi)
2
+]
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Largest eigenvalue of a random matrix

Let A be an n× n symmetric matrix with independent
entries Xij , 1 ≤ i ≤ j ≤ n independent, −1 ≤ Xij ≤ 1.

Let Z = λmax(A) = max
∥w∥=1

wTAw = uTAu

for some u that depends on the Xij ’s.

Z ∈ [−1, n] (exercise)

Let Zij denote λmax for the matrix Āij which is same as the
matrix A except Xij = Xji gets replaced by an independent

copy X ′
ij = X ′

ji.
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Largest eigenvalue of a random matrix

Z − Zij = uTAu− max
∥w∥=1

wTĀijw

≤ uTAu− uTĀiju

≤ 2 · |ui| · |uj | · |Xij −X ′
ij |

≤ 4 · |ui| · |uj |

∑
ij

(Z − Zij)
2
+ ≤ 16

∑
ij

u2iu
2
j = 16 · ∥u∥2 · ∥u∥2 = 16.

Thus, Var(Z) ≤ 16.
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Suboptimality warning

In fact, if Xij ’s are i.i.d. equiprobable on {−1,+1}, then

Var(λmax(A)) ∼ n−1/3, i.e. superconcentration.

We don’t get the optimal bound by a general theorem
But ...

we didn’t employ any random matrix theory
we didn’t carry out any detailed analysis

Still, we obtained a genuinely non-trivial result
In many cases, these are sufficient since they provide bounds
of optimal order
E.g. here, Var(λmax(A)) can be 1/4 if entries are not
identically distributed
Can a general principle capture superconcentration? Active
research area
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A Poincaré inequality says “variance(f) ≲ cE[∥gradient(f)∥2]” for
a suitable notion of gradient. It is closely associated with mixing in

Markov processes

Gaussian Poincaré inequality

If X ∼ N (0, In), and f : Rn 7→ R is continuously differen-
tiable, then Var(f(X)) ≤ E

[
∥∇f(X)∥2

]

Corollary of Gaussian Poincaré inequality

If X ∼ N (0, In) and f : Rn 7→ R is L-Lipschitz, i.e.
|f(x)− f(y)| ≤ L∥x− y∥2 ∀ x, y, then

Var(f(X)) ≤ L2

Note: The bounds are tight if f is linear!

22 / 25



A Poincaré inequality says “variance(f) ≲ cE[∥gradient(f)∥2]” for
a suitable notion of gradient.

It is closely associated with mixing in
Markov processes

Gaussian Poincaré inequality

If X ∼ N (0, In), and f : Rn 7→ R is continuously differen-
tiable, then Var(f(X)) ≤ E

[
∥∇f(X)∥2

]

Corollary of Gaussian Poincaré inequality

If X ∼ N (0, In) and f : Rn 7→ R is L-Lipschitz, i.e.
|f(x)− f(y)| ≤ L∥x− y∥2 ∀ x, y, then

Var(f(X)) ≤ L2

Note: The bounds are tight if f is linear!

22 / 25



A Poincaré inequality says “variance(f) ≲ cE[∥gradient(f)∥2]” for
a suitable notion of gradient. It is closely associated with mixing in

Markov processes

Gaussian Poincaré inequality

If X ∼ N (0, In), and f : Rn 7→ R is continuously differen-
tiable, then Var(f(X)) ≤ E

[
∥∇f(X)∥2

]

Corollary of Gaussian Poincaré inequality

If X ∼ N (0, In) and f : Rn 7→ R is L-Lipschitz, i.e.
|f(x)− f(y)| ≤ L∥x− y∥2 ∀ x, y, then

Var(f(X)) ≤ L2

Note: The bounds are tight if f is linear!

22 / 25



A Poincaré inequality says “variance(f) ≲ cE[∥gradient(f)∥2]” for
a suitable notion of gradient. It is closely associated with mixing in

Markov processes

Gaussian Poincaré inequality

If X ∼ N (0, In), and f : Rn 7→ R is continuously differen-
tiable, then

Var(f(X)) ≤ E
[
∥∇f(X)∥2

]
Corollary of Gaussian Poincaré inequality

If X ∼ N (0, In) and f : Rn 7→ R is L-Lipschitz, i.e.
|f(x)− f(y)| ≤ L∥x− y∥2 ∀ x, y, then

Var(f(X)) ≤ L2

Note: The bounds are tight if f is linear!

22 / 25



A Poincaré inequality says “variance(f) ≲ cE[∥gradient(f)∥2]” for
a suitable notion of gradient. It is closely associated with mixing in

Markov processes

Gaussian Poincaré inequality

If X ∼ N (0, In), and f : Rn 7→ R is continuously differen-
tiable, then Var(f(X)) ≤ E

[
∥∇f(X)∥2

]

Corollary of Gaussian Poincaré inequality

If X ∼ N (0, In) and f : Rn 7→ R is L-Lipschitz, i.e.
|f(x)− f(y)| ≤ L∥x− y∥2 ∀ x, y, then

Var(f(X)) ≤ L2

Note: The bounds are tight if f is linear!

22 / 25



A Poincaré inequality says “variance(f) ≲ cE[∥gradient(f)∥2]” for
a suitable notion of gradient. It is closely associated with mixing in

Markov processes

Gaussian Poincaré inequality

If X ∼ N (0, In), and f : Rn 7→ R is continuously differen-
tiable, then Var(f(X)) ≤ E

[
∥∇f(X)∥2

]
Corollary of Gaussian Poincaré inequality

If X ∼ N (0, In) and f : Rn 7→ R is L-Lipschitz, i.e.
|f(x)− f(y)| ≤ L∥x− y∥2 ∀ x, y, then

Var(f(X)) ≤ L2

Note: The bounds are tight if f is linear!

22 / 25



A Poincaré inequality says “variance(f) ≲ cE[∥gradient(f)∥2]” for
a suitable notion of gradient. It is closely associated with mixing in

Markov processes

Gaussian Poincaré inequality

If X ∼ N (0, In), and f : Rn 7→ R is continuously differen-
tiable, then Var(f(X)) ≤ E

[
∥∇f(X)∥2

]
Corollary of Gaussian Poincaré inequality

If X ∼ N (0, In) and f : Rn 7→ R is L-Lipschitz, i.e.
|f(x)− f(y)| ≤ L∥x− y∥2 ∀ x, y, then

Var(f(X)) ≤ L2

Note: The bounds are tight if f is linear!

22 / 25



A Poincaré inequality says “variance(f) ≲ cE[∥gradient(f)∥2]” for
a suitable notion of gradient. It is closely associated with mixing in

Markov processes

Gaussian Poincaré inequality

If X ∼ N (0, In), and f : Rn 7→ R is continuously differen-
tiable, then Var(f(X)) ≤ E

[
∥∇f(X)∥2

]
Corollary of Gaussian Poincaré inequality

If X ∼ N (0, In) and f : Rn 7→ R is L-Lipschitz, i.e.
|f(x)− f(y)| ≤ L∥x− y∥2 ∀ x, y, then

Var(f(X)) ≤ L2

Note: The bounds are tight if f is linear!

22 / 25



A Poincaré inequality says “variance(f) ≲ cE[∥gradient(f)∥2]” for
a suitable notion of gradient. It is closely associated with mixing in

Markov processes

Gaussian Poincaré inequality

If X ∼ N (0, In), and f : Rn 7→ R is continuously differen-
tiable, then Var(f(X)) ≤ E

[
∥∇f(X)∥2

]
Corollary of Gaussian Poincaré inequality

If X ∼ N (0, In) and f : Rn 7→ R is L-Lipschitz, i.e.
|f(x)− f(y)| ≤ L∥x− y∥2 ∀ x, y, then

Var(f(X)) ≤ L2

Note: The bounds are tight if f is linear!
22 / 25



Gaussian Poincaré: proof

First, consider a 1-dimensional Gaussian X ∼ N (0, 1).

Let f : R 7→ R be twice continuously differentiable with compact
support. Let sup

x
|f ′′(x)| = K.

Let Y1, Y2, . . . , Ym be independent and equiprobable on {−1,+1}.

Let Sm =
1√
m

(Y1 + Y2 + . . .+ Ym) .

Var(i)(f(Sm))=
1

4

(
f

(
Sm − Yi√

m
+

1√
m

)
− f

(
Sm − Yi√

m
− 1√

m

))2

≤ 1

4

(
2√
m
|f ′(Sm)|+ 2K

m

)2

=
1

m

(
|f ′(Sm)|+ K√

m

)2
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Gaussian Poincaré: proof

Var(f(Sm)) ≤
m∑
i=1

EVar(i)(f(Sm))≤ E

[(
|f ′(Sm)|+ K√

m

)2
]

As m → ∞, we have Sm → X ∼ N (0, 1) in distribution by the
Central Limit Theorem.

Since f and f ′ are continuous and bounded, we get
Var(f(X)) ≤ E

[
f ′(X)2

]
Extend to all continuously differentiable functions by

Truncation of f to [−M,M ] and apply dominated
convergence theorem as M → ∞
Smoothen truncated f by convolution with a sharply
concentrated twice differentiable kernel with compact support
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Gaussian Poincaré: proof

Now, if X ∼ N (0, In) is an n-dimensional Gaussian vector

and f : Rn 7→ R is continuously differentiable,

use tensorization of variance again.

Var(f(X)) ≤
n∑

i=1

E
[
Var(i)(f(X))

]
≤

n∑
i=1

E

[
E(i)

∣∣∣∣ ∂f∂xi (X)

∣∣∣∣2
]

= E
[
∥∇f(X)∥2

]
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