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Structure Set

For a topological space X, the structure set S,(X) is the homeomorphism classes of n-
dimensional manifolds homotopy equivalent to X.

M
" f = M manifold
= homotopy equivalence
= [ X
= homeomorphism
v fr= f’(p = f
M/

Existence: S(X) # @ means X is homotopic to a manifold M.

Uniqueness: If X = M is a manifold, then |S(M)| =1 means N =M = N = M.

1. Poincaré conjecture [Smale 1961, Freedman 1982, Perelman 2003]: |S*P(S")| = 1.
2. Exotic sphere [Milnor 1956]: |S4(S7)| = 28.

3. Fake complex projective space [<1970]: S°P(CP") = Z"? @ (Z/2Z)"2.
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The surgery theory says the following being exact [Browder-Novikov-Sullivan-Wall]
= 5n(X) = N(X) = [X, F/Cat] = La(X)

1. normal invariants N(X): For a Poincaré duality space X, N(X) is all the surgery
problems over X.

F = self homotopy equivalence of sphere. Cat = O, PL, Top.
2. surgery obstruction L,(X): K-theory of quadratic forms on the ring Zm X.
simply connected X = Lo(Z) =Z, [1(Z) =0, L»(Z) = Z/2Z, [3(Z) = 0.

[Wall 1971]: geometrical interpretation of L,(X), and 4-fold periodicity given by
multiplying a manifold of signature 1 (CPeve", HP”, etc.)

Ln+4<X) — Ln<X)
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Spacification

= 55(X) = N(X) = [X, F/Cat] = Ln(X)
Specification of “cobordism category”: A simplicial set, in which
a 0-simplex is an object,
a 1-simplex is cobordism between two objects,

a k-simplex is higher version of cobordism ...

Examples of “cobordism category” (besides usual cobordism):
manifolds homotopy equivalent to X x AX (as k-ads).
surgery problems over X x AX, also map space Maps(X, F/Cat).

k-ads of Wall’s geometrical interpretation of surgery obstruction.

Surgery exact sequence is the long exact sequence of homotopy groups of a fibration

$(X) = N(X) = L(X)
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S$(X) = N(X) = L(X)
Jl take m.
o Lpa(X) = 5n(X) = N(X) = [X, F/Cat] = Ly(X)
Poincaré conjecture |S'™P(S")| =1

= F/Top — L(®) induces isomorphic m.
= F/Top = L(®). ( [Quinn 1983]: F/Top x Z = L(e) )

[Siebenmann 1977]: justify low dimension, and get F/Top = L(e).
interpret Wall’s periodicity Ln4(X) = L,(X) as Q*L(X) = L(X x D*, rel §°) = L(X)

= L(X) is infinite loop space, and F/Top = L(e) is also infinite loop space
= N(X) = L(X) is homotopic to N(X x D*, rel $°) = L(X x D%, rel §°)

= periodicity

SX x D% rel $°) = S(X).
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Assembly Map

After knowing F/Top = L(e), for topological manifold X,
S(X) = N(X) = Maps[X, L(®)] = H*(X; L(®)) = L(X)
Since topological manifolds are “L-orientable”, can reinterpret as
SX) = N(X) = Hy(X; L(®)) = L(X)
L(X) is a spectrum valued covariant functor.

H..(X; L(®)) = L(X) is the assembly map for the covariant functor L.

The structure S(X) measures the lack of additivity of the functor L.
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higher stratum X; > lower stratum Xo

pure stratum X' = X; — Xo, and X° = Xp are (topological) manifolds

Geometrically stratified space: neighborhood of Xo in X given by a bundle £ = Xo.
Geometrically stratified map: bundle map in neighborhood (fibrewise homeo).
[Browder-Quinn 1975]: stratified surgery

Sseom(X) = N(X) = Maps(X, F/Cat) = L5Q(X)
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Homotopically stratified space: nbhd fibration instead of bundle [Quinn 1988]

Homotopically stratified map: fibration map in neighborhood (fibrewise http equiv).

Stratified homotopy equivalences are always homotopically stratified maps.

Ship(X) = S(XO) + S(ELXO, rel X0 + S(X1, rel E).
Sseom(X) = §(XO) + S(X', rel E).
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Blockwise Structure

S(ELXO, rel XV): fibrewise structure, actually blockwise structure.

Up to topological K-theory, ELX? is a block bundle.

~F|  =FxAl  |=F

XO

Blockwise structure (pretend X° is a simplicial complex)
on each 0-simplex of X°, a vertex in S(F) [ an element of S(F) ]

on each T-simplex of X°, an edge in S(F) [ an element of S(FxA', rel 0A") |

In case F = FxXY1 XV is trivial, blockwise structure < simplicial map X = S(F).

So S(ELXY, rel X0) = Maps(X?, S(F)).
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Blockwise Structure

For the case E1 XV is trivial, we have blockwise surgery fibration
S(ELXO, rel X°) = Maps(X?, S(F)) = Maps(X°, N(F)) = Maps(X°, L(F))

Maps(X°, N(F)) = H*(X°; H*(F; L(®))) = H*(E; L(®)) = Hx(E; L(®)).
Maps(X°, L(F)) = H*(X% L(F)) = Hx(X% L(F)).

Get
S(ELIXO, rel X°) = Hy(E; L(e)) = H.(X° L(F))

Then combine with
S(XY) = Hu(X? L(e)) = L(X°)
SIX', rel E) & Hu(X'; L(e)) = L(X")
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[Weinberger]: stratified surgery fibration (modulo topological K-theory)

SMP(X) = Hu(X; LPR(locX)) — LBR(X)

X
locX=D"1=e >
E
locX = D'0xconeF = coneF — Xo

[Browder-Quinn]: stratified surgery fibration

Sseom(X) = H¥(X; L(e)) = Maps(X, L(e)) = LBQ(X)
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Stratified Surgery Theory

$"P(X) = Hi(X; LP2(locX)) = LPQ(X)
59 is a covariant functor of homotopically stratified spaces and maps.

Any covariant functor L gives homology and assembly.

Let X be triangulated. For simplex 0 and x € into, locX = u {intT: 0 c T} = locgX.

Then 0 c T = loct X ¢ locg X = map L(loctX) = L(locgX).

Homology is homotopy pushout: Hy(X; L) = u L(locgX) xO / ~.

The assembly map is canonical by compatible maps L(locgX) = L(X).
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Homology (spectrum) Hy(X; L), with local coefficient system (or cosheaf) L.

Satisfying usual homology axioms.

Homology Hx(X; L) = n.H«(X; L) < spectral sequence E?, q = Hp(X, mql).

What is Hp(X; L)? [L =gl |
The local coefficient system L:
assigns an abelian group Lg to each simplex o of X,

assigns a homomorphism Ly = Ls for o c T, all homomorphisms compatible.
L gives a chain complex Cy(X; L) = ®dimo=q Lo = Cq-1(X; L) and then H,(X; L).

The local coefficient system in usual textbook assumes L+ = L are all isomorphic.
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Recall S(ELXO, rel XO) = H.(E; L(®)) = Hw (X% L(F))

H..(E; L(®)) = Hy(E; L(locX, rel X))
— H..(X% L(F)) = Hx(X°; L(locX, rel X°) = Hyx(nd(X%); L(locX, rel X))

So S(ELXO, rel X% = H..(nd(X9), E; L(locX, rel X9) = Hw(X, X': L(locX, rel X))

[ modulo shifting of dimension |

L(locX, rel XO) = L(e) >

1111/

= L(coneF, rel cone point)

= L(F)

\
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S(X1, I‘el E) — H:{:(X1, L(.)): H:§<<X1,' L(IOCX, rel XO)) — > l_ )(1

l l |

(S(X, rel X9) —  H(X, L(*)) = H(X; L(locX, rel X0)) —— L(X, rel X0))

l l

S(ELXO, rel X9) H..(X X' L(locX, rel X9))

SX, rel X0 —  Hu(X; L(locX, rel X°) — L(X, rel X0)

l

(8 —  H.(X; L{locX)) — LX)

l

S(X9) —>  H.(X% L(locXY)) — [(XY)
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Proof of Stratified Surgery

—> H:é:(X1, L(.)) — H:§<<X1,' L(IOCX, rel XO)) — > l_ )(1

l |

CS(X, rel X9)

—  H(X, L(*)) = H(X; L(locX, rel X0) — L(X, rel X0))

S(ELXO, rel X9)

l

H..(X, X; L(locX, rel X))

SX, rel X0 —  Hu(X; L(locX, rel X°) — L(X, rel X0)

l

—>  Hy(X; L(locX)) — LX)

l

—> H:i:(XO,' L(IOCXO)) — L(XO)
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Proof of Stratified Surgery

—> H:é:(X1, L(.)) — H:§<<X1,' L(IOCX, rel XO)) — > l_ )(1

l |

CS(X, rel X9)

—  H(X, L(*)) = H(X; L(locX, rel X0) — L(X, rel X0))

S(ELXO, rel X9)

l

H..(X, X; L(locX, rel X))

SX, rel X0 —  Hu(X; L(locX, rel X°) — L(X, rel X0)

l l

—>  Hy(X; L(locX)) — LX)

| l

—> H:i:(XO,' L(IOCXO)) — L(XO)
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Apply Stratified Surgery to Group Action

group G acting on manifold M

= orbit space X = M/G stratified by conjugate classes of isotropy groups

= Sc(M) = S(M/C).

Applying stratified surgery to homotopically stratified group actions on topological
manifolds, we get

« equivariant periodicity: Sc(MxDV, rel MxSV) = Sc(M).
« homotopy replacement of fixed point: N =¢c M = N¢ = M¢.

"
N)

* functoriality: M =c N = Sc(M) = Sc(
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Stratified Interpretation of Periodicity

Consider 2-strata space.

Relative surgery obstruction L(X', E) [not rel E] for manifold X! with 6X' = E.

E = XO%(CPeven, HP", ...), or more generally bundle E = XY with signature 1 fibre

= by periodicity, x(signature 1): L(X®) = L(E) is isomorphism
= stratified L(X) = L(X", E).

This happens when X is the orbit space of semi-free circle action on manifold M,
such that dimMs' = dimM + 2 (4).
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[Wall 1971]: Relative surgery obstruction L(X, Y) = 0 if ;X = mY.

Consider 2-strata space.

If £ —= XY has signature 1 fibre and i X! = w1 X° (= w1 £), then L(X) = 0.

X

E

LI

Xo

Consider general linearly stratified space X = Xo2> X.12> X2 > ...
Boundary of nd(X.,) is a 2-strata space (Eo, E-1), with link(Eo, E-1) = link(Xo, X-1).

If link(Xo, X-1) has signature 1, and (Eo, E-1) = X2 has simply connected fibre, then
L(Eo, E.1) = O. Further gives L(X) = L(X, rel X2) ® L(X2) and S(X) = S(X, rel X,2) ® S(X.).



-t Theorem

[Wall 1971]: Relative surgery obstruction L(X, Y) = 0 if ;X = mY.

Consider 2-strata space.

If £ — X0 has(ignature T)fibre andimi X' = 1 XY)(= m1E), then L(X) = 0.

X

E

LI

Xo

Consider general linearly stratified space X = Xo2> X.12> X2 > ...

Boundary of nd(X.,) is a 2-strata space (Eo, E-1), with link(Eo, E-1) = link(Xo, X-1).

If link(Xo, X.1) has(signature 1), and((Eo, £-1) = X has simply connected fibre) then
L(Eo, E.1) = O. Further gives L(X) = L(X, rel X2) ® L(X2) and S(X) = S(X, rel X,2) ® S(X.).
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Multiaxial U(n)-manifold

Want stratified space X = Xo> X.1 > X2 > ..., such that adjacent links are simply
connected manifold of signature 1.

Consider X = M/G and X.; = GM%/G;, for increasing G,. If the “difference” between
Giand G is always a circle, then the adjacent links are always CP#.

Definition: A U(n)-manifold is multiaxial, if any isotropy group is conjugate to a
unitary subgroup U(/) [ plus some “locally flat” condition ].

Gi= U(i), NuinUW/U(i) = circle, get adjacent links CP7, CP*1, CP"+2, ...
So splitting happens to half of adjacent links (half have signature 1).

Example: manifold modeled on U(n)-representation kp, @ je = (C")k @ R/.
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Theorem [S. Cappell, S. Weinberger, M. Yan 2015]

The structure set of the unit sphere Sun( Stkp, @ jg) ) = 2" @ Z,5
A = 20<i<nAn2ik (k=n even), and A = Ap k1 + 2o<2i-1<nAn-2is1 k (k=n odd),
An k is the number of Schubert cells of dim 0(4) in Grassmannian G(n,k),

B is the similar number of dim 2(4).
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Theorem [S. Cappell, S. Weinberger, M. Yan 2015]

The structure set of the unit sphere Sun( Stkp, @ jg) ) = 2" @ Z,5
A = 20<i<nAn2ik (k=n even), and A = Ap k1 + 2o<2i-1<nAn-2is1 k (k=n odd),
An k is the number of Schubert cells of dim 0(4) in Grassmannian G(n,k),

B is the similar number of dim 2(4).

This generalizes the classical result S(CP") = Z"? ® (Z/2Z)"?. More results:

e Decomposition of the structure set Sy (M).

e Homotopy replacement of fixed point MY,

® suspension *S(Pn): Sum( S(kpn @ jE) ) = Sum( S((k+1)pn @ jE) ) is injective.

e similar result for simplecic group Sp(n).



Multiaxial U(n)-manifold

Theorem [S. Cappell, S. Weinberger, M. Yan 2015]

The structure set of the unit sphere Sun( Stkp, @ jg) ) = 2" @ Z,5
A = 20<i<nAn2ik (k=n even), and A = Ap k1 + 2o<2i-1<nAn-2is1 k (k=n odd),
An k is the number of Schubert cells of dim 0(4) in Grassmannian G(n,k),

B is the similar number of dim 2(4).

This generalizes the classical result S(CP") = Z"? ® (Z/2Z)"?. More results:

e Decomposition of the structure set Sy (M).

e Homotopy replacement of fixed point MY,

® suspension *S(Pn): Sum( S(kpn @ jE) ) = Sum( S((k+1)pn @ jE) ) is injective.

e similar result for simplecic group Sp(n).

ongoing: multiaxial O(n)-manifold.
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