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For a topological space X, the structure set Sn(X) is the homeomorphism classes of n-
dimensional manifolds homotopy equivalent to X.

Existence: S(X) ≠ ∅ means X is homotopic to a manifold M.

Uniqueness: If X = M is a manifold, then |S(M)| = 1 means N ≃ M ⇒ N ≅ M.

1. Poincaré conjecture [Smale 1961, Freedman 1982, Perelman 2003]: |Stop(Sn)| = 1.

2. Exotic sphere [Milnor 1956]: |Sdiff(S7)| = 28.

3. Fake complex projective space [<1970]: Stop(CPn) = Zn/2 ⊕ (Z/2Z)n/2.
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The surgery theory says the following being exact [Browder-Novikov-Sullivan-Wall]

… → Ln+1(X) → Sn(X) → N(X) = [X, F/Cat] → Ln(X)

1. normal invariants N(X): For a Poincaré duality space X, N(X) is all the surgery 
problems over X.

F = self homotopy equivalence of sphere.  Cat = O, PL, Top. 

2. surgery obstruction Ln(X): K-theory of quadratic forms on the ring Zπ1X.

simply connected X ⇒ L0(Z) = Z, L1(Z) = 0, L2(Z) = Z/2Z, L3(Z) = 0.

[Wall 1971]: geometrical interpretation of Ln(X), and 4-fold periodicity given by 
multiplying a manifold of signature 1 (CPeven, HPn, etc.)

Ln+4(X) = Ln(X)
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… → Ln+1(X) → Sn(X) → N(X) = [X, F/Cat] → Ln(X)

Specification of “cobordism category”: A simplicial set, in which 

a 0-simplex is an object, 

a 1-simplex is cobordism between two objects,

a k-simplex is higher version of cobordism …

Examples of “cobordism category” (besides usual cobordism):

manifolds homotopy equivalent to X × Δk (as k-ads).

surgery problems over X × Δk, also map space Maps(X, F/Cat).

k-ads of Wall’s geometrical interpretation of surgery obstruction.

Surgery exact sequence is the long exact sequence of homotopy groups of a fibration

S(X) → N(X) → L(X)

Spacification
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Poincaré conjecture |Stop(Sn)| = 1

⇒ F/Top → L(•) induces isomorphic π✻ 

⇒ F/Top ≃ L(•). ( [Quinn 1983]: F/Top × Z ≃ L(•) )

[Siebenmann 1977]: justify low dimension, and get F/Top ≃ L(•). 

interpret Wall’s periodicity Ln+4(X) = Ln(X) as Ω4L(X) = L(X × D4, rel S3) ≃ L(X)

⇒ L(X) is infinite loop space, and F/Top ≃ L(•) is also infinite loop space

⇒ N(X) → L(X) is homotopic to N(X × D4, rel S3) → L(X × D4, rel S3)

⇒ periodicity 

S(X × D4, rel S3) ≃ S(X).
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After knowing F/Top ≃ L(•), for topological manifold X,

S(X) → N(X) = Maps[X, L(•)] = H✻(X; L(•)) → L(X)

Since topological manifolds are “L-orientable”, can reinterpret as

S(X) → N(X) = H✻(X; L(•)) → L(X)

L(X) is a spectrum valued covariant functor.

H✻(X; L(•)) → L(X) is the assembly map for the covariant functor L. 

The structure S(X) measures the lack of additivity of the functor L.

Assembly Map
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Homotopically stratified space: nbhd fibration instead of bundle [Quinn 1988]

Homotopically stratified map: fibration map in neighborhood (fibrewise http equiv).

Stratified homotopy equivalences are always homotopically stratified maps.

Shtp(X) = S(X0) + S(E↓X0, rel X0) + S(X1, rel E).

Sgeom(X) = S(X0) + S(X1, rel E).
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Up to topological K-theory, E↓X0 is a block bundle.

Blockwise structure (pretend X0 is a simplicial complex)

on each 0-simplex of X0, a vertex in S(F) [ an element of S(F) ] 

on each 1-simplex of X0, an edge in S(F) [ an element of S(F×Δ1, rel ∂Δ1) ]

…

In case E = F×X0↓X0 is trivial, blockwise structure ⇔ simplicial map X0 → S(F).

So S(E↓X0, rel X0) = Maps(X0, S(F)).
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For the case E↓X0 is trivial, we have blockwise surgery fibration

S(E↓X0, rel X0) = Maps(X0, S(F)) → Maps(X0, N(F)) → Maps(X0, L(F))

Maps(X0, N(F)) = H✻(X0; H✻(F; L(•))) = H✻(E; L(•)) = H✻(E; L(•)).

Maps(X0, L(F)) = H✻(X0; L(F)) = H✻(X0; L(F)).

Get

S(E↓X0, rel X0) → H✻(E; L(•)) → H✻(X0; L(F))

Then combine with

S(X0) → H✻(X0; L(•)) → L(X0)

S(X1, rel E) → H✻(X1; L(•)) → L(X1)

Blockwise Structure
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LBQ is a covariant functor of homotopically stratified spaces and maps. 

Any covariant functor L gives homology and assembly.

Let X be triangulated. For simplex σ and x ∈ intσ, locxX = ∪ {intτ: σ ⊂ τ} = locσX. 

Then σ ⊂ τ ⇒ locτ X ⊂ locσ X ⇒ map L(locτX) → L(locσX).

Homology is homotopy pushout: H✻(X; L) = ∪ L(locσX) ×σ / ~.
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Satisfying usual homology axioms.

Homology Hn(X; L) = πnH✻(X; L) ⇐ spectral sequence E2p,q = Hp(X, πqL).

What is Hp(X; L)?  [ L = πqL ]  

The local coefficient system L: 

assigns an abelian group Lσ to each simplex σ of X, 

assigns a homomorphism Lτ → Lσ  for σ ⊂ τ, all homomorphisms compatible.

L gives a chain complex Cq(X; L) = ⊕dimσ=q Lσ → Cq−1(X; L) and then Hp(X; L).

The local coefficient system in usual textbook assumes Lτ → Lσ are all isomorphic.
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Consider 2-strata space.

Relative surgery obstruction L(X1, E) [not rel E] for manifold X1 with ∂X1 = E.

E = X0×(CPeven, HPn, …), or more generally bundle E → X0 with signature 1 fibre

⇒ by periodicity, ×(signature 1): L(X0) → L(E) is isomorphism

⇒ stratified L(X) = L(X1, E).

This happens when X is the orbit space of semi-free circle action on manifold M, 
such that dimMS1 = dimM + 2 (4).
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Want stratified space X = X0 ⊃ X-1 ⊃ X-2 ⊃ …, such that adjacent links are simply 
connected manifold of signature 1.

Consider X = M/G and X-i = GMGi/Gi, for increasing Gi. If the “difference” between 
Gi and Gi+1 is always a circle, then the adjacent links are always CP#.

Definition: A U(n)-manifold is multiaxial, if any isotropy group is conjugate to a 
unitary subgroup U(i) [ plus some “locally flat” condition ].

Gi = U(i), NU(i+1)U(i)/U(i) = circle, get adjacent links CPr, CPr+1, CPr+2, …

So splitting happens to half of adjacent links (half have signature 1).

Example: manifold modeled on U(n)-representation kρn ⊕ jε = (Cn)k ⊕ Rj. 
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Theorem [S. Cappell, S. Weinberger, M. Yan 2015]

The structure set of the unit sphere SU(n)( S(kρn ⊕ jε) ) = ZA ⊕ Z2
B.

A = Σ0≤2i<nAn-2i,k (k−n even), and A = An,k-1 + Σ0≤2i-1<nAn-2i+1,k (k−n odd),

An,k is the number of Schubert cells of dim 0(4) in Grassmannian G(n,k), 

B is the similar number of dim 2(4).
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B is the similar number of dim 2(4).

This generalizes the classical result S(CPn) = Zn/2 ⊕ (Z/2Z)n/2. More results:

• Decomposition of the structure set SU(n)(M).

• Homotopy replacement of fixed point MU(i).

• suspension ✻S(ρn): SU(n)( S(kρn ⊕ jε) ) → SU(n)( S((k+1)ρn ⊕ jε) ) is injective.

• similar result for simplecic group Sp(n).
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A = Σ0≤2i<nAn-2i,k (k−n even), and A = An,k-1 + Σ0≤2i-1<nAn-2i+1,k (k−n odd),

An,k is the number of Schubert cells of dim 0(4) in Grassmannian G(n,k), 

B is the similar number of dim 2(4).

This generalizes the classical result S(CPn) = Zn/2 ⊕ (Z/2Z)n/2. More results:

• Decomposition of the structure set SU(n)(M).

• Homotopy replacement of fixed point MU(i).

• suspension ✻S(ρn): SU(n)( S(kρn ⊕ jε) ) → SU(n)( S((k+1)ρn ⊕ jε) ) is injective.

• similar result for simplecic group Sp(n).

ongoing: multiaxial O(n)-manifold.
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