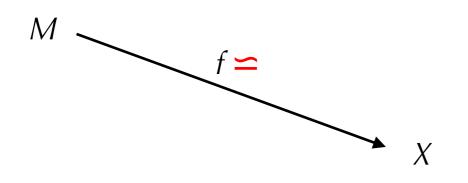
Periodicity, Stratified Surgery, and Multiaxial Manifolds

Min Yan, Hong Kong University of Science and Technology (joint with S. Cappell and S. Weinberger)

1. Periodicity

For a topological space X, the structure set $S_n(X)$ is the homeomorphism classes of *n*-dimensional manifolds homotopy equivalent to X.

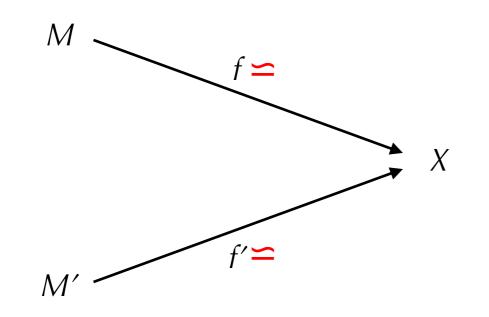
For a topological space X, the structure set $S_n(X)$ is the homeomorphism classes of *n*-dimensional manifolds homotopy equivalent to X.



M manifold

≤ homotopy equivalence

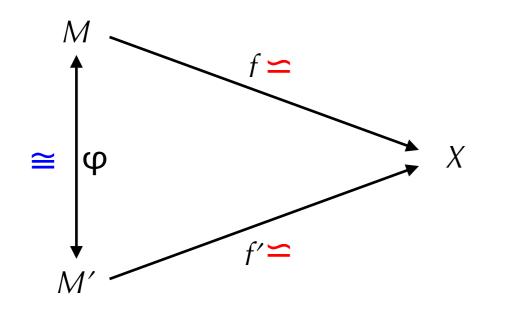
For a topological space X, the structure set $S_n(X)$ is the homeomorphism classes of *n*-dimensional manifolds homotopy equivalent to X.



M manifold

≤ homotopy equivalence

For a topological space X, the structure set $S_n(X)$ is the homeomorphism classes of *n*-dimensional manifolds homotopy equivalent to X.

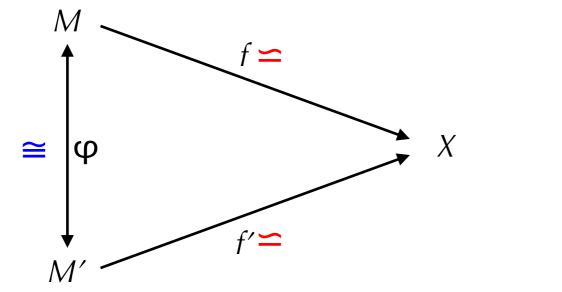


M manifold

- ≤ homotopy equivalence
- ≅ homeomorphism

 $f' \boldsymbol{\varphi} \cong f$

For a topological space X, the structure set $S_n(X)$ is the homeomorphism classes of *n*-dimensional manifolds homotopy equivalent to X.



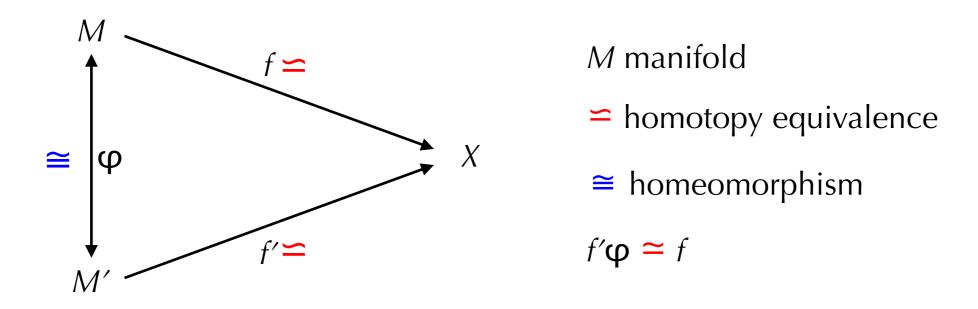
M manifold

- ≤ homotopy equivalence
- ≅ homeomorphism

 $f' \boldsymbol{\varphi} \cong f$

Existence: $S(X) \neq \emptyset$ means X is homotopic to a manifold M.

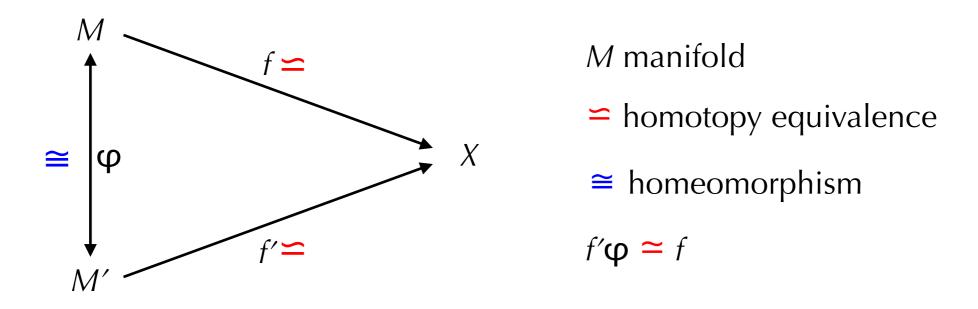
For a topological space X, the structure set $S_n(X)$ is the homeomorphism classes of *n*-dimensional manifolds homotopy equivalent to X.



Existence: $S(X) \neq \emptyset$ means X is homotopic to a manifold M.

Uniqueness: If X = M is a manifold, then |S(M)| = 1 means $N \cong M \Rightarrow N \cong M$.

For a topological space X, the structure set $S_n(X)$ is the homeomorphism classes of *n*-dimensional manifolds homotopy equivalent to X.

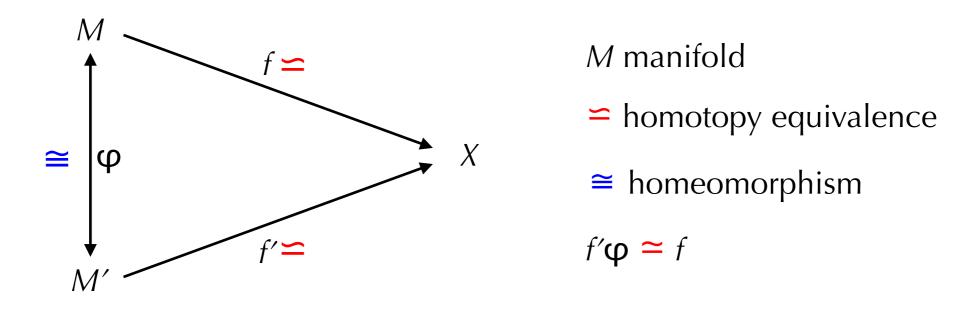


Existence: $S(X) \neq \emptyset$ means X is homotopic to a manifold M.

Uniqueness: If X = M is a manifold, then |S(M)| = 1 means $N \cong M \Rightarrow N \cong M$.

1. Poincaré conjecture [Smale 1961, Freedman 1982, Perelman 2003]: $|S^{top}(\mathbf{S}^n)| = 1$.

For a topological space X, the structure set $S_n(X)$ is the homeomorphism classes of *n*-dimensional manifolds homotopy equivalent to X.



Existence: $S(X) \neq \emptyset$ means X is homotopic to a manifold M.

Uniqueness: If X = M is a manifold, then |S(M)| = 1 means $N \cong M \Rightarrow N \cong M$.

- 1. Poincaré conjecture [Smale 1961, Freedman 1982, Perelman 2003]: $|S^{top}(\mathbf{S}^n)| = 1$.
- 2. Exotic sphere [Milnor 1956]: $|S^{\text{diff}}(\mathbf{S}^7)| = 28$.

For a topological space X, the structure set $S_n(X)$ is the homeomorphism classes of *n*-dimensional manifolds homotopy equivalent to X.



Existence: $S(X) \neq \emptyset$ means X is homotopic to a manifold M.

Uniqueness: If X = M is a manifold, then |S(M)| = 1 means $N \cong M \Rightarrow N \cong M$.

- 1. Poincaré conjecture [Smale 1961, Freedman 1982, Perelman 2003]: $|S^{top}(\mathbf{S}^n)| = 1$.
- 2. Exotic sphere [Milnor 1956]: $|S^{\text{diff}}(\mathbf{S}^7)| = 28$.
- 3. Fake complex projective space [<1970]: $S^{\text{top}}(\mathbf{CP}^n) = \mathbf{Z}^{n/2} \oplus (\mathbf{Z}/2\mathbf{Z})^{n/2}$.

The surgery theory says the following being exact [Browder-Novikov-Sullivan-Wall]

 $\dots \rightarrow L_{n+1}(X) \rightarrow S_n(X) \rightarrow \mathcal{N}(X) = [X, F/Cat] \rightarrow L_n(X)$

The surgery theory says the following being exact [Browder-Novikov-Sullivan-Wall]

 $\dots \rightarrow L_{n+1}(X) \rightarrow S_n(X) \rightarrow \mathcal{N}(X) = [X, F/Cat] \rightarrow L_n(X)$

1. normal invariants *N*(*X*): For a Poincaré duality space *X*, *N*(*X*) is all the surgery problems over *X*.

F = self homotopy equivalence of sphere. Cat = O, PL, Top.

The surgery theory says the following being exact [Browder-Novikov-Sullivan-Wall]

 $\dots \rightarrow L_{n+1}(X) \rightarrow S_n(X) \rightarrow \mathcal{N}(X) = [X, F/Cat] \rightarrow L_n(X)$

1. normal invariants *N*(*X*): For a Poincaré duality space *X*, *N*(*X*) is all the surgery problems over *X*.

- F = self homotopy equivalence of sphere. Cat = O, PL, Top.
- 2. surgery obstruction $L_n(X)$: *K*-theory of quadratic forms on the ring $\mathbb{Z}\pi_1 X$. simply connected $X \Rightarrow L_0(\mathbb{Z}) = \mathbb{Z}$, $L_1(\mathbb{Z}) = 0$, $L_2(\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$, $L_3(\mathbb{Z}) = 0$.

The surgery theory says the following being exact [Browder-Novikov-Sullivan-Wall]

 $\dots \rightarrow L_{n+1}(X) \rightarrow S_n(X) \rightarrow \mathcal{N}(X) = [X, F/Cat] \rightarrow L_n(X)$

1. normal invariants *N*(*X*): For a Poincaré duality space *X*, *N*(*X*) is all the surgery problems over *X*.

- F = self homotopy equivalence of sphere. Cat = O, PL, Top.
- 2. surgery obstruction $L_n(X)$: *K*-theory of quadratic forms on the ring $\mathbb{Z}\pi_1 X$. simply connected $X \Rightarrow L_0(\mathbb{Z}) = \mathbb{Z}$, $L_1(\mathbb{Z}) = 0$, $L_2(\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$, $L_3(\mathbb{Z}) = 0$.

[Wall 1971]: geometrical interpretation of $L_n(X)$, and 4-fold periodicity given by multiplying a manifold of signature 1 (**CP**^{even}, **HP**^{*n*}, etc.)

$$L_{n+4}(X) = L_n(X)$$

 $\dots \rightarrow L_{n+1}(X) \rightarrow S_n(X) \rightarrow N(X) = [X, F/Cat] \rightarrow L_n(X)$

 $\dots \to L_{n+1}(X) \to S_n(X) \to N(X) = [X, \mathsf{F}/\mathsf{Cat}] \to L_n(X)$

Specification of "cobordism category": A simplicial set, in which

a 0-simplex is an object,

a 1-simplex is cobordism between two objects,

a *k*-simplex is higher version of cobordism ...

 $\dots \to L_{n+1}(X) \to S_n(X) \to N(X) = [X, \mathsf{F}/\mathsf{Cat}] \to L_n(X)$

Specification of "cobordism category": A simplicial set, in which

a 0-simplex is an object,

a 1-simplex is cobordism between two objects,

a *k*-simplex is higher version of cobordism ...

Examples of "cobordism category" (besides usual cobordism): manifolds homotopy equivalent to $X \times \Delta^k$ (as *k*-ads). surgery problems over $X \times \Delta^k$, also map space Maps(X, F/Cat). *k*-ads of Wall's geometrical interpretation of surgery obstruction.

 $\dots \to L_{n+1}(X) \to S_n(X) \to N(X) = [X, F/Cat] \to L_n(X)$

Specification of "cobordism category": A simplicial set, in which

a 0-simplex is an object,

a 1-simplex is cobordism between two objects,

a *k*-simplex is higher version of cobordism ...

Examples of "cobordism category" (besides usual cobordism): manifolds homotopy equivalent to $X \times \Delta^k$ (as *k*-ads). surgery problems over $X \times \Delta^k$, also map space Maps(*X*, F/Cat). *k*-ads of Wall's geometrical interpretation of surgery obstruction.

Surgery exact sequence is the long exact sequence of homotopy groups of a fibration

$$S(X) \rightarrow N(X) \rightarrow L(X)$$

 $S(X) \rightarrow N(X) \rightarrow L(X)$

 $S(X) \rightarrow N(X) \rightarrow L(X)$

 \Downarrow take π_*

 $\dots \rightarrow L_{n+1}(X) \rightarrow S_n(X) \rightarrow N(X) = [X, F/Cat] \rightarrow L_n(X)$

 $S(X) \rightarrow N(X) \rightarrow L(X)$

 \Downarrow take π_*

$$\dots \to L_{n+1}(X) \to S_n(X) \to N(X) = [X, F/Cat] \to L_n(X)$$

Poincaré conjecture $|S^{top}(\mathbf{S}^n)| = 1$

 \Rightarrow F/Top \rightarrow **L**(\bullet) induces isomorphic π_*

 \Rightarrow F/Top $\simeq L(\bullet)$. ([Quinn 1983]: F/Top $\times \mathbb{Z} \simeq L(\bullet)$)

 $S(X) \rightarrow N(X) \rightarrow L(X)$

 \Downarrow take π_*

 $\ldots \rightarrow L_{n+1}(X) \rightarrow S_n(X) \rightarrow \mathcal{N}(X) = [X, \, \mathsf{F}/\mathsf{Cat}] \rightarrow L_n(X)$

Poincaré conjecture $|S^{top}(\mathbf{S}^n)| = 1$

 \Rightarrow F/Top \rightarrow **L**(\bullet) induces isomorphic π_*

 \Rightarrow F/Top $\simeq L(\bullet)$. ([Quinn 1983]: F/Top $\times \mathbb{Z} \simeq L(\bullet)$)

[Siebenmann 1977]: justify low dimension, and get F/Top $\simeq L(\bullet)$.

interpret Wall's periodicity $L_{n+4}(X) = L_n(X)$ as $\Omega^4 L(X) = L(X \times \mathbf{D}^4, \text{ rel } \mathbf{S}^3) \simeq L(X)$

 $S(X) \rightarrow N(X) \rightarrow L(X)$

 \Downarrow take π_*

$$\dots \to L_{n+1}(X) \to S_n(X) \to N(X) = [X, F/Cat] \to L_n(X)$$

Poincaré conjecture $|S^{top}(\mathbf{S}^n)| = 1$

 \Rightarrow F/Top \rightarrow **L**(\bullet) induces isomorphic π_*

 \Rightarrow F/Top $\simeq L(\bullet)$. ([Quinn 1983]: F/Top $\times \mathbb{Z} \simeq L(\bullet)$)

[Siebenmann 1977]: justify low dimension, and get F/Top $\approx L(\bullet)$. interpret Wall's periodicity $L_{n+4}(X) = L_n(X)$ as $\Omega^4 L(X) = L(X \times \mathbf{D}^4, \text{ rel } \mathbf{S}^3) \approx L(X)$ $\Rightarrow L(X)$ is infinite loop space, and F/Top $\approx L(\bullet)$ is also infinite loop space

 $S(X) \rightarrow N(X) \rightarrow L(X)$

 \Downarrow take π_*

 $\ldots \rightarrow L_{n+1}(X) \rightarrow S_n(X) \rightarrow \mathcal{N}(X) = [X, \, \mathsf{F}/\mathsf{Cat}] \rightarrow L_n(X)$

Poincaré conjecture $|S^{top}(\mathbf{S}^n)| = 1$

 \Rightarrow F/Top \rightarrow **L**(\bullet) induces isomorphic π_*

 \Rightarrow F/Top $\simeq L(\bullet)$. ([Quinn 1983]: F/Top $\times \mathbb{Z} \simeq L(\bullet)$)

[Siebenmann 1977]: justify low dimension, and get F/Top $\approx L(\bullet)$. interpret Wall's periodicity $L_{n+4}(X) = L_n(X)$ as $\Omega^4 L(X) = L(X \times \mathbf{D}^4, \text{ rel } \mathbf{S}^3) \approx L(X)$ $\Rightarrow L(X)$ is infinite loop space, and F/Top $\approx L(\bullet)$ is also infinite loop space

 $\Rightarrow N(X) \rightarrow L(X)$ is homotopic to $N(X \times \mathbf{D}^4, \text{ rel } S^3) \rightarrow L(X \times \mathbf{D}^4, \text{ rel } \mathbf{S}^3)$

 $S(X) \rightarrow N(X) \rightarrow L(X)$

 \Downarrow take π_*

$$\dots \to L_{n+1}(X) \to S_n(X) \to N(X) = [X, F/Cat] \to L_n(X)$$

Poincaré conjecture $|S^{top}(\mathbf{S}^n)| = 1$

 \Rightarrow F/Top \rightarrow **L**(\bullet) induces isomorphic π_*

 \Rightarrow F/Top $\simeq L(\bullet)$. ([Quinn 1983]: F/Top $\times \mathbb{Z} \simeq L(\bullet)$)

[Siebenmann 1977]: justify low dimension, and get F/Top $\approx L(\bullet)$. interpret Wall's periodicity $L_{n+4}(X) = L_n(X)$ as $\Omega^4 L(X) = L(X \times \mathbf{D}^4, \text{ rel } \mathbf{S}^3) \approx L(X)$ $\Rightarrow L(X)$ is infinite loop space, and F/Top $\approx L(\bullet)$ is also infinite loop space

 $\Rightarrow N(X) \rightarrow L(X)$ is homotopic to $N(X \times \mathbf{D}^4, \text{ rel } S^3) \rightarrow L(X \times \mathbf{D}^4, \text{ rel } \mathbf{S}^3)$

 \Rightarrow periodicity

$$\mathbf{S}(X \times \mathbf{D}^4, \operatorname{rel} \mathbf{S}^3) \simeq \mathbf{S}(X).$$

After knowing F/Top $\approx L(\bullet)$, for topological manifold X,

$$S(X) \rightarrow N(X) = Maps[X, L(\bullet)] = H^*(X; L(\bullet)) \rightarrow L(X)$$

After knowing F/Top $\approx L(\bullet)$, for topological manifold X,

$$S(X) \rightarrow N(X) = Maps[X, L(\bullet)] = H^*(X; L(\bullet)) \rightarrow L(X)$$

Since topological manifolds are "L-orientable", can reinterpret as

 $\boldsymbol{S}(X) \rightarrow \boldsymbol{N}(X) = \boldsymbol{H}_{\boldsymbol{*}}(X; \boldsymbol{L}(\bullet)) \rightarrow \boldsymbol{L}(X)$

After knowing F/Top $\approx L(\bullet)$, for topological manifold X,

$$S(X) \rightarrow N(X) = Maps[X, L(\bullet)] = H^*(X; L(\bullet)) \rightarrow L(X)$$

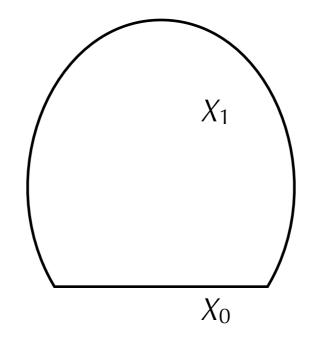
Since topological manifolds are "L-orientable", can reinterpret as

$$S(X) \rightarrow N(X) = H_{*}(X; L(\bullet)) \rightarrow L(X)$$

L(X) is a spectrum valued covariant functor. $H_*(X; L(\bullet)) \rightarrow L(X)$ is the assembly map for the covariant functor L. The structure S(X) measures the lack of additivity of the functor L.

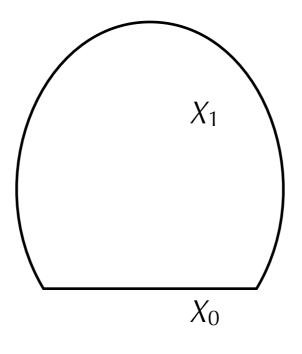
2. Stratified Space

2-Strata Space



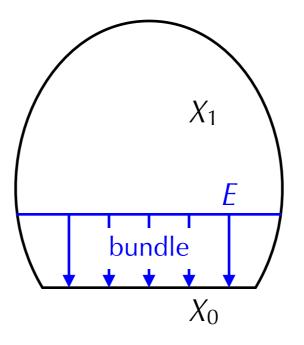
higher stratum $X_1 \supset$ lower stratum X_0

pure stratum $X^1 = X_1 - X_0$, and $X^0 = X_0$ are (topological) manifolds



higher stratum $X_1 \supset$ lower stratum X_0

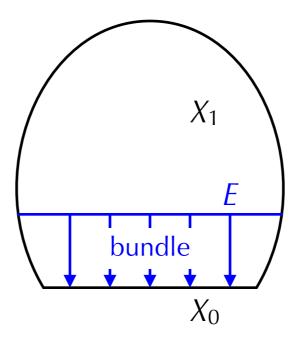
pure stratum $X^1 = X_1 - X_0$, and $X^0 = X_0$ are (topological) manifolds



Geometrically stratified space: neighborhood of X_0 in X_1 given by a bundle $E \rightarrow X_0$. Geometrically stratified map: bundle map in neighborhood (fibrewise homeo).

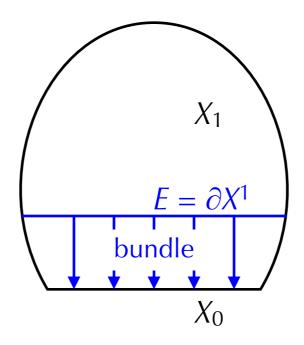
higher stratum $X_1 \supset$ lower stratum X_0

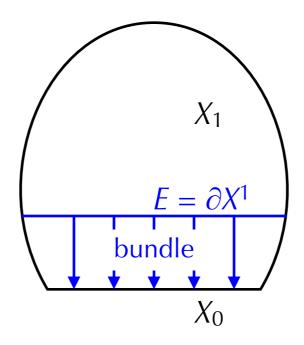
pure stratum $X^1 = X_1 - X_0$, and $X^0 = X_0$ are (topological) manifolds

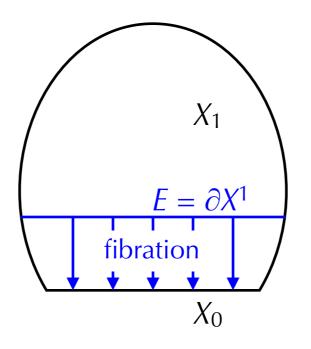


Geometrically stratified space: neighborhood of X_0 in X_1 given by a bundle $E \rightarrow X_0$. Geometrically stratified map: bundle map in neighborhood (fibrewise homeo). [Browder-Quinn 1975]: stratified surgery

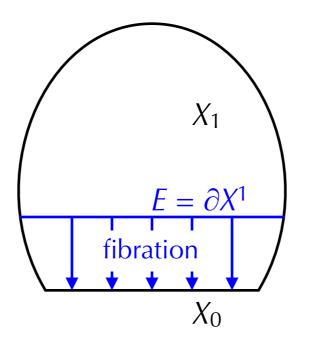
 $S^{\text{geom}}(X) \rightarrow N(X) = Maps(X, F/Cat) \rightarrow L^{BQ}(X)$



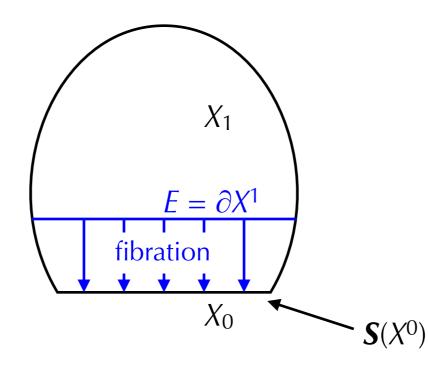




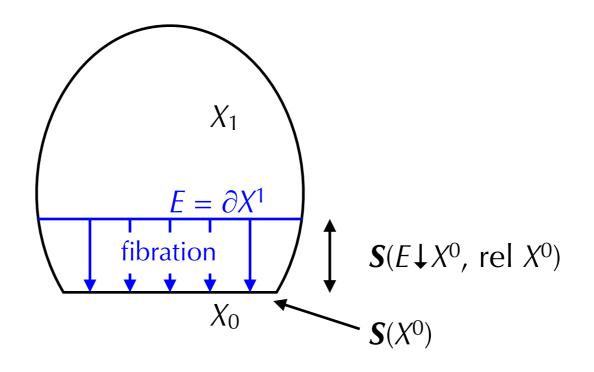
Homotopically stratified space: nbhd fibration instead of bundle [Quinn 1988] Homotopically stratified map: fibration map in neighborhood (fibrewise http equiv).



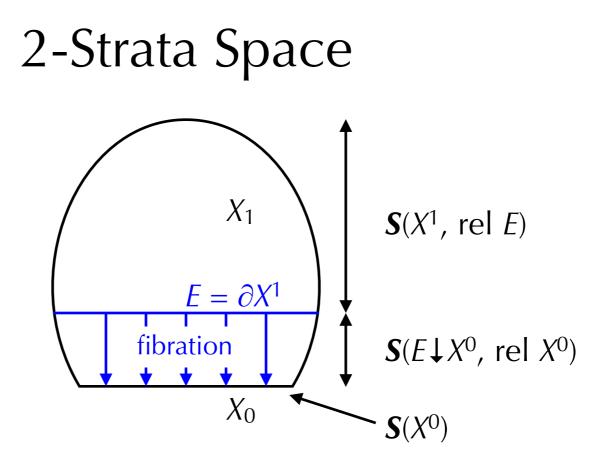
Homotopically stratified space: nbhd fibration instead of bundle [Quinn 1988] Homotopically stratified map: fibration map in neighborhood (fibrewise http equiv).

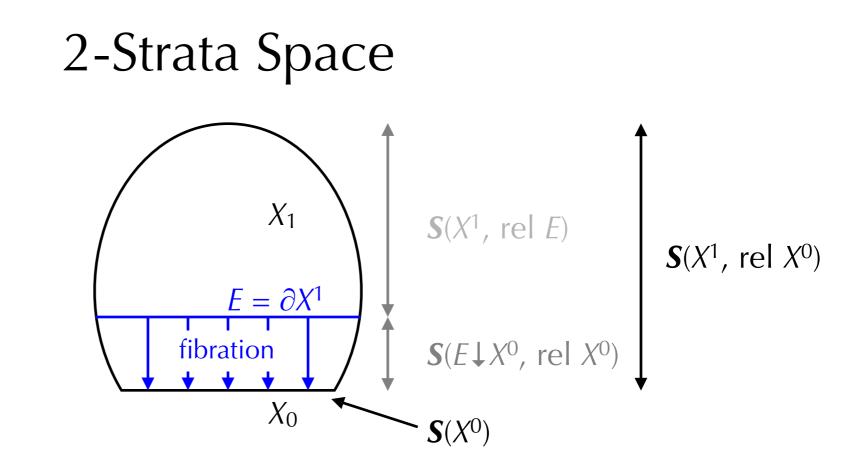


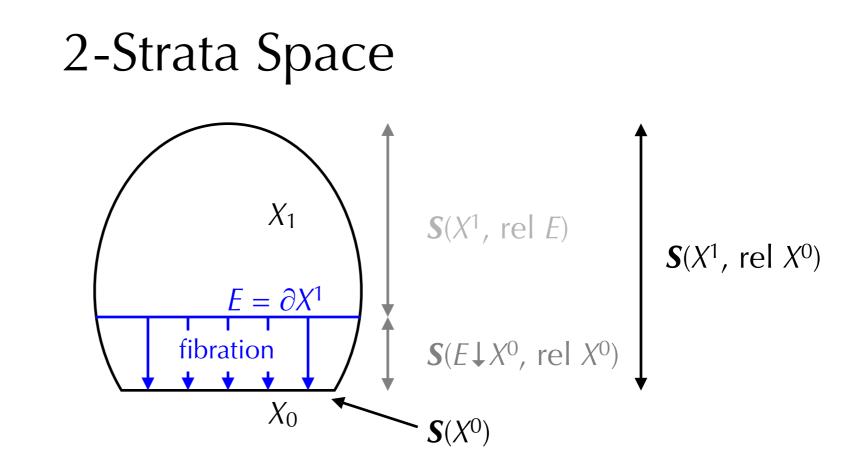
Homotopically stratified space: nbhd fibration instead of bundle [Quinn 1988] Homotopically stratified map: fibration map in neighborhood (fibrewise http equiv).



Homotopically stratified space: nbhd fibration instead of bundle [Quinn 1988] Homotopically stratified map: fibration map in neighborhood (fibrewise http equiv).

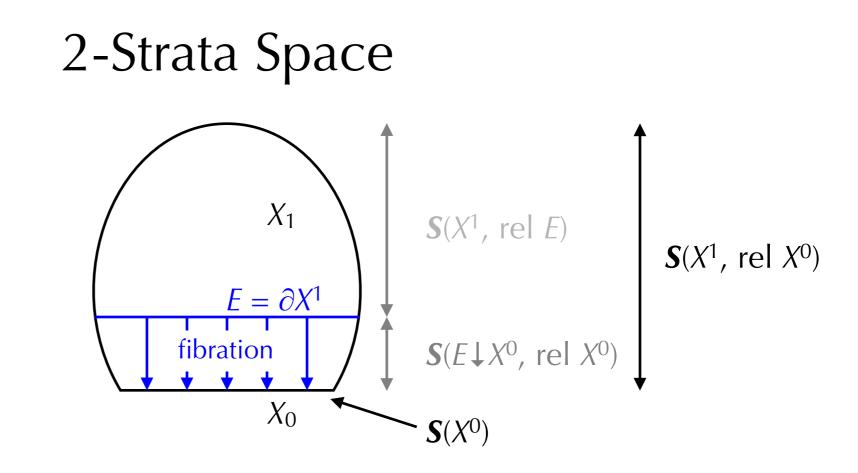






Stratified homotopy equivalences are always homotopically stratified maps.

 $\boldsymbol{S^{htp}}(X) = \boldsymbol{S}(X^0) + \boldsymbol{S}(E \downarrow X^0, \text{ rel } X^0) + \boldsymbol{S}(X^1, \text{ rel } E).$



Stratified homotopy equivalences are always homotopically stratified maps.

 $S^{htp}(X) = S(X^0) + S(E \downarrow X^0, \text{ rel } X^0) + S(X^1, \text{ rel } E).$ $S^{geom}(X) = S(X^0) + S(X^1, \text{ rel } E).$

 $S(E \downarrow X^0, \text{ rel } X^0)$: fibrewise structure, actually blockwise structure.

 $S(E \downarrow X^0, \text{ rel } X^0)$: fibrewise structure, actually blockwise structure.

Up to topological *K*-theory, $E \downarrow X^0$ is a block bundle.

 $S(E \downarrow X^0, \text{ rel } X^0)$: fibrewise structure, actually blockwise structure.

Up to topological *K*-theory, $E \downarrow X^0$ is a block bundle.

Blockwise structure (pretend X⁰ is a simplicial complex)

 $S(E \downarrow X^0, \text{ rel } X^0)$: fibrewise structure, actually blockwise structure.

Up to topological *K*-theory, $E \downarrow X^0$ is a block bundle.

Blockwise structure (pretend X⁰ is a simplicial complex)

on each 0-simplex of X^0 , a vertex in S(F) [an element of S(F)]

 $S(E \downarrow X^0, \text{ rel } X^0)$: fibrewise structure, actually blockwise structure.

Up to topological *K*-theory, $E \downarrow X^0$ is a block bundle.

• • •

$$\simeq F \simeq F \times \Delta^1 \simeq F \qquad \chi^0$$

Blockwise structure (pretend X^0 is a simplicial complex) on each 0-simplex of X^0 , a vertex in **S**(*F*) [an element of *S*(*F*)]

on each 1-simplex of X^0 , an edge in S(F) [an element of $S(F \times \Delta^1, \text{ rel } \partial \Delta^1)$]

 $S(E \downarrow X^0, \text{ rel } X^0)$: fibrewise structure, actually blockwise structure.

Up to topological *K*-theory, $E \downarrow X^0$ is a block bundle.

$$\simeq F \simeq F \times \Delta^1 \simeq F \qquad \chi^0$$

Blockwise structure (pretend X^0 is a simplicial complex) on each 0-simplex of X^0 , a vertex in S(F) [an element of S(F)] on each 1-simplex of X^0 , an edge in S(F) [an element of $S(F \times \Delta^1, \text{ rel } \partial \Delta^1)$] ...

In case $E = F \times X^0 \downarrow X^0$ is trivial, blockwise structure \Leftrightarrow simplicial map $X^0 \rightarrow S(F)$.

 $S(E \downarrow X^0, \text{ rel } X^0)$: fibrewise structure, actually blockwise structure.

Up to topological *K*-theory, $E \downarrow X^0$ is a block bundle.

$$\simeq F \simeq F \times \Delta^1 \simeq F \qquad \chi^0$$

Blockwise structure (pretend X^0 is a simplicial complex) on each 0-simplex of X^0 , a vertex in S(F) [an element of S(F)] on each 1-simplex of X^0 , an edge in S(F) [an element of $S(F \times \Delta^1, \text{ rel } \partial \Delta^1)$] ...

In case $E = F \times X^0 \downarrow X^0$ is trivial, blockwise structure \Leftrightarrow simplicial map $X^0 \rightarrow S(F)$. So $S(E \downarrow X^0, \text{ rel } X^0) = \text{Maps}(X^0, S(F))$.

For the case $E \downarrow X^0$ is trivial, we have blockwise surgery fibration

 $S(E \downarrow X^0, \text{ rel } X^0) = Maps(X^0, S(F)) \rightarrow Maps(X^0, N(F)) \rightarrow Maps(X^0, L(F))$

For the case $E \downarrow X^0$ is trivial, we have blockwise surgery fibration

 $S(E \downarrow X^0, \text{ rel } X^0) = Maps(X^0, S(F)) \rightarrow Maps(X^0, N(F)) \rightarrow Maps(X^0, L(F))$

 $Maps(X^{0}, \mathbf{N}(F)) = \mathbf{H}^{*}(X^{0}; \mathbf{H}^{*}(F; \mathbf{L}(\bullet))) = \mathbf{H}^{*}(E; \mathbf{L}(\bullet)) = \mathbf{H}_{*}(E; \mathbf{L}(\bullet)).$

For the case $E \downarrow X^0$ is trivial, we have blockwise surgery fibration

 $S(E \downarrow X^0, \text{ rel } X^0) = Maps(X^0, S(F)) \rightarrow Maps(X^0, N(F)) \rightarrow Maps(X^0, L(F))$

 $Maps(X^{0}, N(F)) = H^{*}(X^{0}; H^{*}(F; L(\bullet))) = H^{*}(E; L(\bullet)) = H_{*}(E; L(\bullet)).$ $Maps(X^{0}, L(F)) = H^{*}(X^{0}; L(F)) = H_{*}(X^{0}; L(F)).$

For the case $E \downarrow X^0$ is trivial, we have blockwise surgery fibration

 $S(E \downarrow X^0, \text{ rel } X^0) = Maps(X^0, S(F)) \rightarrow Maps(X^0, N(F)) \rightarrow Maps(X^0, L(F))$

 $Maps(X^{0}, N(F)) = H^{*}(X^{0}; H^{*}(F; L(\bullet))) = H^{*}(E; L(\bullet)) = H_{*}(E; L(\bullet)).$ $Maps(X^{0}, L(F)) = H^{*}(X^{0}; L(F)) = H_{*}(X^{0}; L(F)).$

Get

$$S(E \downarrow X^0, \text{ rel } X^0) \rightarrow H_*(E; L(\bullet)) \rightarrow H_*(X^0; L(F))$$

For the case $E \downarrow X^0$ is trivial, we have blockwise surgery fibration

 $S(E \downarrow X^0, \text{ rel } X^0) = Maps(X^0, S(F)) \rightarrow Maps(X^0, N(F)) \rightarrow Maps(X^0, L(F))$

 $Maps(X^{0}, N(F)) = H^{*}(X^{0}; H^{*}(F; L(\bullet))) = H^{*}(E; L(\bullet)) = H_{*}(E; L(\bullet)).$ $Maps(X^{0}, L(F)) = H^{*}(X^{0}; L(F)) = H_{*}(X^{0}; L(F)).$

Get

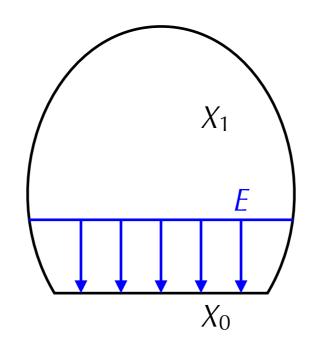
$$S(E \downarrow X^0, \text{ rel } X^0) \rightarrow H_*(E; L(\bullet)) \rightarrow H_*(X^0; L(F))$$

Then combine with

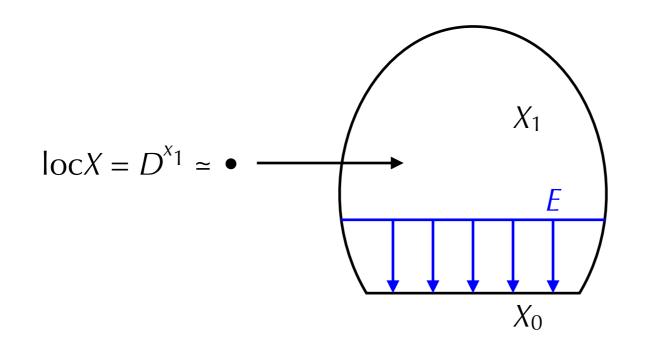
 $S(X^{0}) \rightarrow H_{*}(X^{0}; L(\bullet)) \rightarrow L(X^{0})$ $S(X^{1}, \text{ rel } E) \rightarrow H_{*}(X^{1}; L(\bullet)) \rightarrow L(X^{1})$

[Weinberger]: stratified surgery fibration (modulo topological *K*-theory)

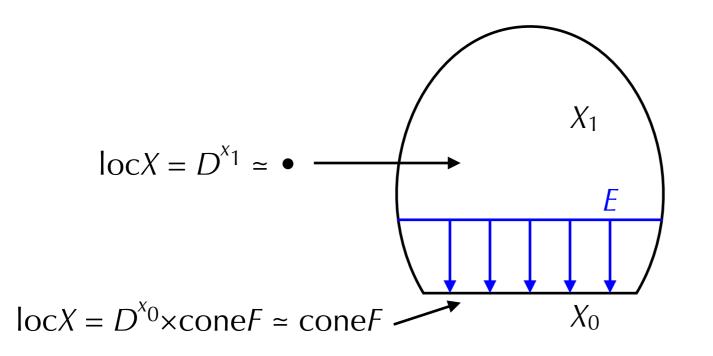
[Weinberger]: stratified surgery fibration (modulo topological *K*-theory)



[Weinberger]: stratified surgery fibration (modulo topological *K*-theory)

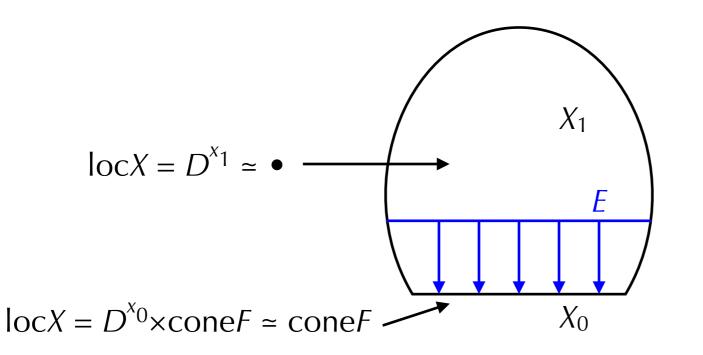


[Weinberger]: stratified surgery fibration (modulo topological *K*-theory)



[Weinberger]: stratified surgery fibration (modulo topological *K*-theory)

 $S^{htp}(X) \rightarrow H_{*}(X; L^{BQ}(IocX)) \rightarrow L^{BQ}(X)$



[Browder-Quinn]: stratified surgery fibration

$$S^{\text{geom}}(X) \rightarrow H^*(X; L(\bullet)) = Maps(X, L(\bullet)) \rightarrow L^{BQ}(X)$$

 $\boldsymbol{S^{htp}}(X) \to \boldsymbol{H_{*}}(X; \boldsymbol{L^{BQ}}(\mathrm{loc}X)) \to \boldsymbol{L^{BQ}}(X)$

 L^{BQ} is a covariant functor of homotopically stratified spaces and maps. Any covariant functor L gives homology and assembly.

 $\boldsymbol{S^{htp}}(X) \to \boldsymbol{H_{*}}(X; \boldsymbol{L^{BQ}}(\mathrm{loc}X)) \to \boldsymbol{L^{BQ}}(X)$

 L^{BQ} is a covariant functor of homotopically stratified spaces and maps. Any covariant functor L gives homology and assembly.

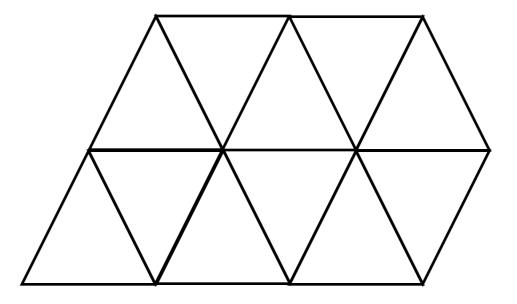
Let *X* be triangulated. For simplex σ and $x \in int\sigma$, $loc_x X = \cup \{int\tau: \sigma \subset \tau\} = loc_\sigma X$.

 $\boldsymbol{S^{htp}}(X) \rightarrow \boldsymbol{H_{*}}(X; \boldsymbol{L^{BQ}}(\mathrm{loc}X)) \rightarrow \boldsymbol{L^{BQ}}(X)$

 L^{BQ} is a covariant functor of homotopically stratified spaces and maps. Any covariant functor L gives homology and assembly.

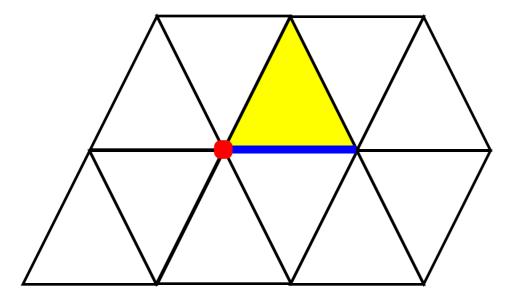
 $S^{htp}(X) \rightarrow H_{*}(X; L^{BQ}(locX)) \rightarrow L^{BQ}(X)$

 L^{BQ} is a covariant functor of homotopically stratified spaces and maps. Any covariant functor L gives homology and assembly.



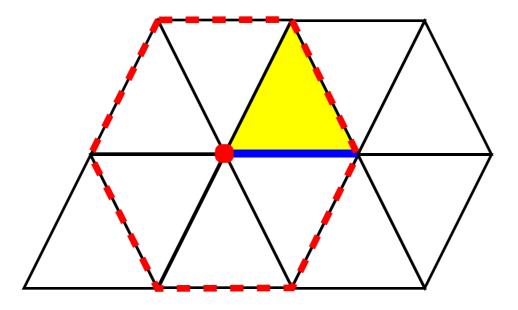
 $S^{htp}(X) \rightarrow H_{*}(X; L^{BQ}(locX)) \rightarrow L^{BQ}(X)$

 L^{BQ} is a covariant functor of homotopically stratified spaces and maps. Any covariant functor L gives homology and assembly.



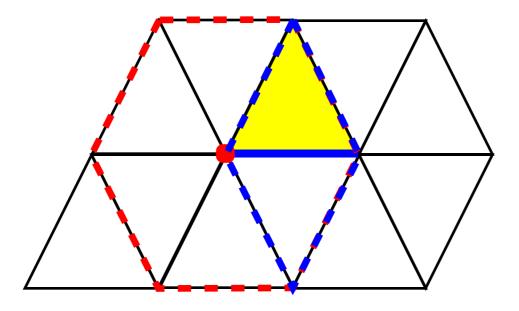
 $\boldsymbol{S^{htp}}(X) \rightarrow \boldsymbol{H_{*}}(X; \boldsymbol{L^{BQ}}(\mathrm{loc}X)) \rightarrow \boldsymbol{L^{BQ}}(X)$

 L^{BQ} is a covariant functor of homotopically stratified spaces and maps. Any covariant functor L gives homology and assembly.



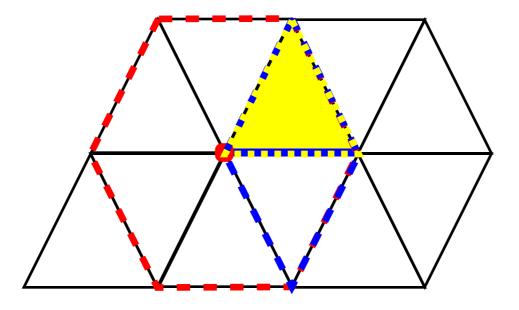
 $\boldsymbol{S^{htp}}(X) \rightarrow \boldsymbol{H_{*}}(X; \boldsymbol{L^{BQ}}(\mathrm{loc}X)) \rightarrow \boldsymbol{L^{BQ}}(X)$

 L^{BQ} is a covariant functor of homotopically stratified spaces and maps. Any covariant functor L gives homology and assembly.



 $S^{htp}(X) \rightarrow H_{*}(X; L^{BQ}(locX)) \rightarrow L^{BQ}(X)$

 L^{BQ} is a covariant functor of homotopically stratified spaces and maps. Any covariant functor L gives homology and assembly.



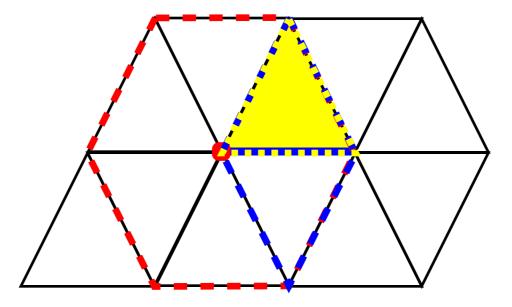
 $S^{htp}(X) \rightarrow H_{*}(X; L^{BQ}(locX)) \rightarrow L^{BQ}(X)$

 L^{BQ} is a covariant functor of homotopically stratified spaces and maps. Any covariant functor L gives homology and assembly.

Let *X* be triangulated. For simplex σ and $x \in int\sigma$, $loc_x X = \cup \{int\tau: \sigma \subset \tau\} = loc_\sigma X$. Then $\sigma \subset \tau \Rightarrow loc_\tau X \subset loc_\sigma X \Rightarrow map L(loc_\tau X) \rightarrow L(loc_\sigma X)$.

Homology is homotopy pushout: $H_*(X; L) = \cup L(loc_{\sigma}X) \times \sigma / \sim$.

The assembly map is canonical by compatible maps $L(loc_{\sigma}X) \rightarrow L(X)$.



Homology (spectrum) $H_*(X; L)$, with local coefficient system (or cosheaf) L. Satisfying usual homology axioms.

Homology (spectrum) $H_*(X; L)$, with local coefficient system (or cosheaf) L. Satisfying usual homology axioms.

Homology $H_n(X; L) = \pi_n H_*(X; L)$

Homology (spectrum) $H_*(X; L)$, with local coefficient system (or cosheaf) L. Satisfying usual homology axioms.

Homology $H_n(X; \mathbf{L}) = \pi_n \mathbf{H}_*(X; \mathbf{L}) \Leftarrow$ spectral sequence $E^2_{p,q} = H_p(X, \pi_q \mathbf{L})$.

Homology (spectrum) $H_*(X; L)$, with local coefficient system (or cosheaf) L. Satisfying usual homology axioms.

Homology $H_n(X; \mathbf{L}) = \pi_n \mathbf{H}_*(X; \mathbf{L}) \Leftarrow$ spectral sequence $E^2_{p,q} = H_p(X, \pi_q \mathbf{L})$.

What is $H_p(X; L)$? [$L = \pi_q L$]

The local coefficient system *L*:

assigns an abelian group L_{σ} to each simplex σ of X,

assigns a homomorphism $L_{\tau} \rightarrow L_{\sigma}$ for $\sigma \subset \tau$, all homomorphisms compatible.

Homology (spectrum) $H_*(X; L)$, with local coefficient system (or cosheaf) L. Satisfying usual homology axioms.

Homology $H_n(X; \mathbf{L}) = \pi_n \mathbf{H}_*(X; \mathbf{L}) \Leftarrow$ spectral sequence $E^2_{p,q} = H_p(X, \pi_q \mathbf{L})$.

What is $H_p(X; L)$? [$L = \pi_q L$]

The local coefficient system *L*:

assigns an abelian group L_{σ} to each simplex σ of X,

assigns a homomorphism $L_{\tau} \rightarrow L_{\sigma}$ for $\sigma \subset \tau$, all homomorphisms compatible.

L gives a chain complex $C_q(X; L) = \bigoplus_{\dim \sigma = q} L_{\sigma} \rightarrow C_{q-1}(X; L)$ and then $H_p(X; L)$.

Homology (spectrum) $H_*(X; L)$, with local coefficient system (or cosheaf) L. Satisfying usual homology axioms.

Homology $H_n(X; \mathbf{L}) = \pi_n \mathbf{H}_*(X; \mathbf{L}) \Leftarrow$ spectral sequence $E^2_{p,q} = H_p(X, \pi_q \mathbf{L})$.

What is $H_p(X; L)$? [$L = \pi_q L$]

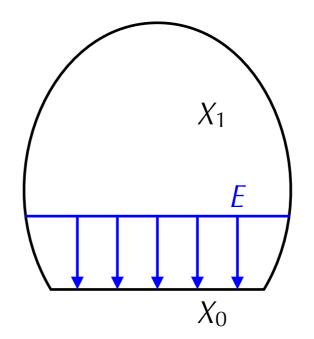
The local coefficient system *L*:

assigns an abelian group L_{σ} to each simplex σ of X,

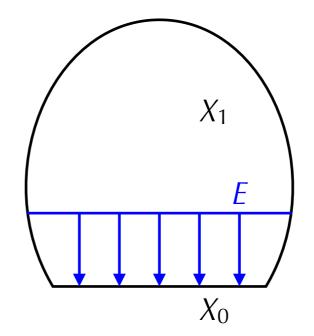
assigns a homomorphism $L_{\tau} \rightarrow L_{\sigma}$ for $\sigma \subset \tau$, all homomorphisms compatible.

L gives a chain complex $C_q(X; L) = \bigoplus_{\dim \sigma = q} L_{\sigma} \rightarrow C_{q-1}(X; L)$ and then $H_p(X; L)$.

The local coefficient system in usual textbook assumes $L_{\tau} \rightarrow L_{\sigma}$ are all isomorphic.



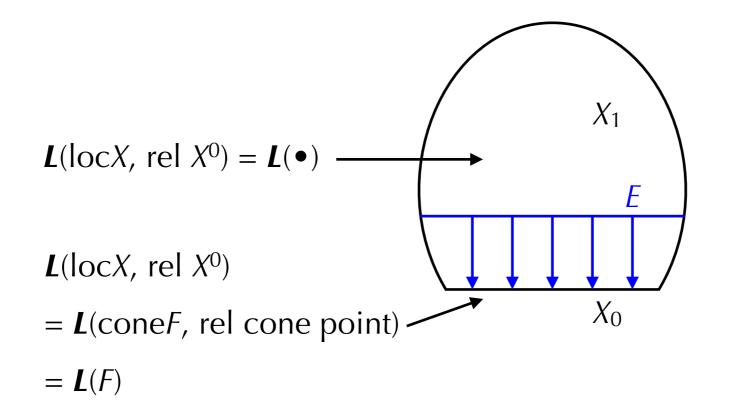
Recall $S(E \downarrow X^0, \text{ rel } X^0) \rightarrow H_*(E; L(\bullet)) \rightarrow H_*(X^0; L(F))$



Recall $S(E \downarrow X^0, \text{ rel } X^0) \rightarrow H_*(E; L(\bullet)) \rightarrow H_*(X^0; L(F))$

 $H_{*}(E; L(\bullet)) = H_{*}(E; L(locX, rel X^{0}))$

 $\rightarrow H_{*}(X^{0}; L(F)) = H_{*}(X^{0}; L(\operatorname{loc} X, \operatorname{rel} X^{0})) = H_{*}(\operatorname{nd}(X^{0}); L(\operatorname{loc} X, \operatorname{rel} X^{0}))$

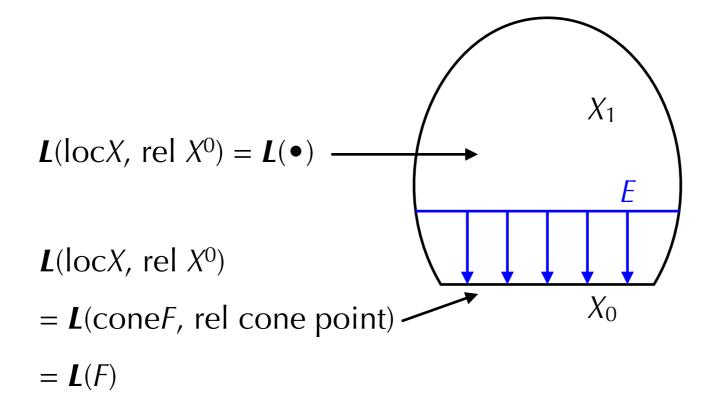


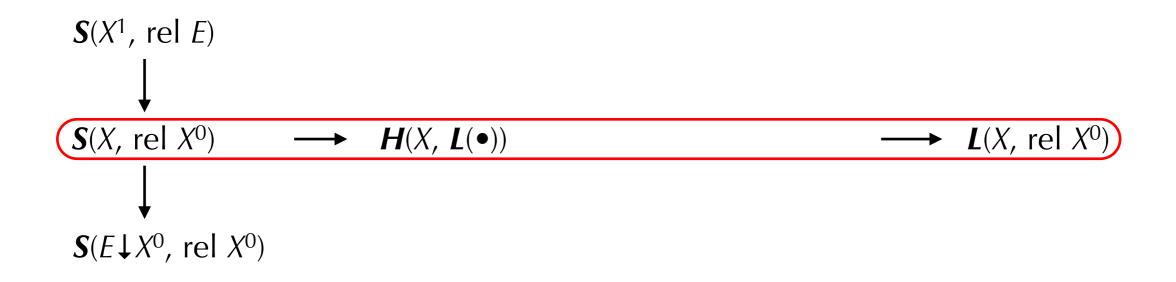
Recall $S(E \downarrow X^0, \text{ rel } X^0) \rightarrow H_*(E; L(\bullet)) \rightarrow H_*(X^0; L(F))$

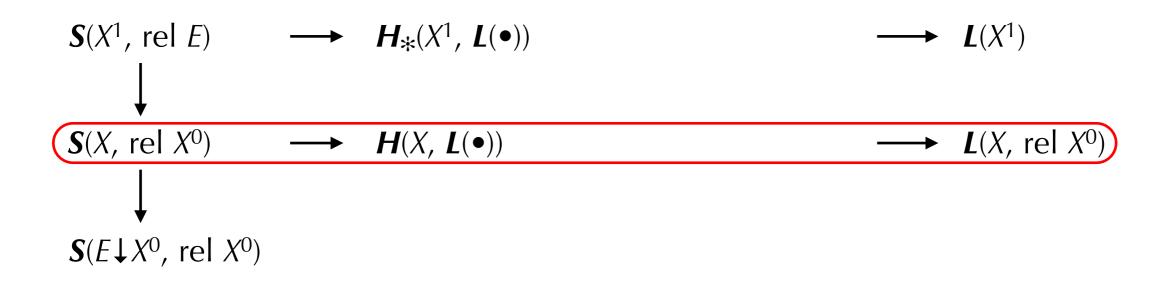
 $H_{*}(E; L(\bullet)) = H_{*}(E; L(locX, rel X^{0}))$

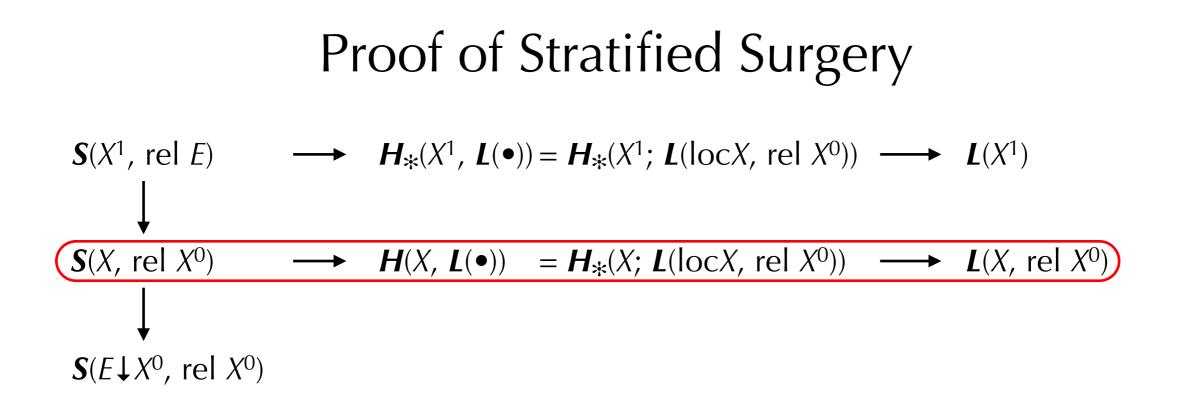
 $\rightarrow H_{*}(X^{0}; L(F)) = H_{*}(X^{0}; L(\operatorname{loc} X, \operatorname{rel} X^{0})) = H_{*}(\operatorname{nd}(X^{0}); L(\operatorname{loc} X, \operatorname{rel} X^{0}))$

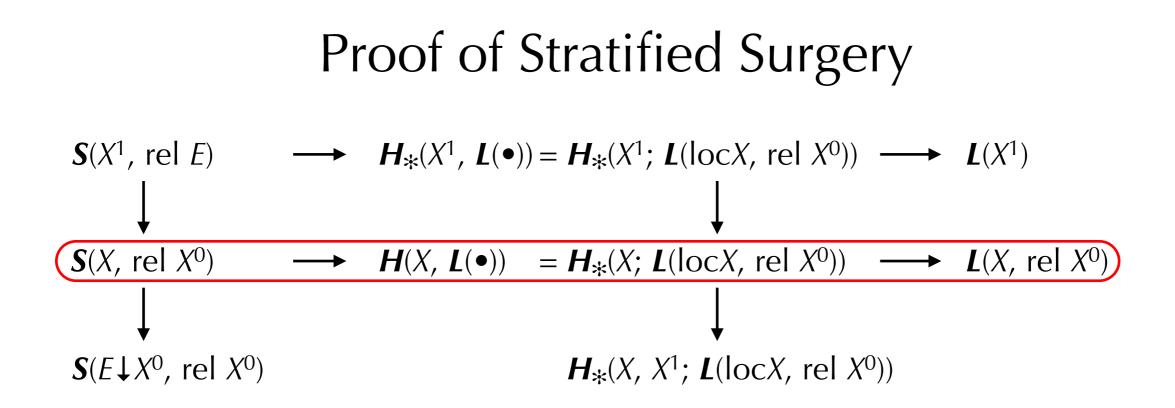
So $S(E \downarrow X^0, \text{ rel } X^0) = H_*(nd(X^0), E; L(locX, \text{ rel } X^0)) = H_*(X, X^1; L(locX, \text{ rel } X^0))$ [modulo shifting of dimension]

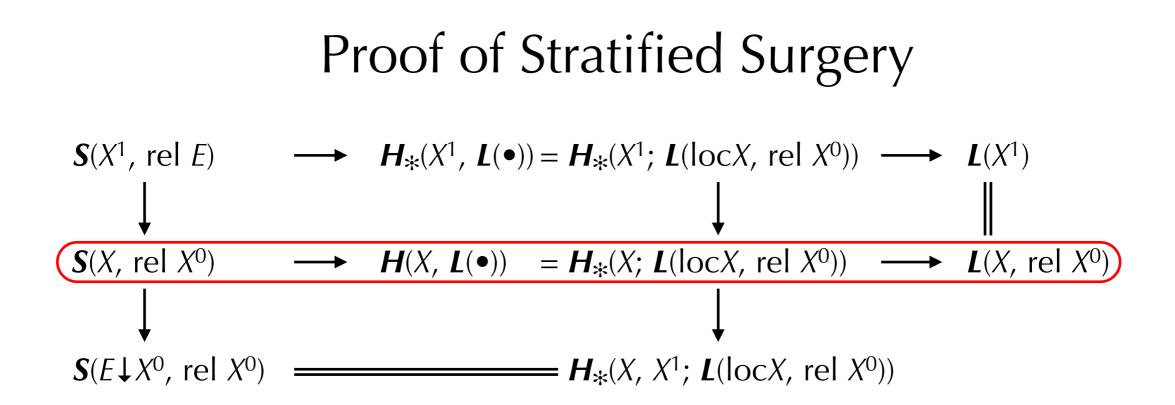




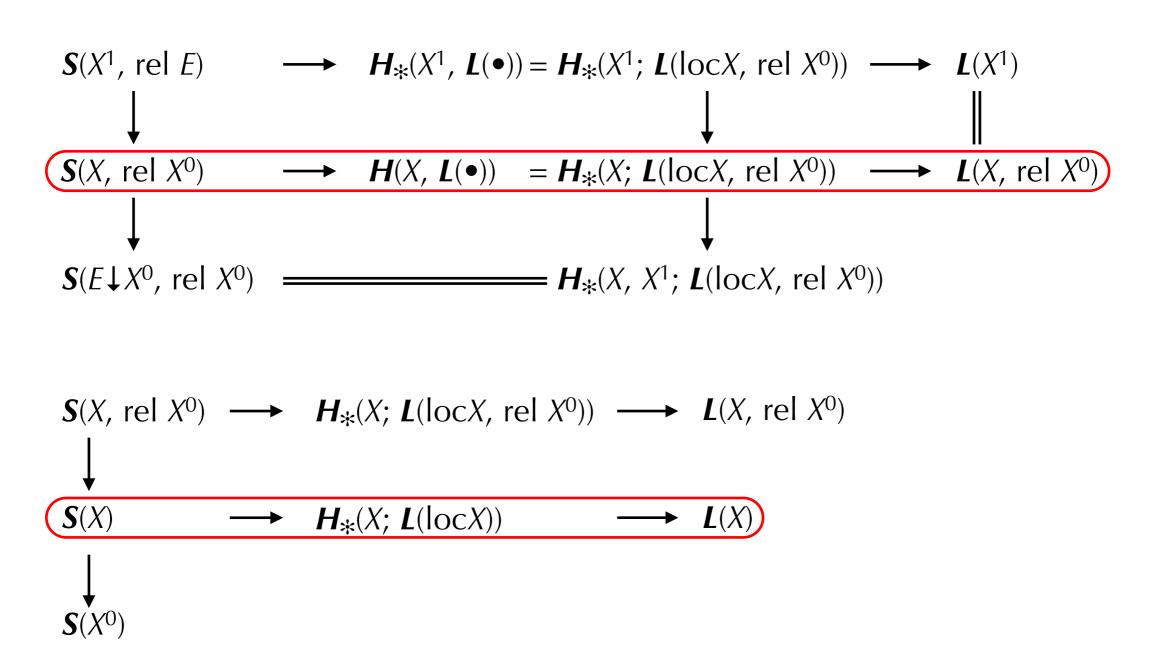


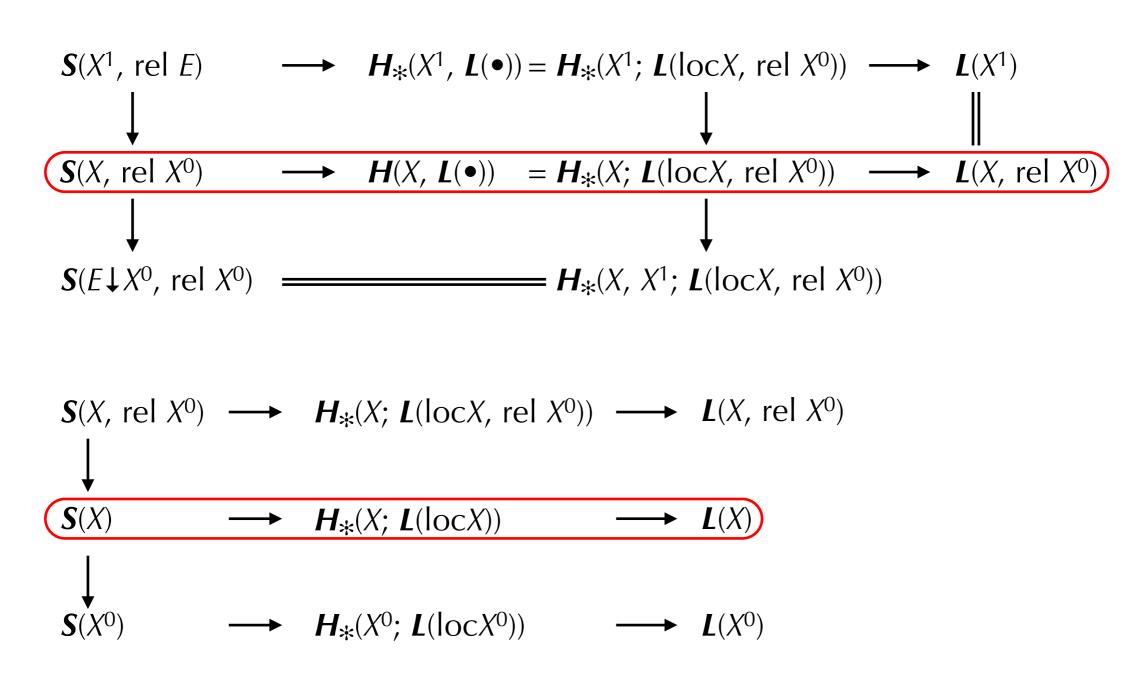


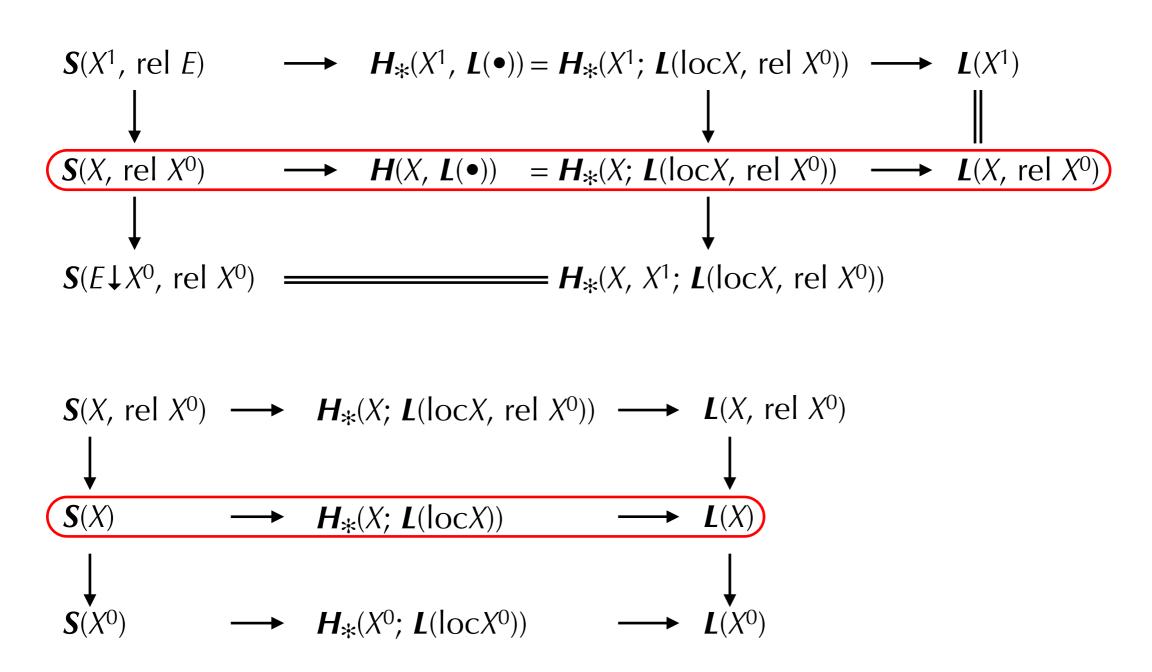


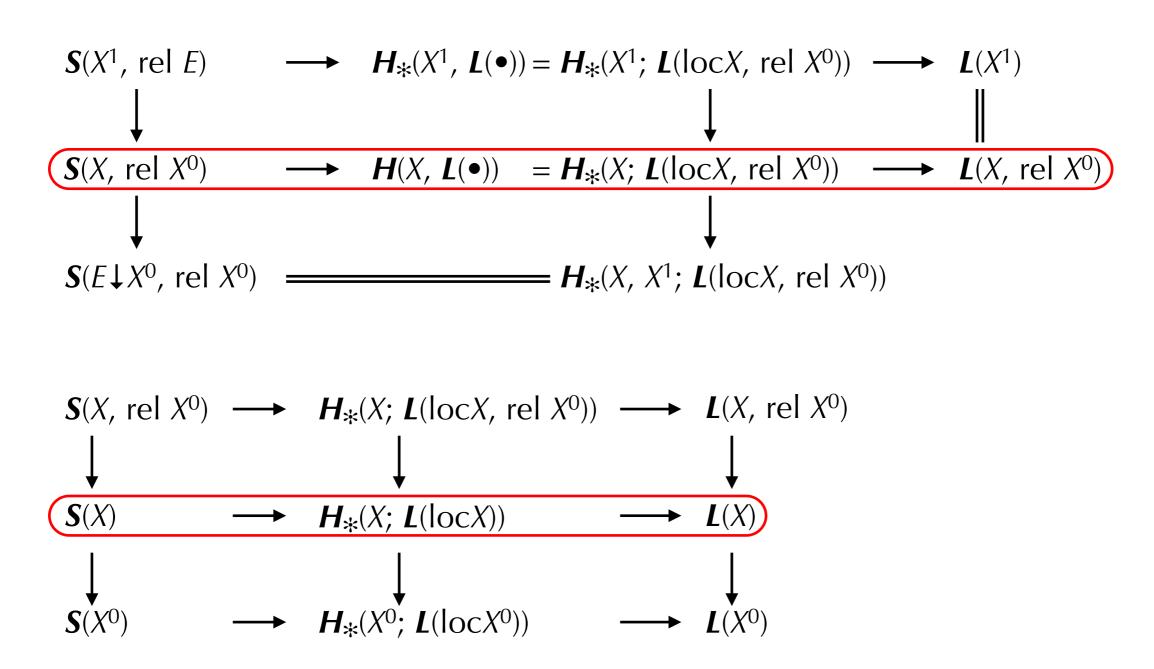


Proof of Stratified Surgery $\mathbf{S}(X^1, \text{ rel } E)$ \longrightarrow $H_{*}(X^{1}, L(\bullet)) = H_{*}(X^{1}; L(locX, rel X^{0})) \longrightarrow L(X^{1})$ $S(X, \text{ rel } X^0)$ $\boldsymbol{H}(X, \boldsymbol{L}(\bullet)) = \boldsymbol{H}_{\boldsymbol{*}}(X; \boldsymbol{L}(\operatorname{loc} X, \operatorname{rel} X^{0}))$ \longrightarrow $L(X, \text{ rel } X^0)$ $S(E \downarrow X^0, \operatorname{rel} X^0) = H_*(X, X^1; L(\operatorname{loc} X, \operatorname{rel} X^0))$ **S**(*X*, rel *X*⁰) $\mathbf{S}(X)$ *H*_{*}(*X*; *L*(loc*X*)) $\boldsymbol{L}(X)$ $S(X^0)$









group *G* acting on manifold *M*

 \Rightarrow orbit space X = M/G stratified by conjugate classes of isotropy groups

 $\Rightarrow S_G(M) = S(M/G).$

group *G* acting on manifold *M*

 \Rightarrow orbit space X = M/G stratified by conjugate classes of isotropy groups

 $\Rightarrow S_G(M) = S(M/G).$

Applying stratified surgery to homotopically stratified group actions on topological manifolds, we get

- equivariant periodicity: $S_G(M \times \mathbf{D}V, \text{ rel } M \times \mathbf{S}V) = S_G(M)$.
- homotopy replacement of fixed point: $N \simeq_G M \Rightarrow N^G \simeq M^G$.
- functoriality: $M \rightarrow_G N \Rightarrow S_G(M) \rightarrow S_G(N)$.

group *G* acting on manifold *M*

 \Rightarrow orbit space X = M/G stratified by conjugate classes of isotropy groups

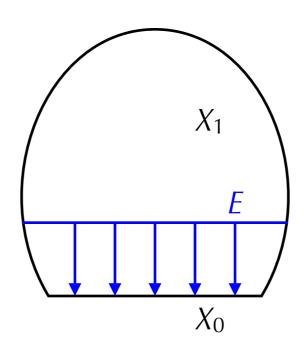
 $\Rightarrow S_G(M) = S(M/G).$

Applying stratified surgery to homotopically stratified group actions on topological manifolds, we get

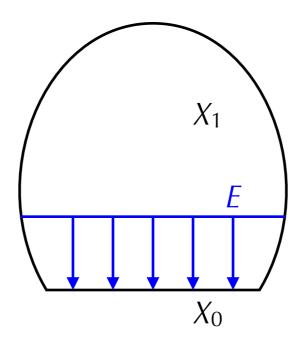
- equivariant periodicity: $S_G(M \times \mathbf{D}V, \text{ rel } M \times \mathbf{S}V) = S_G(M)$.
- homotopy replacement of fixed point: $N \simeq_G M \Rightarrow N^G \simeq M^G$.
- functoriality: $M \rightarrow_G N \Rightarrow S_G(M) \rightarrow S_G(N)$.

3. Multiaxial Manifold

Stratified Interpretation of Periodicity

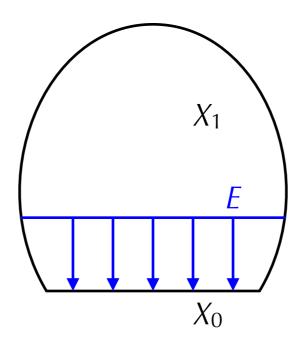


Consider 2-strata space.



Consider 2-strata space.

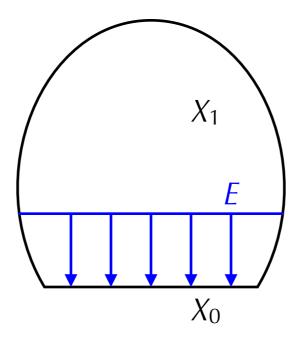
Relative surgery obstruction $L(X^1, E)$ [not rel *E*] for manifold X^1 with $\partial X^1 = E$.



Consider 2-strata space.

Relative surgery obstruction $L(X^1, E)$ [not rel *E*] for manifold X^1 with $\partial X^1 = E$.

 $E = X^0 \times (\mathbb{CP}^{even}, \mathbb{HP}^n, ...)$, or more generally bundle $E \to X^0$ with signature 1 fibre \Rightarrow by periodicity, \times (signature 1): $L(X^0) \to L(E)$ is isomorphism

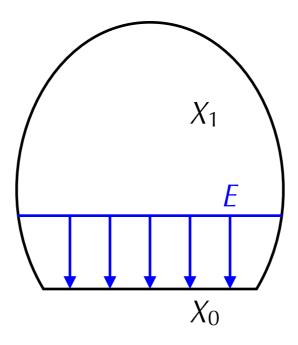


Consider 2-strata space.

Relative surgery obstruction $L(X^1, E)$ [not rel *E*] for manifold X^1 with $\partial X^1 = E$.

 $E = X^0 \times (\mathbb{CP}^{\text{even}}, \mathbb{HP}^n, ...)$, or more generally bundle $E \to X^0$ with signature 1 fibre \Rightarrow by periodicity, \times (signature 1): $L(X^0) \to L(E)$ is isomorphism

 \Rightarrow stratified $\boldsymbol{L}(X) = \boldsymbol{L}(X^1, E)$.



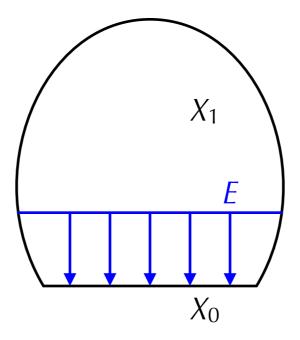
Consider 2-strata space.

Relative surgery obstruction $L(X^1, E)$ [not rel *E*] for manifold X^1 with $\partial X^1 = E$.

 $E = X^0 \times (\mathbb{CP}^{\text{even}}, \mathbb{HP}^n, ...)$, or more generally bundle $E \to X^0$ with signature 1 fibre \Rightarrow by periodicity, \times (signature 1): $L(X^0) \to L(E)$ is isomorphism

 \Rightarrow stratified $\boldsymbol{L}(X) = \boldsymbol{L}(X^1, E)$.

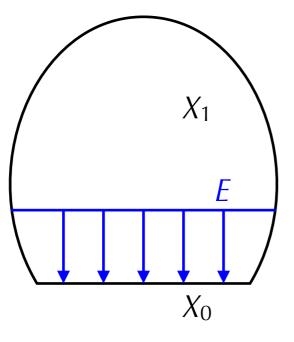
This happens when X is the orbit space of semi-free circle action on manifold M, such that dim $M^{s^1} = \dim M + 2$ (4).



[Wall 1971]: Relative surgery obstruction L(X, Y) = 0 if $\pi_1 X = \pi_1 Y$.

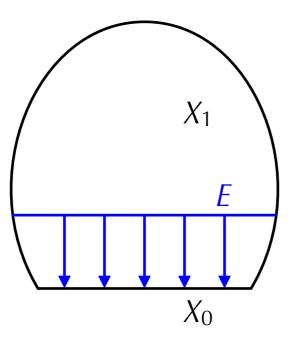
[Wall 1971]: Relative surgery obstruction L(X, Y) = 0 if $\pi_1 X = \pi_1 Y$.

Consider 2-strata space.



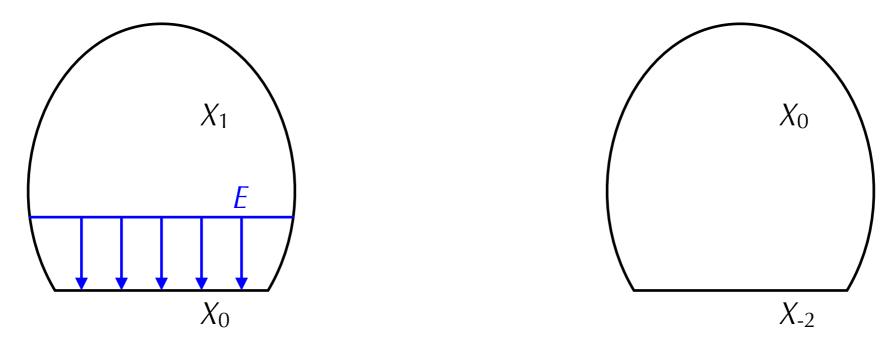
[Wall 1971]: Relative surgery obstruction L(X, Y) = 0 if $\pi_1 X = \pi_1 Y$. Consider 2-strata space.

If $E \rightarrow X^0$ has signature 1 fibre and $\pi_1 X^1 = \pi_1 X^0 (= \pi_1 E)$, then L(X) = 0.



[Wall 1971]: Relative surgery obstruction L(X, Y) = 0 if $\pi_1 X = \pi_1 Y$. Consider 2-strata space.

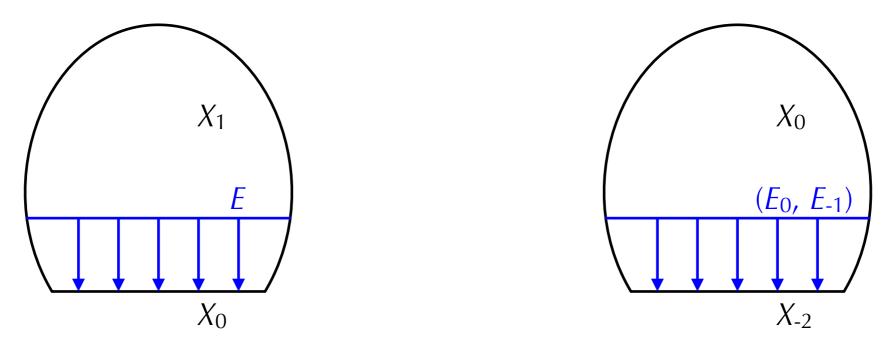
If $E \rightarrow X^0$ has signature 1 fibre and $\pi_1 X^1 = \pi_1 X^0 (= \pi_1 E)$, then L(X) = 0.



Consider general linearly stratified space $X = X_0 \supset X_{-1} \supset X_{-2} \supset \dots$

[Wall 1971]: Relative surgery obstruction L(X, Y) = 0 if $\pi_1 X = \pi_1 Y$. Consider 2-strata space.

If $E \rightarrow X^0$ has signature 1 fibre and $\pi_1 X^1 = \pi_1 X^0 (= \pi_1 E)$, then L(X) = 0.

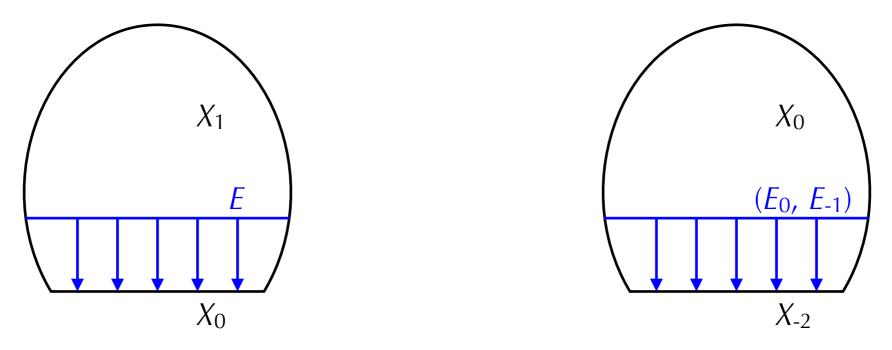


Consider general linearly stratified space $X = X_0 \supset X_{-1} \supset X_{-2} \supset \dots$

Boundary of $nd(X_{-2})$ is a 2-strata space (E_0, E_{-1}), with $link(E_0, E_{-1}) = link(X_0, X_{-1})$.

[Wall 1971]: Relative surgery obstruction L(X, Y) = 0 if $\pi_1 X = \pi_1 Y$. Consider 2-strata space.

If $E \rightarrow X^0$ has signature 1 fibre and $\pi_1 X^1 = \pi_1 X^0 (= \pi_1 E)$, then L(X) = 0.



Consider general linearly stratified space $X = X_0 \supset X_{-1} \supset X_{-2} \supset ...$

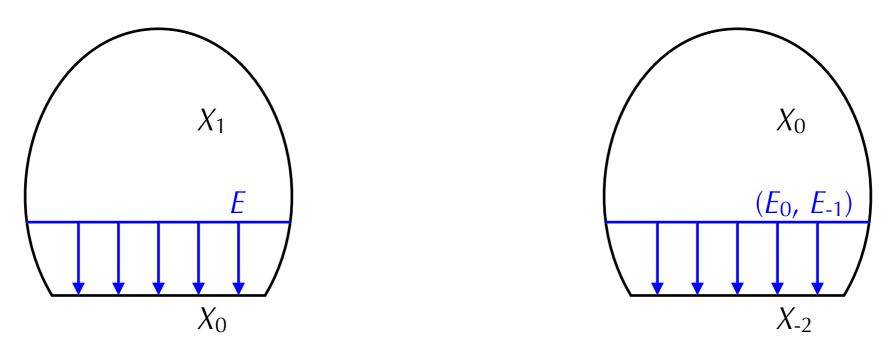
Boundary of $nd(X_{-2})$ is a 2-strata space (E_0, E_{-1}), with $link(E_0, E_{-1}) = link(X_0, X_{-1})$.

If link(X_0, X_{-1}) has signature 1, and (E_0, E_{-1}) $\rightarrow X_{-2}$ has simply connected fibre, then $L(E_0, E_{-1}) = 0$. Further gives $L(X) = L(X, \text{ rel } X_{-2}) \oplus L(X_{-2})$ and $S(X) = S(X, \text{ rel } X_{-2}) \oplus S(X_{-2})$.

[Wall 1971]: Relative surgery obstruction L(X, Y) = 0 if $\pi_1 X = \pi_1 Y$.

Consider 2-strata space.

If $E \rightarrow X^0$ has signature 1 fibre and $\pi_1 X^1 = \pi_1 X^0 (= \pi_1 E)$, then L(X) = 0.



Consider general linearly stratified space $X = X_0 \supset X_{-1} \supset X_{-2} \supset ...$

Boundary of $nd(X_{-2})$ is a 2-strata space (E_0, E_{-1}), with $link(E_0, E_{-1}) = link(X_0, X_{-1})$.

If link(X_0, X_{-1}) has signature 1, and $(E_0, E_{-1}) \rightarrow X_{-2}$ has simply connected fibre, then $L(E_0, E_{-1}) = 0$. Further gives $L(X) = L(X, \text{ rel } X_{-2}) \oplus L(X_{-2})$ and $S(X) = S(X, \text{ rel } X_{-2}) \oplus S(X_{-2})$.

Want stratified space $X = X_0 \supset X_{-1} \supset X_{-2} \supset ...$, such that adjacent links are simply connected manifold of signature 1.

Want stratified space $X = X_0 \supset X_{-1} \supset X_{-2} \supset ...$, such that adjacent links are simply connected manifold of signature 1.

Consider X = M/G and $X_{-i} = GM^{Gi}/G_i$, for increasing G_i . If the "difference" between G_i and G_{i+1} is always a circle, then the adjacent links are always **CP**[#].

Want stratified space $X = X_0 \supset X_{-1} \supset X_{-2} \supset ...$, such that adjacent links are simply connected manifold of signature 1.

Consider X = M/G and $X_{-i} = GM^{Gi}/G_i$, for increasing G_i . If the "difference" between G_i and G_{i+1} is always a circle, then the adjacent links are always **CP**[#].

Definition: A U(n)-manifold is multiaxial, if any isotropy group is conjugate to a unitary subgroup U(i) [plus some "locally flat" condition].

Want stratified space $X = X_0 \supset X_{-1} \supset X_{-2} \supset ...$, such that adjacent links are simply connected manifold of signature 1.

Consider X = M/G and $X_{-i} = GM^{Gi}/G_i$, for increasing G_i . If the "difference" between G_i and G_{i+1} is always a circle, then the adjacent links are always **CP**[#].

Definition: A U(n)-manifold is multiaxial, if any isotropy group is conjugate to a unitary subgroup U(i) [plus some "locally flat" condition].

 $G_i = U(i), N_{U(i+1)}U(i)/U(i) = \text{circle, get adjacent links } \mathbf{CP}^r, \mathbf{CP}^{r+1}, \mathbf{CP}^{r+2}, \dots$ So splitting happens to half of adjacent links (half have signature 1).

Want stratified space $X = X_0 \supset X_{-1} \supset X_{-2} \supset ...$, such that adjacent links are simply connected manifold of signature 1.

Consider X = M/G and $X_{-i} = GM^{Gi}/G_i$, for increasing G_i . If the "difference" between G_i and G_{i+1} is always a circle, then the adjacent links are always **CP**[#].

Definition: A U(n)-manifold is multiaxial, if any isotropy group is conjugate to a unitary subgroup U(i) [plus some "locally flat" condition].

 $G_i = U(i), N_{U(i+1)}U(i)/U(i) = \text{circle, get adjacent links } \mathbf{CP}^r, \mathbf{CP}^{r+1}, \mathbf{CP}^{r+2}, \dots$ So splitting happens to half of adjacent links (half have signature 1).

Example: manifold modeled on U(n)-representation $k \mathbf{\rho}_n \oplus j \mathbf{\epsilon} = (\mathbf{C}^n)^k \oplus \mathbf{R}^j$.

Theorem [S. Cappell, S. Weinberger, M. Yan 2015]

The structure set of the unit sphere $S_{U(n)}(\mathbf{S}(k\mathbf{\rho}_n \oplus j\mathbf{\epsilon})) = \mathbf{Z}^A \oplus \mathbf{Z}_2^{B_{\cdot}}$

$$A = \sum_{0 \le 2i < n} A_{n-2i,k} \ (k-n \text{ even}), \text{ and } A = A_{n,k-1} + \sum_{0 \le 2i-1 < n} A_{n-2i+1,k} \ (k-n \text{ odd}),$$

 $A_{n,k}$ is the number of Schubert cells of dim 0(4) in Grassmannian G(n,k), *B* is the similar number of dim 2(4).

Theorem [S. Cappell, S. Weinberger, M. Yan 2015]

The structure set of the unit sphere $S_{U(n)}(\mathbf{S}(k\mathbf{\rho}_n \oplus j\mathbf{\epsilon})) = \mathbf{Z}^A \oplus \mathbf{Z}_2^{B_{\cdot}}$

 $A = \sum_{0 \le 2i < n} A_{n-2i,k} \ (k-n \text{ even}), \text{ and } A = A_{n,k-1} + \sum_{0 \le 2i-1 < n} A_{n-2i+1,k} \ (k-n \text{ odd}),$ $A_{n,k} \text{ is the number of Schubert cells of dim 0(4) in Grassmannian G(n,k),}$ B is the similar number of dim 2(4).

This generalizes the classical result $S(\mathbb{C}P^n) = \mathbb{Z}^{n/2} \oplus (\mathbb{Z}/2\mathbb{Z})^{n/2}$. More results:

- Decomposition of the structure set $S_{U(n)}(M)$.
- Homotopy replacement of fixed point $M^{U(i)}$.
- suspension $*S(\rho_n): S_{U(n)}(S(k\rho_n \oplus j\varepsilon)) \rightarrow S_{U(n)}(S((k+1)\rho_n \oplus j\varepsilon))$ is injective.
- similar result for simplecic group *Sp*(*n*).

Theorem [S. Cappell, S. Weinberger, M. Yan 2015]

The structure set of the unit sphere $S_{U(n)}(\mathbf{S}(k\mathbf{\rho}_n \oplus j\mathbf{\epsilon})) = \mathbf{Z}^A \oplus \mathbf{Z}_2^{B_{\cdot}}$

 $A = \sum_{0 \le 2i < n} A_{n-2i,k} \ (k-n \text{ even}), \text{ and } A = A_{n,k-1} + \sum_{0 \le 2i-1 < n} A_{n-2i+1,k} \ (k-n \text{ odd}),$ $A_{n,k} \text{ is the number of Schubert cells of dim 0(4) in Grassmannian G(n,k),}$ B is the similar number of dim 2(4).

This generalizes the classical result $S(\mathbb{C}P^n) = \mathbb{Z}^{n/2} \oplus (\mathbb{Z}/2\mathbb{Z})^{n/2}$. More results:

- Decomposition of the structure set $S_{U(n)}(M)$.
- Homotopy replacement of fixed point $M^{U(i)}$.
- suspension $*S(\rho_n)$: $S_{U(n)}(S(k\rho_n \oplus j\varepsilon)) \rightarrow S_{U(n)}(S((k+1)\rho_n \oplus j\varepsilon))$ is injective.
- similar result for simplecic group Sp(n).

ongoing: multiaxial O(n)-manifold.

Thank You