Analytic torsion and dynamical zeta function on closed locally symmetric spaces

Shu SHEN

Humboldt-Universität, Berlin, Germany.

Luminy, 15 June 2016

1 The Fried conjecture

- Analytic torsion
- Closed geodesics

2 A formal proof via path integrals

3 A rigorous proof via trace formula

- Reformulation of the problem
- Selberg trace formula
- The proof of the main theorem

Analytic torsion Closed geodesics

Notation

- X compact connected oriented manifold without boundary.
- Take $\rho : \pi_1(X) \to U(m)$. Let $F = \widetilde{X} \times_{\rho} \mathbb{C}^m$ be the associated flat vector bundle.
- $(\Omega^{\bullet}(X, F), d)$ the de Rham complex with values in F.
- $H^{\bullet}(X, F)$ the corresponding de Rham cohomology.
- Assumption: $H^{\bullet}(X, F) = 0$.

Analytic torsion Closed geodesics

Notation

- X compact connected oriented manifold without boundary.
- Take $\rho : \pi_1(X) \to U(m)$. Let $F = \widetilde{X} \times_{\rho} \mathbf{C}^m$ be the associated flat vector bundle.
- $(\Omega^{\bullet}(X, F), d)$ the de Rham complex with values in F.
- $H^{\bullet}(X, F)$ the corresponding de Rham cohomology.
- Assumption: $H^{\bullet}(X, F) = 0$.

Analytic torsion Closed geodesics

Hodge Laplacian

- g^F : Hermitian metric on $F = \widetilde{X} \times_{\rho} \mathbb{C}^m$ induced by the canonical Hermitian metric on \mathbb{C}^m .
- g^{TX} : Riemannian metric on X.
- d^* formal adjoint of d.
- Hodge Laplacian $\Box^X = dd^* + d^*d : \Omega^{\bullet}(X, F) \circlearrowleft$.
 - Hodge: $H^{\bullet}(X, F) = \ker \Box^X$.
 - $H^{\bullet}(X, F) = 0 \iff \Box^X$ is invertible.

Analytic torsion Closed geodesics

Hodge Laplacian

- g^F : Hermitian metric on $F = \widetilde{X} \times_{\rho} \mathbb{C}^m$ induced by the canonical Hermitian metric on \mathbb{C}^m .
- g^{TX} : Riemannian metric on X.
- d^* formal adjoint of d.
- Hodge Laplacian $\Box^X = dd^* + d^*d : \Omega^{\bullet}(X, F) \circlearrowleft$.
 - Hodge: $H^{\bullet}(X, F) = \ker \Box^X$.
 - $H^{\bullet}(X, F) = 0 \iff \Box^X$ is invertible.

Analytic torsion Closed geodesics

Analytic torsion

• Ray-Singer (1971): the analytic torsion is given by

$$T_X(\rho) = \prod_{i=1}^{\dim X} \left(\underbrace{\det \left(\Box^X |_{\Omega^i} \right)}_{\text{regularized det.}} \right)^{(-1)^i i} \in \mathbf{R}_+^*.$$

T_X(ρ) is a topological invariant. (ind. of g^{TX})
Cheeger (1978), Müller (1978):

 $T_X(\rho) =$ Reidemeister torsion.

- Müller (1992): the case $\rho : \pi_1(X) \to \operatorname{SL}_m(\mathbb{C})$.
- Bismut-Zhang (1992): the case for ρ arbitrary and g^F arbitrary.

Analytic torsion Closed geodesics

Analytic torsion

• Ray-Singer (1971): the analytic torsion is given by

$$T_X(\rho) = \prod_{i=1}^{\dim X} \left(\underbrace{\det \left(\Box^X |_{\Omega^i} \right)}_{\text{regularized det.}} \right)^{(-1)^i i} \in \mathbf{R}_+^*.$$

- $T_X(\rho)$ is a topological invariant. (ind. of g^{TX})
- Cheeger (1978), Müller (1978):

 $T_X(\rho) =$ Reidemeister torsion.

- Müller (1992): the case $\rho : \pi_1(X) \to \operatorname{SL}_m(\mathbf{C})$.
- Bismut-Zhang (1992): the case for ρ arbitrary and g^F arbitrary.

Analytic torsion Closed geodesics

Fried's conjecture

- When $X = \mathbb{S}^1$ and $\rho : n \in \mathbf{Z} \to e^{in\theta} \in U(1)$, then
 - $H^{\bullet}(X, F) = 0 \iff e^{i\theta} \neq 1.$ • $T_X(\rho) = (1 - e^{i\theta})^{-1} (1 - e^{-i\theta})^{-1}.$ • Milnor's observation: $\log T_X(\rho) = \sum_{p \in \mathbb{Z} \setminus \{0\}} \frac{e^{in\theta}}{|p|}.$
- Fried (1986): hyperbolic manifold.
- Fried's conjecture (1987): for locally homogenous space,

• Moscovici-Stanton (1991), S. (2016): X is a closed locally symmetric reductive manifold (non positive curvature).

Analytic torsion Closed geodesics

Fried's conjecture

• When $X = \mathbb{S}^1$ and $\rho : n \in \mathbf{Z} \to e^{in\theta} \in U(1)$, then

- Fried (1986): hyperbolic manifold.
- Fried's conjecture (1987): for locally homogenous space,

• Moscovici-Stanton (1991), S. (2016): X is a closed locally symmetric reductive manifold (non positive curvature).

The V-invariant of Bismut-Goette

- V-invariant is defined for compact manifolds S equipped with \mathbb{S}^1 -action.
- V-invariant has a Poincaré-Hopf type formula.

Proposition (Bismut-Goette, 2004)

Let $f: S \to \mathbf{R}$ be an \mathbb{S}^1 -invariant Morse-Bott function with critical submanifold $B_f \subset S$. Then

$$V(S) = (-1)^{\operatorname{ind}(f)} V(B_f) + \cdots,$$

where $\operatorname{ind}(f) : B_f \to \mathbb{Z}$ is the Morse index (locally constant).

The V-invariant of Bismut-Goette

- V-invariant is defined for compact manifolds S equipped with \mathbb{S}^1 -action.
- V-invariant has a Poincaré-Hopf type formula.

Proposition (Bismut-Goette, 2004)

Let $f: S \to \mathbf{R}$ be an \mathbb{S}^1 -invariant Morse-Bott function with critical submanifold $B_f \subset S$. Then

$$V(S) = (-1)^{\operatorname{ind}(f)} V(B_f) + \cdots,$$

where $\operatorname{ind}(f) : B_f \to \mathbb{Z}$ is the Morse index (locally constant).

Analytic torsion as V-invariant

- $LX = C^{\infty}(\mathbb{S}^1, X)$: free loop space of X. $\mathbb{S}^1 \cap LX$
- $\Gamma = \pi_1(X)$ and $[\Gamma] =$ freely homotopy space of X. Then

$$LX = \coprod_{[\gamma] \in [\Gamma]} (LX)_{[\gamma]}.$$

• By an argument of path integral (Witten, Atiyah, Bismut ...),

$$\log T_X(\rho) = \sum_{[\gamma] \in [\Gamma]} \operatorname{Tr} \left[\rho(\gamma)\right] V((LX)_{[\gamma]}).$$

- Assume X is of non positive curvature. $E(x_{\cdot}) = \frac{1}{2} \int_{0}^{1} |\dot{x}_{s}|^{2} ds$ is Morse-Bott on LX, s.t., all the critical points are local minima.
- $B_E = \{ \text{closed geodesics on } \mathbf{X} \} = \coprod_{[\gamma] \in [\Gamma]} B_{[\gamma]}.$
- Reformulation of the formal Fried conjecture:

$$\log T_X(
ho) = \sum_{[\gamma] \in [\Gamma] \setminus \{1\}} \operatorname{Tr} \left[
ho(\gamma)\right] V(B_{[\gamma]}).$$

Shu SHEN The Fried conjecture

Analytic torsion as V-invariant

- $LX = C^{\infty}(\mathbb{S}^1, X)$: free loop space of X. $\mathbb{S}^1 \cap LX$
- $\Gamma = \pi_1(X)$ and $[\Gamma] =$ freely homotopy space of X. Then

$$LX = \prod_{[\gamma] \in [\Gamma]} (LX)_{[\gamma]}.$$

• By an argument of path integral (Witten, Atiyah, Bismut ...),

$$\log T_X(\rho) = \sum_{[\gamma] \in [\Gamma]} \operatorname{Tr} \left[\rho(\gamma)\right] V((LX)_{[\gamma]}).$$

- Assume X is of non positive curvature. $E(x_{\cdot}) = \frac{1}{2} \int_{0}^{1} |\dot{x}_{s}|^{2} ds$ is Morse-Bott on LX, s.t., all the critical points are local minima.
- $B_E = \{ \text{closed geodesics on } \mathbf{X} \} = \coprod_{[\gamma] \in [\Gamma]} B_{[\gamma]}.$
- Reformulation of the formal Fried conjecture:

$$\log T_X(
ho) = \sum_{[\gamma] \in [\Gamma] \setminus \{1\}} \operatorname{Tr} \left[
ho(\gamma)\right] V(B_{[\gamma]}).$$

Shu SHEN The Fried conjecture

Analytic torsion as V-invariant

- $LX = C^{\infty}(\mathbb{S}^1, X)$: free loop space of X. $\mathbb{S}^1 \frown LX$
- $\Gamma = \pi_1(X)$ and $[\Gamma] =$ freely homotopy space of X. Then $LX = \prod (LX)_{[\gamma]}.$
- [γ]∈[Γ]
 By an argument of path integral (Witten, Atiyah, Bismut ...),

$$\log T_X(\rho) = \sum_{[\gamma] \in [\Gamma]} \operatorname{Tr} \left[\rho(\gamma)\right] V((LX)_{[\gamma]}).$$

- Assume X is of non positive curvature. $E(x_{\cdot}) = \frac{1}{2} \int_0^1 |\dot{x}_s|^2 ds$ is Morse-Bott on LX, s.t., all the critical points are local minima.
- $B_E = \{ \text{closed geodesics on } \mathbf{X} \} = \coprod_{[\gamma] \in [\Gamma]} B_{[\gamma]}.$
- Reformulation of the formal Fried conjecture:

$$\log T_X(\rho) = \sum_{[\gamma] \in [\Gamma] \setminus \{1\}} \operatorname{Tr} \left[\rho(\gamma)\right] V(B_{[\gamma]}).$$
Shu SHEN The Fried conjecture

Reformulation of the problem Selberg trace formula The proof of the main theorem

Reductive group and symmetric space

- G: connected real reductive Lie group. That is $G \subset \operatorname{GL}_N(\mathbf{R})$ s.t., $g \in G \Longrightarrow g^t \in G$.
 - $K = G \cap O(N)$ maximal compact.
 - Cartan decomposition: $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}$, and

$$(Y,k)\in \mathfrak{p}\times K\simeq e^Yk\in G.$$

• For $Y_1, Y_2 \in \mathfrak{g}$, set $B(Y_1, Y_2) = \text{Tr}[Y_1Y_2]$. Then

$$B|_{\mathfrak{p}}>0, \qquad \quad B|_{\mathfrak{k}}<0, \qquad \quad \mathfrak{p}\bot_B\mathfrak{k}.$$

- e.g. $G = \operatorname{SL}_n(\mathbf{R}), \operatorname{SO}^0(n, 1) \dots$
- X = G/K symmetric space.
 - X contractible
 - $G \to X$ is a K-principal bundle. $TX = G \times_K \mathfrak{p}$
 - $\exists \ g^{TX}$ of non positive curvature (induced by B)

Reformulation of the problem Selberg trace formula The proof of the main theorem

Reductive group and symmetric space

- G: connected real reductive Lie group. That is $G \subset \operatorname{GL}_N(\mathbf{R})$ s.t., $g \in G \Longrightarrow g^t \in G$.
 - $K = G \cap O(N)$ maximal compact.
 - Cartan decomposition: $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}$, and

$$(Y,k)\in \mathfrak{p}\times K\simeq e^Yk\in G.$$

• For $Y_1, Y_2 \in \mathfrak{g}$, set $B(Y_1, Y_2) = \operatorname{Tr}[Y_1Y_2]$. Then

$$B|_{\mathfrak{p}}>0, \qquad \quad B|_{\mathfrak{k}}<0, \qquad \quad \mathfrak{p}\bot_B\mathfrak{k}.$$

• e.g.
$$G = \operatorname{SL}_n(\mathbf{R}), \operatorname{SO}^0(n, 1) \dots$$

- $\widetilde{X} = G/K$ symmetric space.
 - X contractible .
 - $G \to \widetilde{X}$ is a K-principal bundle. $T\widetilde{X} = G \times_K \mathfrak{p}$.
 - $\exists g^{T\widetilde{X}}$ of non positive curvature (induced by B).

Reformulation of the problem Selberg trace formula The proof of the main theorem

The main result of S. 2016

 $X=\Gamma\backslash\widetilde{X}$ loc. symmetric space, where $\Gamma\subset G$ is discrete cocompact and torsion free.

- $\pi_1(X) = \Gamma$.
- $B_{[\gamma]}$ is a compact manifold. (loc. symmetric)
- the elements in $B_{[\gamma]}$ have the same length $l_{[\gamma]}$.

Theorem (S. 2016)

For $\operatorname{Re}(\sigma) \gg 1$, we define a Ruelle-type dynamical zeta function by

$$R(\sigma) = \exp\left(\sum_{[\gamma] \in [\Gamma] \setminus \{1\}} \operatorname{Tr}[\rho(\gamma)] V(B_{[\gamma]}) e^{-\sigma l_{[\gamma]}}\right).$$

 $R(\sigma)$ has a mero. extension on **C**, which is holomorphic at 0, s.t.,

$$R(0) = T_X(\rho).$$

Reformulation of the problem Selberg trace formula The proof of the main theorem

The main result of S. 2016

 $X=\Gamma\backslash\widetilde{X}$ loc. symmetric space, where $\Gamma\subset G$ is discrete cocompact and torsion free.

- $\pi_1(X) = \Gamma$.
- $B_{[\gamma]}$ is a compact manifold. (loc. symmetric)
- the elements in $B_{[\gamma]}$ have the same length $l_{[\gamma]}$.

Theorem (S. 2016)

For $\operatorname{Re}(\sigma) \gg 1$, we define a Ruelle-type dynamical zeta function by

$$R(\sigma) = \exp\Big(\sum_{[\gamma] \in [\Gamma] \setminus \{1\}} \operatorname{Tr}[\rho(\gamma)] V(B_{[\gamma]}) e^{-\sigma l_{[\gamma]}} \Big).$$

 $R(\sigma)$ has a mero. extension on **C**, which is holomorphic at 0, s.t.,

 $R(0) = T_X(\rho).$

Reformulation of the problem Selberg trace formula The proof of the main theorem

The trace formula: Selberg, Bismut...

- Recall $\Gamma \setminus G \to X = \Gamma \setminus G/K$ is a K-principal bundle. Let $\tau: K \to \operatorname{GL}(E)$ be a rep. of K and let $\mathscr{E} = \Gamma \setminus G \times_K E$.
- $C^{\mathfrak{g}} \in U(\mathfrak{g})$ the Casimir operator. It acts on $C^{\infty}(X, \mathscr{E} \otimes F)$, which is denoted by $C^{\mathfrak{g}, \tau}$.
- Selberg: $\exp(-tC^{\mathfrak{g},\tau})$ is of trace class, such that $\operatorname{Tr}\left[\exp(-tC^{\mathfrak{g},\tau})\right] = \sum_{[\gamma]\in[\Gamma]} \operatorname{Tr}[\rho(\gamma)]\operatorname{vol}(B_{[\gamma]})O_{[\gamma]}$
- Evaluation of orbital integral $O_{[\gamma]}$: Harish-Chandra, Bismut's explicit formula (2011).
- If $E = \Lambda^{\cdot}(\mathfrak{p}^*)$ and τ is induced by adjoint action, then $\mathscr{E} = \Lambda^{\cdot}(T^*X), \qquad C^{\mathfrak{g},\tau} = \Box^X.$

Reformulation of the problem Selberg trace formula The proof of the main theorem

The trace formula: Selberg, Bismut...

- Recall $\Gamma \setminus G \to X = \Gamma \setminus G/K$ is a K-principal bundle. Let $\tau: K \to \operatorname{GL}(E)$ be a rep. of K and let $\mathscr{E} = \Gamma \setminus G \times_K E$.
- $C^{\mathfrak{g}} \in U(\mathfrak{g})$ the Casimir operator. It acts on $C^{\infty}(X, \mathscr{E} \otimes F)$, which is denoted by $C^{\mathfrak{g}, \tau}$.
- Selberg: $\exp(-tC^{\mathfrak{g},\tau})$ is of trace class, such that

$$\operatorname{Tr}\left[\exp(-tC^{\mathfrak{g},\tau})\right] = \sum_{[\gamma] \in [\Gamma]} \operatorname{Tr}[\rho(\gamma)] \operatorname{vol}(B_{[\gamma]}) O_{[\gamma]}.$$

- Evaluation of orbital integral $O_{[\gamma]}$: Harish-Chandra, Bismut's explicit formula (2011).
- If $E = \Lambda^{\cdot}(\mathfrak{p}^*)$ and τ is induced by adjoint action, then $\mathscr{E} = \Lambda^{\cdot}(T^*X), \qquad C^{\mathfrak{g},\tau} = \Box^X.$

Reformulation of the problem Selberg trace formula The proof of the main theorem

The trace formula: Selberg, Bismut...

- Recall $\Gamma \setminus G \to X = \Gamma \setminus G/K$ is a K-principal bundle. Let $\tau: K \to \operatorname{GL}(E)$ be a rep. of K and let $\mathscr{E} = \Gamma \setminus G \times_K E$.
- $C^{\mathfrak{g}} \in U(\mathfrak{g})$ the Casimir operator. It acts on $C^{\infty}(X, \mathscr{E} \otimes F)$, which is denoted by $C^{\mathfrak{g}, \tau}$.
- Selberg: $\exp(-tC^{\mathfrak{g},\tau})$ is of trace class, such that

$$\operatorname{Tr}\left[\exp(-tC^{\mathfrak{g},\tau})\right] = \sum_{[\gamma] \in [\Gamma]} \operatorname{Tr}[\rho(\gamma)] \operatorname{vol}(B_{[\gamma]}) O_{[\gamma]}.$$

- Evaluation of orbital integral $O_{[\gamma]}$: Harish-Chandra, Bismut's explicit formula (2011).
- If $E = \Lambda^{\cdot}(\mathfrak{p}^*)$ and τ is induced by adjoint action, then $\mathscr{E} = \Lambda^{\cdot}(T^*X), \qquad C^{\mathfrak{g},\tau} = \Box^X.$

Reformulation of the problem Selberg trace formula The proof of the main theorem

Proof: the case $\delta(G) \neq 1$

- Set $\delta(G) = \operatorname{rk}_{\mathbf{C}}(G) \operatorname{rk}_{\mathbf{C}}(K)$.
 - $\mathfrak{t}\subset\mathfrak{k}$ Cartan subalgebra. Set

$$\mathfrak{b} = \{ Y \in \mathfrak{p} : [Y, \mathfrak{t}] = 0 \}.$$

• dim $\mathfrak{b} = \delta(G)$.

• If $\delta(G) = 0$, $\not\supseteq F$ with $H^{\bullet}(X, F) = 0$, since

$$\chi(Z,F) = m\chi(Z) = (-1)^{\frac{\dim X}{2}} m \frac{|W_G|}{|W_K|} \frac{\operatorname{vol}(X)}{\operatorname{vol}(\widetilde{X}^d)} \neq 0.$$

- If $\delta(G) \ge 2$, then $T_X(\rho) = 1$ and $V(B_{[\gamma]}) = 0$.
- The case $\delta(G) = 1$ is much more difficult...

Reformulation of the problem Selberg trace formula The proof of the main theorem

Proof: the case $\delta(G) \neq 1$

- Set $\delta(G) = \operatorname{rk}_{\mathbf{C}}(G) \operatorname{rk}_{\mathbf{C}}(K)$.
 - $\mathfrak{t}\subset\mathfrak{k}$ Cartan subalgebra. Set

$$\mathfrak{b} = \{Y \in \mathfrak{p} : [Y, \mathfrak{t}] = 0\}.$$

dim b = δ(G).
 If δ(G) = 0, ∠F with H[•](X, F) = 0, since
 χ(Z, F) = mχ(Z) = (-1)^{dim X}/₂ m |W_G| vol(X)/₂ ≠ 0

$$\chi(Z,F) = m\chi(Z) = (-1)^{\frac{\dim X}{2}} m \frac{|W_G|}{|W_K|} \frac{\operatorname{vol}(X)}{\operatorname{vol}(\widetilde{X}^d)} \neq 0.$$

- If $\delta(G) \ge 2$, then $T_X(\rho) = 1$ and $V(B_{[\gamma]}) = 0$.
- The case $\delta(G) = 1$ is much more difficult...

Reformulation of the problem Selberg trace formula The proof of the main theorem

Proof: the case $\delta(G) \neq 1$

- Set $\delta(G) = \operatorname{rk}_{\mathbf{C}}(G) \operatorname{rk}_{\mathbf{C}}(K)$.
 - $\mathfrak{t}\subset\mathfrak{k}$ Cartan subalgebra. Set

$$\mathfrak{b} = \{ Y \in \mathfrak{p} : [Y, \mathfrak{t}] = 0 \}.$$

$$\chi(Z,F) = m\chi(Z) = (-1)^{\frac{\dim X}{2}} m \frac{|W_G|}{|W_K|} \frac{\operatorname{vol}(X)}{\operatorname{vol}(\widetilde{X}^d)} \neq 0.$$

- If $\delta(G) \ge 2$, then $T_X(\rho) = 1$ and $V(B_{[\gamma]}) = 0$.
- The case $\delta(G) = 1$ is much more difficult...

Reformulation of the problem Selberg trace formula The proof of the main theorem

The case: $\delta(G) = 1$

 $\bullet\,$ We have the orthogonal decomposition $\mathfrak{p}=\mathfrak{b}\oplus\mathfrak{c}\oplus\mathfrak{d}$ such that

$$\mathfrak{b}\oplus\mathfrak{c}=\{Y\in\mathfrak{p}:[Y,\mathfrak{b}]=0\}.$$

Let K_M ⊂ K be the connected component of the identity of the centralizer of b in K.

Proposition (S. 2016)

The actions of K_M on \mathfrak{c} and \mathfrak{d} lift uniquely to elements in the real representation ring R(K) of K.

• We have an identity in R(K),

Reformulation of the problem Selberg trace formula The proof of the main theorem

The case: $\delta(G) = 1$

• We have the orthogonal decomposition $\mathfrak{p} = \mathfrak{b} \oplus \mathfrak{c} \oplus \mathfrak{d}$ such that

$$\mathfrak{b} \oplus \mathfrak{c} = \{Y \in \mathfrak{p} : [Y, \mathfrak{b}] = 0\}.$$

Let K_M ⊂ K be the connected component of the identity of the centralizer of b in K.

Proposition (S. 2016)

The actions of K_M on \mathfrak{c} and \mathfrak{d} lift uniquely to elements in the real representation ring R(K) of K.

• We have an identity in R(K),

$$\sum_{i=1}^{\dim \mathfrak{p}} (-1)^i i \Lambda^i(\mathfrak{p}^*) = \sum_{j=0}^{\dim \mathfrak{d}} \underbrace{\sum_{i=0}^{\dim \mathfrak{c}} (-1)^{i+j-1} \Lambda^i(\mathfrak{c}^*) \otimes \Lambda^j(\mathfrak{d}^*)}_{i=0}.$$

denoted by $\tau_j = \tau_j^+ - \tau_j^- \in R(K)$

• Put $T_j(\sigma) = \det(\sigma + C^{\mathfrak{g}, \tau_j^+}) / \det(\sigma + C^{\mathfrak{g}, \tau_j^-}).$

Reformulation of the problem Selberg trace formula The proof of the main theorem

The case: $\delta(G) = 1$

 $\bullet\,$ We have the orthogonal decomposition $\mathfrak{p}=\mathfrak{b}\oplus\mathfrak{c}\oplus\mathfrak{d}$ such that

$$\mathfrak{b} \oplus \mathfrak{c} = \{Y \in \mathfrak{p} : [Y, \mathfrak{b}] = 0\}.$$

Let K_M ⊂ K be the connected component of the identity of the centralizer of b in K.

Proposition (S. 2016)

The actions of K_M on \mathfrak{c} and \mathfrak{d} lift uniquely to elements in the real representation ring R(K) of K.

• We have an identity in R(K),

$$\begin{split} & \sum_{i=1}^{\dim \mathfrak{p}} (-1)^i i \Lambda^i(\mathfrak{p}^*) = \sum_{j=0}^{\dim \mathfrak{d}} \underbrace{\sum_{i=0}^{\dim \mathfrak{o}} (-1)^{i+j-1} \Lambda^i(\mathfrak{c}^*) \otimes \Lambda^j(\mathfrak{d}^*)}_{\text{denoted by } \tau_j = \tau_j^+ - \tau_j^- \in R(K)} \\ & \text{Put } T_j(\sigma) = \det(\sigma + C^{\mathfrak{g}, \tau_j^+}) / \det(\sigma + C^{\mathfrak{g}, \tau_j^-}). \end{split}$$

Reformulation of the problem Selberg trace formula The proof of the main theorem

Meromorphic extension of $R(\sigma)$

• $T_j(\sigma) = \det(\sigma + C^{\mathfrak{g}, \tau_j^+}) / \det(\sigma + C^{\mathfrak{g}, \tau_j^-})$ is meromorphic on **C**.

Proposition (S. 2016)

There exits an odd polynomial $P(\sigma)$ and $\lambda_j \in \mathbf{R}$ such that $R(\sigma) = \exp(P(\sigma)) \prod_{j=0}^{\dim \mathfrak{d}} T_j \left((\sigma + \lambda_j)^2 - \lambda_j^2 \right)$

• Since $\sum_{i} (-1)^{i} i \Lambda^{i}(\mathfrak{p}^{*}) = \sum_{j} \tau_{j}$, we have

$$\prod_{i=1}^{\lim X} \det \left(\sigma + \Box^X |_{\Omega^i} \right)^{(-1)^i i} = \prod_{j=0}^{\dim \mathfrak{d}} T_j(\sigma)$$

• If every T_j is holomorphic at $\sigma = 0$, then

$$R(0) = \prod_{j=0}^{\dim \mathfrak{d}} T_j(0) = T_X(\rho).$$

Reformulation of the problem Selberg trace formula The proof of the main theorem

Meromorphic extension of $R(\sigma)$

• $T_j(\sigma) = \det(\sigma + C^{\mathfrak{g}, \tau_j^+}) / \det(\sigma + C^{\mathfrak{g}, \tau_j^-})$ is meromorphic on **C**.

Proposition (S. 2016)

There exits an odd polynomial
$$P(\sigma)$$
 and $\lambda_j \in \mathbf{R}$ such that

$$R(\sigma) = \exp(P(\sigma)) \prod_{j=0}^{\dim \mathfrak{d}} T_j \left((\sigma + \lambda_j)^2 - \lambda_j^2 \right)$$

• Since $\sum_{i} (-1)^{i} i \Lambda^{i}(\mathfrak{p}^{*}) = \sum_{j} \tau_{j}$, we have

C

$$\prod_{i=1}^{\lim X} \det \left(\sigma + \Box^X |_{\Omega^i} \right)^{(-1)^i i} = \prod_{j=0}^{\dim \mathfrak{d}} T_j(\sigma).$$

• If every T_j is holomorphic at $\sigma = 0$, then

$$R(0) = \prod_{j=0}^{\dim \mathfrak{d}} T_j(0) = T_X(\rho).$$

Reformulation of the problem Selberg trace formula The proof of the main theorem

Meromorphic extension of $R(\sigma)$

• $T_j(\sigma) = \det(\sigma + C^{\mathfrak{g}, \tau_j^+}) / \det(\sigma + C^{\mathfrak{g}, \tau_j^-})$ is meromorphic on **C**.

Proposition (S. 2016)

There exits an odd polynomial
$$P(\sigma)$$
 and $\lambda_j \in \mathbf{R}$ such that

$$R(\sigma) = \exp(P(\sigma)) \prod_{j=0}^{\dim \mathfrak{d}} T_j \left((\sigma + \lambda_j)^2 - \lambda_j^2 \right)$$

• Since $\sum_{i} (-1)^{i} i \Lambda^{i}(\mathfrak{p}^{*}) = \sum_{j} \tau_{j}$, we have

$$\prod_{i=1}^{\dim X} \det \left(\sigma + \Box^X |_{\Omega^i} \right)^{(-1)^i i} = \prod_{j=0}^{\dim \mathfrak{d}} T_j(\sigma).$$

• If every T_j is holomorphic at $\sigma = 0$, then

$$R(0) = \prod_{j=0}^{\dim \mathfrak{d}} T_j(0) = T_X(\rho).$$

Reformulation of the problem Selberg trace formula The proof of the main theorem

The end of the proof: regularity of T_j at 0

Proposition (S. 2016)

 $T_j(\sigma)$ is holomorphic at $\sigma = 0$.

Proof.

It is enough to show $r_j = \dim \ker(C^{\mathfrak{g},\tau_j^+}) - \dim \ker(C^{\mathfrak{g},\tau_j^-}) = 0.$ If

 $L^2(\Gamma \backslash G, F) = \bigoplus_{-} n(\pi)\pi,$

then $r_j = \sum_{\pi, C^{\mathfrak{g}, \pi} = 0} n(\pi) \left(\dim(\pi \otimes_{\mathbf{R}} \tau_j^+)^K - \dim(\pi \otimes_{\mathbf{R}} \tau_j^-)^K \right).$ Using **Hecht-Schmid** Character formula,

$$r_j = \sum_{\pi,\chi_{\pi}=0} n(\pi) \left(\dim(\pi \otimes_{\mathbf{R}} \tau_j^+)^K - \dim(\pi \otimes_{\mathbf{R}} \tau_j^-)^K \right).$$

By the classification theory of Vogan-Zuckerman and Salamanca-Riba, if $H^{\cdot}(X, F) = 0$, then $\chi_{\pi} = 0 \Longrightarrow n(\pi) = 0$.

Reformulation of the problem Selberg trace formula The proof of the main theorem

The end of the proof: regularity of T_j at 0

Proposition (S. 2016)

 $T_j(\sigma)$ is holomorphic at $\sigma = 0$.

Proof.

It is enough to show $r_j = \dim \ker(C^{\mathfrak{g},\tau_j^+}) - \dim \ker(C^{\mathfrak{g},\tau_j^-}) = 0$. If

$$L^{2}(\Gamma \backslash G, F) = \bigoplus_{\pi} n(\pi)\pi,$$

then $r_j = \sum_{\pi, C^{\mathfrak{g}, \pi} = 0} n(\pi) \left(\dim(\pi \otimes_{\mathbf{R}} \tau_j^+)^K - \dim(\pi \otimes_{\mathbf{R}} \tau_j^-)^K \right).$ Using Hecht-Schmid Character formula,

$$r_j = \sum_{\pi,\chi_{\pi}=0} n(\pi) \left(\dim(\pi \otimes_{\mathbf{R}} \tau_j^+)^K - \dim(\pi \otimes_{\mathbf{R}} \tau_j^-)^K \right).$$

By the classification theory of Vogan-Zuckerman and Salamanca-Riba, if $H^{\cdot}(X, F) = 0$, then $\chi_{\pi} = 0 \Longrightarrow n(\pi) = 0$

Reformulation of the problem Selberg trace formula The proof of the main theorem

The end of the proof: regularity of T_j at 0

Proposition (S. 2016)

 $T_j(\sigma)$ is holomorphic at $\sigma = 0$.

Proof.

It is enough to show $r_j = \dim \ker(C^{\mathfrak{g},\tau_j^+}) - \dim \ker(C^{\mathfrak{g},\tau_j^-}) = 0$. If

$$L^{2}(\Gamma \backslash G, F) = \bigoplus_{\pi} n(\pi)\pi,$$

then $r_j = \sum_{\pi, C^{\mathfrak{g}, \pi} = 0} n(\pi) \left(\dim(\pi \otimes_{\mathbf{R}} \tau_j^+)^K - \dim(\pi \otimes_{\mathbf{R}} \tau_j^-)^K \right).$ Using Hecht-Schmid Character formula,

$$r_j = \sum_{\pi, \chi_{\pi} = 0} n(\pi) \left(\dim(\pi \otimes_{\mathbf{R}} \tau_j^+)^K - \dim(\pi \otimes_{\mathbf{R}} \tau_j^-)^K \right).$$

By the classification theory of Vogan-Zuckerman and Salamanca-Riba, if $H^{\cdot}(X, F) = 0$, then $\chi_{\pi} = 0 \Longrightarrow n(\pi) = 0$.

Reformulation of the problem Selberg trace formula The proof of the main theorem

The end of the proof: regularity of T_j at 0

Proposition (S. 2016)

 $T_j(\sigma)$ is holomorphic at $\sigma = 0$.

Proof.

It is enough to show $r_j = \dim \ker(C^{\mathfrak{g},\tau_j^+}) - \dim \ker(C^{\mathfrak{g},\tau_j^-}) = 0$. If

$$L^{2}(\Gamma \backslash G, F) = \bigoplus_{\pi} n(\pi)\pi,$$

then $r_j = \sum_{\pi, C^{\mathfrak{g}, \pi} = 0} n(\pi) \left(\dim(\pi \otimes_{\mathbf{R}} \tau_j^+)^K - \dim(\pi \otimes_{\mathbf{R}} \tau_j^-)^K \right).$ Using Hecht-Schmid Character formula,

$$r_j = \sum_{\pi, \chi_{\pi} = 0} n(\pi) \left(\dim(\pi \otimes_{\mathbf{R}} \tau_j^+)^K - \dim(\pi \otimes_{\mathbf{R}} \tau_j^-)^K \right).$$

By the classification theory of Vogan-Zuckerman and Salamanca-Riba, if $H^{\cdot}(X, F) = 0$, then $\chi_{\pi} = 0 \Longrightarrow n(\pi) = 0$.

Reformulation of the problem Selberg trace formula The proof of the main theorem

Bibliography

 S. Shen, Analytic torsion, dynamical zeta functions and orbital integrals, arXiv:1602.00664.
 Announced in C. R. Math. Acad. Sci. Paris 354 (2016), no. 4, 433–436.

Thanks!

Reformulation of the problem Selberg trace formula The proof of the main theorem

Bibliography

 S. Shen, Analytic torsion, dynamical zeta functions and orbital integrals, arXiv:1602.00664.
 Announced in C. R. Math. Acad. Sci. Paris 354 (2016), no. 4, 433–436.

Thanks!