An Obata-Lichnerowicz theorem for stratified spaces

llaria Mondello

June 15th, 2016

Analysis, Geometry and Topology of Stratified Spaces, CIRM

A classical result

Theorem (Obata-Lichnerowicz)

Let (M^n, g) be a compact Riemannian manifold of dimension n and assume $\operatorname{Ric}_g \geq (n-1)g$. Then the first non-zero eigenvalue $\lambda_1(M)$ of the Laplacian Δ_g is larger or equal than n, with equality if and only if (M^n, g) is isometric to the round sphere $(\mathbb{S}^n, \operatorname{can})$.

Question : Is it possible to obtain such a lower bound on the spectrum of the Laplacian on a stratified space?

A classical result

Theorem (Obata-Lichnerowicz)

Let (M^n, g) be a compact Riemannian manifold of dimension n and assume $\operatorname{Ric}_g \geq (n-1)g$. Then the first non-zero eigenvalue $\lambda_1(M)$ of the Laplacian Δ_g is larger or equal than n, with equality if and only if (M^n, g) is isometric to the round sphere $(\mathbb{S}^n, \operatorname{can})$.

Question : Is it possible to obtain such a lower bound on the spectrum of the Laplacian on a stratified space?

Stratified space

A compact stratified space X is a compact metric space which admits a finite decomposition in strata Σ^j , j = 0, ... n such that :

$$X = \Omega \sqcup \bigcup_j \Sigma^j$$

- Ω is an open smooth manifold, of dimension *n*, dense in *X* ;
- Σ^{j} is a smooth manifold of dimension j; $\Sigma^{n-1} = \emptyset$;
- For any $x \in \Sigma^j$ there exists a neighbourhood $\mathcal{U}_x \subset X$ and a homeomorphism

$$\varphi_{\mathsf{x}}: \mathbb{B}^{j}(\delta_{\mathsf{x}}) \times C_{[0,\delta_{\mathsf{x}})}(Z_{j}) \to \mathcal{U}_{\mathsf{x}}.$$

where Z_i is a stratified space, called link of the stratum Σ^j .

Stratified space

A compact stratified space X is a compact metric space which admits a finite decomposition in strata Σ^j , j = 0, ... n such that :

$$X = \Omega \sqcup \bigcup_j \Sigma^j$$

- Ω is an open smooth manifold, of dimension *n*, dense in *X*;
- Σ^{j} is a smooth manifold of dimension j; $\Sigma^{n-1} = \emptyset$;
- For any $x \in \Sigma^j$ there exists a neighbourhood $\mathcal{U}_x \subset X$ and a homeomorphism

$$\varphi_{\mathsf{x}}: \mathbb{B}^{j}(\delta_{\mathsf{x}}) \times C_{[0,\delta_{\mathsf{x}})}(Z_{j}) \to \mathcal{U}_{\mathsf{x}}.$$

where Z_j is a stratified space, called link of the stratum Σ^j .

Stratified space

A compact stratified space X is a compact metric space which admits a finite decomposition in strata Σ^j , j = 0, ... n such that :

$$X = \Omega \sqcup \bigcup_j \Sigma^j$$

- Ω is an open smooth manifold, of dimension *n*, dense in *X*;
- Σ^{j} is a smooth manifold of dimension j; $\Sigma^{n-1} = \emptyset$;
- For any $x \in \Sigma^j$ there exists a neighbourhood $\mathcal{U}_x \subset X$ and a homeomorphism

$$\varphi_{\mathbf{x}}: \mathbb{B}^{j}(\delta_{\mathbf{x}}) \times C_{[0,\delta_{\mathbf{x}})}(Z_{j}) \to \mathcal{U}_{\mathbf{x}}.$$

where Z_j is a stratified space, called link of the stratum Σ^j .

A model metric g_0 on X such that :

- g_0 is a Riemannian metric on Ω ;
- for any $x\in\Sigma^j$, the metric on $\mathcal{U}_{\!X}$ has the form :

$$g_0 = h + dr^2 + r^2 k_j,$$

where h is a Riemannian metric on \mathbb{R}^{j} , $r \in (0, 1)$ and k_{j} is a model metric on the link Z_{j} .

For $\mathbf{j}=\mathbf{n}-\mathbf{2}$: the link Z_j is a circle \mathbb{S}^1 and for α fixed we consider metrics :

$$g_0 = h + dr^2 + (\alpha/2\pi)^2 r^2 d\theta^2,$$

We call α the **angle** of the stratum Σ^{n-2}

An admissible metric g, satisfying : there exist $\Lambda > 0$, $\gamma > 1$ such that for any $x \in \Sigma^j$ and for any j, the metric g on \mathcal{U}_x satisfies :

$$\|\varphi_x^*g - g_0\|_{g_0} \leq \Lambda r^{\gamma}, \qquad r \in (0, \delta_x].$$

A model metric g_0 on X such that :

- g_0 is a Riemannian metric on Ω ;
- for any $x\in\Sigma^j$, the metric on \mathcal{U}_x has the form :

$$g_0=h+dr^2+r^2k_j,$$

where h is a Riemannian metric on \mathbb{R}^{j} , $r \in (0, 1)$ and k_{j} is a model metric on the link Z_{j} .

For $\mathbf{j} = \mathbf{n} - \mathbf{2}$: the link Z_j is a circle \mathbb{S}^1 and for α fixed we consider metrics :

$$g_0 = h + dr^2 + (\alpha/2\pi)^2 r^2 d\theta^2,$$

We call α the **angle** of the stratum Σ^{n-2}

An admissible metric g, satisfying : there exist $\Lambda > 0$, $\gamma > 1$ such that for any $x \in \Sigma^j$ and for any j, the metric g on \mathcal{U}_x satisfies :

$$\|\varphi_x^*g - g_0\|_{g_0} \leq \Lambda r^{\gamma}, \qquad r \in (0, \delta_x].$$

A model metric g_0 on X such that :

- g_0 is a Riemannian metric on Ω ;
- for any $x\in\Sigma^j$, the metric on \mathcal{U}_x has the form :

$$g_0=h+dr^2+r^2k_j,$$

where h is a Riemannian metric on \mathbb{R}^{j} , $r \in (0, 1)$ and k_{j} is a model metric on the link Z_{j} .

For $\mathbf{j} = \mathbf{n} - \mathbf{2}$: the link Z_j is a circle \mathbb{S}^1 and for α fixed we consider metrics :

$$g_0 = h + dr^2 + (\alpha/2\pi)^2 r^2 d\theta^2,$$

We call α the **angle** of the stratum Σ^{n-2} .

An admissible metric g, satisfying : there exist $\Lambda > 0$, $\gamma > 1$ such that for any $x \in \Sigma^j$ and for any j, the metric g on \mathcal{U}_x satisfies :

$$\|\varphi_x^*g - g_0\|_{g_0} \leq \Lambda r^{\gamma}, \qquad r \in (0, \delta_x].$$

A model metric g_0 on X such that :

- g_0 is a Riemannian metric on Ω ;
- for any $x\in\Sigma^j$, the metric on \mathcal{U}_x has the form :

$$g_0=h+dr^2+r^2k_j,$$

where h is a Riemannian metric on \mathbb{R}^{j} , $r \in (0, 1)$ and k_{j} is a model metric on the link Z_{j} .

For $\mathbf{j} = \mathbf{n} - \mathbf{2}$: the link Z_j is a circle \mathbb{S}^1 and for α fixed we consider metrics :

$$\mathsf{g}_0 = \mathsf{h} + \mathsf{d} \mathsf{r}^2 + (\alpha/2\pi)^2 \mathsf{r}^2 \mathsf{d} \theta^2,$$

We call α the **angle** of the stratum Σ^{n-2} .

An admissible metric g, satisfying : there exist $\Lambda > 0$, $\gamma > 1$ such that for any $x \in \Sigma^{j}$ and for any j, the metric g on \mathcal{U}_{x} satisfies :

$$\|\varphi_x^*g - g_0\|_{g_0} \leq \Lambda r^{\gamma}, \qquad r \in (0, \delta_x].$$

Analytic and geometric tools

One can define

- Sobolev space W^{1,2}(X) : the closure of the Lipschitz functions on X with the usual norm.
- Laplacian Δ_g: the Friedrichs extension of the quadratic form on C₀[∞](Ω) given by the Dirichlet energy.

For any point $x\in\Sigma^j$ define :

- the tangent cone at $x : C(S_x) = \mathbb{R}^j \times C(Z_j)$.
- the tangent sphere at $x : S_x = \left[0, \frac{\pi}{2}\right] \times \mathbb{S}^{j-1} \times Z_j$.

Analytic and geometric tools

One can define

- Sobolev space W^{1,2}(X) : the closure of the Lipschitz functions on X with the usual norm.
- Laplacian Δ_g: the Friedrichs extension of the quadratic form on C₀[∞](Ω) given by the Dirichlet energy.

For any point $x \in \Sigma^j$ define :

- the tangent cone at $x : C(S_x) = \mathbb{R}^j \times C(Z_j)$.
- the tangent sphere at $x : S_x = \left[0, \frac{\pi}{2}\right] \times \mathbb{S}^{j-1} \times Z_j$.

A lower bound for the curvature

Definition (Ricci lower bound)

We say that (X^n, g) stratified space has Ricci tensor bounded below by (n - 1) if :

• $\operatorname{Ric}_g \geq (n-1)g$ on the regular set Ω ;

• The angle along the stratum Σ^{n-2} is $\alpha \leq 2\pi$.

A lower bound for the curvature

Definition (Ricci lower bound)

We say that (X^n, g) stratified space has Ricci tensor bounded below by (n - 1) if :

- $\operatorname{Ric}_g \geq (n-1)g$ on the regular set Ω ;
- The angle along the stratum Σ^{n-2} is $\alpha \leq 2\pi$.

Singular Lichnerowicz theorem

Theorem (M., 2014)

Let (X^n, g) be a stratified space with Ricci tensor bounded below by (n-1). Then the first non-zero eigenvalue $\lambda_1(X)$ is larger than or equal to the dimension n.

Remarks :

• If $lpha>2\pi$, this theorem does not hold. Counterexample :

$$\begin{split} \mathbb{S}^n_{\alpha} &= [0, \pi/2] \times \mathbb{S}^{n-2} \times \mathbb{S}^1, \\ g_{\alpha} &= d\varphi^2 + \cos^2(\varphi) g_{\mathbb{S}^{n-2}} + (\alpha/2\pi)^2 \sin^2(\varphi) d\theta^2. \end{split}$$

 K. Bacher, K-T. Sturm 2011 : same result for spherical cones over compact manifolds with Ricci tensor bounded below by (n-1).

Singular Lichnerowicz theorem

Theorem (M., 2014)

Let (X^n, g) be a stratified space with Ricci tensor bounded below by (n-1). Then the first non-zero eigenvalue $\lambda_1(X)$ is larger than or equal to the dimension n.

Remarks :

• If $\alpha>2\pi$, this theorem does not hold. Counterexample :

$$\begin{split} \mathbb{S}_{\alpha}^{n} &= [0, \pi/2] \times \mathbb{S}^{n-2} \times \mathbb{S}^{1}, \\ g_{\alpha} &= d\varphi^{2} + \cos^{2}(\varphi) g_{\mathbb{S}^{n-2}} + (\alpha/2\pi)^{2} \sin^{2}(\varphi) d\theta^{2}. \end{split}$$

 K. Bacher, K-T. Sturm 2011 : same result for spherical cones over compact manifolds with Ricci tensor bounded below by (n-1).

Singular Lichnerowicz theorem

Theorem (M., 2014)

Let (X^n, g) be a stratified space with Ricci tensor bounded below by (n-1). Then the first non-zero eigenvalue $\lambda_1(X)$ is larger than or equal to the dimension n.

Remarks :

• If $\alpha>2\pi$, this theorem does not hold. Counterexample :

$$\begin{split} \mathbb{S}_{\alpha}^{n} &= [0, \pi/2] \times \mathbb{S}^{n-2} \times \mathbb{S}^{1}, \\ g_{\alpha} &= d\varphi^{2} + \cos^{2}(\varphi) g_{\mathbb{S}^{n-2}} + (\alpha/2\pi)^{2} \sin^{2}(\varphi) d\theta^{2}. \end{split}$$

 K. Bacher, K-T. Sturm 2011 : same result for spherical cones over compact manifolds with Ricci tensor bounded below by (n-1).

Obata singular theorem

Theorem (Myers singular theorem, M. 2015)

Let (X^n, g) be a stratified space with Ricci tensor bounded below by (n - 1). Then its diameter is less than or equal to π . Moreover, $\lambda_1(X) = n$ if and only if diam $(X) = \pi$.

Theorem (M., 2015)

Let (X^n, g) be a stratified space with Ricci tensor bounded below by (n-1). Then $\lambda_1(X) = n$ if and only if there exists a stratified space (Γ^{n-1}, h) such that (X^n, g) is isometric to the warped product $([-\pi/2, \pi/2] \times \Gamma, dt^2 + \cos^2(t)h)$.

Obata singular theorem

Theorem (Myers singular theorem, M. 2015)

Let (X^n, g) be a stratified space with Ricci tensor bounded below by (n - 1). Then its diameter is less than or equal to π . Moreover, $\lambda_1(X) = n$ if and only if diam $(X) = \pi$.

Theorem (M., 2015)

Let (X^n, g) be a stratified space with Ricci tensor bounded below by (n-1). Then $\lambda_1(X) = n$ if and only if there exists a stratified space (Γ^{n-1}, h) such that (X^n, g) is isometric to the warped product $([-\pi/2, \pi/2] \times \Gamma, dt^2 + \cos^2(t)h)$.

Obata singular theorem

Theorem (Myers singular theorem, M. 2015)

Let (X^n, g) be a stratified space with Ricci tensor bounded below by (n - 1). Then its diameter is less than or equal to π . Moreover, $\lambda_1(X) = n$ if and only if diam $(X) = \pi$.

Theorem (M., 2015)

Let (X^n, g) be a stratified space with Ricci tensor bounded below by (n-1). Then $\lambda_1(X) = n$ if and only if there exists a stratified space (Γ^{n-1}, h) such that (X^n, g) is isometric to the warped product $([-\pi/2, \pi/2] \times \Gamma, dt^2 + \cos^2(t)h)$.

 \Leftarrow is trivial : for $([-\pi/2, \pi/2] \times \Gamma, dt^2 + \cos^2(t)h)$, we have an explicit eigenfunction relative to $n, \varphi(t) = \sin(t)$.

As for $\Rightarrow \dots$

Step 0. Induction on the dimension : true for n = 1; assume that the result holds for any $k \leq (n - 1)$.

Step 1. Locally g is a warped product.

Step 2. On the regular set g is a warped product.

 \Leftarrow is trivial : for $([-\pi/2, \pi/2] \times \Gamma, dt^2 + \cos^2(t)h)$, we have an explicit eigenfunction relative to $n, \varphi(t) = \sin(t)$.

As for \Rightarrow ...

Step 0. Induction on the dimension : true for n = 1; assume that the result holds for any $k \leq (n - 1)$.

Step 1. Locally g is a warped product.

Step 2. On the regular set g is a warped product.

 \Leftarrow is trivial : for $([-\pi/2, \pi/2] \times \Gamma, dt^2 + \cos^2(t)h)$, we have an explicit eigenfunction relative to $n, \varphi(t) = \sin(t)$.

As for \Rightarrow ...

Step 0. Induction on the dimension : true for n = 1; assume that the result holds for any $k \leq (n - 1)$.

Step 1. Locally *g* is a warped product.

Step 2. On the regular set g is a warped product.

 \Leftarrow is trivial : for $([-\pi/2, \pi/2] \times \Gamma, dt^2 + \cos^2(t)h)$, we have an explicit eigenfunction relative to $n, \varphi(t) = \sin(t)$.

As for \Rightarrow ...

Step 0. Induction on the dimension : true for n = 1; assume that the result holds for any $k \leq (n - 1)$.

Step 1. Locally *g* is a warped product.

Step 2. On the regular set g is a warped product.

 \Leftarrow is trivial : for $([-\pi/2, \pi/2] \times \Gamma, dt^2 + \cos^2(t)h)$, we have an explicit eigenfunction relative to $n, \varphi(t) = \sin(t)$.

As for \Rightarrow ...

Step 0. Induction on the dimension : true for n = 1; assume that the result holds for any $k \leq (n - 1)$.

Step 1. Locally *g* is a warped product.

Step 2. On the regular set g is a warped product.

Indeed, if $\Delta_g \varphi = n\varphi$ and $\Gamma_0 = \varphi^{-1}(0) \cap \Omega$, for any $x \in \Gamma_0$ there exist neighbourhoods $\mathcal{W}_x \subset \Omega$, $\mathcal{V}_x \subset \Gamma_0$, an interval I_x and $E : I_x \times \mathcal{V}_x \to \mathcal{W}_x$ such that

$$E^*g=dt^2+\cos^2(t)h,\quad ext{where}\,\,h=gert_{\Gamma_0}.$$

Step 2. On the regular set g is a warped product.

For any $x \in \Gamma_0$ we have $I_x = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (use the induction hypothesis on tangent spheres) \Rightarrow Extend *E* from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \Gamma_0$ to Ω .

Step 3. Globally g is a warped product.

Indeed, if $\Delta_g \varphi = n\varphi$ and $\Gamma_0 = \varphi^{-1}(0) \cap \Omega$, for any $x \in \Gamma_0$ there exist neighbourhoods $\mathcal{W}_x \subset \Omega$, $\mathcal{V}_x \subset \Gamma_0$, an interval I_x and $E: I_x \times \mathcal{V}_x \to \mathcal{W}_x$ such that

$${\sf E}^*g=dt^2+\cos^2(t)h,\quad {
m where}\,\,h=g|_{{\sf \Gamma}_0}.$$

Step 2. On the regular set g is a warped product.

For any $x \in \Gamma_0$ we have $I_x = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (use the induction hypothesis on tangent spheres) \Rightarrow Extend *E* from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \Gamma_0$ to Ω .

Step 3. Globally g is a warped product.

Indeed, if $\Delta_g \varphi = n\varphi$ and $\Gamma_0 = \varphi^{-1}(0) \cap \Omega$, for any $x \in \Gamma_0$ there exist neighbourhoods $\mathcal{W}_x \subset \Omega$, $\mathcal{V}_x \subset \Gamma_0$, an interval I_x and $E: I_x \times \mathcal{V}_x \to \mathcal{W}_x$ such that

$${\sf E}^*g=dt^2+\cos^2(t)h,\quad {
m where}\,\,h=g|_{{\sf \Gamma}_0}.$$

Step 2. On the regular set g is a warped product.

For any $x \in \Gamma_0$ we have $I_x = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (use the induction hypothesis on tangent spheres) \Rightarrow Extend *E* from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \Gamma_0$ to Ω .

Step 3. Globally g is a warped product.

Indeed, if $\Delta_g \varphi = n\varphi$ and $\Gamma_0 = \varphi^{-1}(0) \cap \Omega$, for any $x \in \Gamma_0$ there exist neighbourhoods $\mathcal{W}_x \subset \Omega$, $\mathcal{V}_x \subset \Gamma_0$, an interval I_x and $E: I_x \times \mathcal{V}_x \to \mathcal{W}_x$ such that

$${\sf E}^*g=dt^2+\cos^2(t)h,\quad {
m where}\,\,h=g|_{{\sf \Gamma}_0}.$$

Step 2. On the regular set g is a warped product.

For any $x \in \Gamma_0$ we have $I_x = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (use the induction hypothesis on tangent spheres) \Rightarrow Extend *E* from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \Gamma_0$ to Ω .

Step 3. Globally g is a warped product.

Indeed, if $\Delta_g \varphi = n\varphi$ and $\Gamma_0 = \varphi^{-1}(0) \cap \Omega$, for any $x \in \Gamma_0$ there exist neighbourhoods $\mathcal{W}_x \subset \Omega$, $\mathcal{V}_x \subset \Gamma_0$, an interval I_x and $E: I_x \times \mathcal{V}_x \to \mathcal{W}_x$ such that

$${\sf E}^*g=dt^2+\cos^2(t)h,\quad {
m where}\,\,h=g|_{{\sf \Gamma}_0}.$$

Step 2. On the regular set g is a warped product.

For any $x \in \Gamma_0$ we have $I_x = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (use the induction hypothesis on tangent spheres) \Rightarrow Extend *E* from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \Gamma_0$ to Ω .

Step 3. Globally g is a warped product.

Obata singular theorem

Some remarks :

- In dimension n = 2 result by R. Mazzeo, H. Weiss 2015.
- C. Ketterer, 2014 : Obata-Lichnerowicz theorem for metric measure spaces satisfying the curvature dimension condition RCD*(K, n) (uses N. Gigli's Splitting theorem).

Obata singular theorem

Some remarks :

- In dimension n = 2 result by R. Mazzeo, H. Weiss 2015.
- C. Ketterer, 2014 : Obata-Lichnerowicz theorem for metric measure spaces satisfying the curvature dimension condition RCD*(K, n) (uses N. Gigli's Splitting theorem).

Some consequences on the Yamabe problem

The Yamabe problem : Given a stratified space (X^n, g) does there exist a metric $\tilde{g} = u^{4/n-2}g$, conformal to g, with constant scalar curvature $S_{\tilde{g}}$?

The Yamabe constant :

$$Y(X,[g]) = \inf_{\tilde{g} \in [g]} \frac{\int_X S_{\tilde{g}} dv_{\tilde{g}}}{\operatorname{Vol}_{\tilde{g}}(X)^{\frac{n-2}{n}}}.$$

The Yamabe constant of a ball :

$$Y(B(p,r)) = \inf \left\{ \int_X S_{\tilde{g}}, u \in W_0^{1,2}(B(p,r) \cap \Omega), \|u\|_{\frac{2n}{n-2}} = 1 \right\}.$$

$$Y_{\ell}(X) = \inf_{p \in X} \lim_{r \to 0} Y(B(p,r)).$$

Some consequences on the Yamabe problem

The Yamabe problem : Given a stratified space (X^n, g) does there exist a metric $\tilde{g} = u^{4/n-2}g$, conformal to g, with constant scalar curvature $S_{\tilde{g}}$?

The Yamabe constant :

$$Y(X,[g]) = \inf_{\tilde{g} \in [g]} \frac{\int_X S_{\tilde{g}} dv_{\tilde{g}}}{\operatorname{Vol}_{\tilde{g}}(X)^{\frac{n-2}{n}}}.$$

The Yamabe constant of a ball :

$$Y(B(p,r)) = \inf \left\{ \int_X S_{\tilde{g}}, u \in W_0^{1,2}(B(p,r) \cap \Omega), \|u\|_{\frac{2n}{n-2}} = 1 \right\}.$$

$$Y_{\ell}(X) = \inf_{p \in X} \lim_{r \to 0} Y(B(p,r)).$$

Some consequences on the Yamabe problem

The Yamabe problem : Given a stratified space (X^n, g) does there exist a metric $\tilde{g} = u^{4/n-2}g$, conformal to g, with constant scalar curvature $S_{\tilde{g}}$?

The Yamabe constant :

$$Y(X,[g]) = \inf_{\tilde{g} \in [g]} \frac{\int_X S_{\tilde{g}} dv_{\tilde{g}}}{\operatorname{Vol}_{\tilde{g}}(X)^{\frac{n-2}{n}}}.$$

The Yamabe constant of a ball :

$$Y(B(p,r)) = \inf \left\{ \int_X S_{\tilde{g}}, u \in W_0^{1,2}(B(p,r) \cap \Omega), \|u\|_{\frac{2n}{n-2}} = 1 \right\}.$$

$$Y_{\ell}(X) = \inf_{p \in X} \lim_{r \to 0} Y(B(p,r)).$$

Some consequences on the Yamabe problem

The Yamabe problem : Given a stratified space (X^n, g) does there exist a metric $\tilde{g} = u^{4/n-2}g$, conformal to g, with constant scalar curvature $S_{\tilde{g}}$?

The Yamabe constant :

$$Y(X,[g]) = \inf_{\tilde{g} \in [g]} \frac{\int_X S_{\tilde{g}} dv_{\tilde{g}}}{\operatorname{Vol}_{\tilde{g}}(X)^{\frac{n-2}{n}}}.$$

The Yamabe constant of a ball :

$$Y(B(p,r)) = \inf \left\{ \int_X S_{\tilde{g}}, u \in W_0^{1,2}(B(p,r) \cap \Omega), \|u\|_{\frac{2n}{n-2}} = 1 \right\}.$$

$$Y_{\ell}(X) = \inf_{p \in X} \lim_{r \to 0} Y(B(p,r)).$$

Theorem (K. Akutagawa, G. Carron, R. Mazzeo, 2012)

Let (X^n, g) be a stratified space. If S_g belongs to L^q with $q > \frac{n}{2}$ and if the Yamabe constant Y(X, [g]) is **strictly smaller** than the local Yamabe constant $Y_{\ell}(X)$ then there exists a conformal metric with constant scalar curvature.

Problem : value of the local Yamabe constant?

Theorem (K. Akutagawa, G. Carron, R. Mazzeo, 2012)

Let (X^n, g) be a stratified space. If S_g belongs to L^q with $q > \frac{n}{2}$ and if the Yamabe constant Y(X, [g]) is **strictly smaller** than the local Yamabe constant $Y_{\ell}(X)$ then there exists a conformal metric with constant scalar curvature.

Problem : value of the local Yamabe constant?

The singular Lichnerowicz theorem allows one to

• give a lower bound for the Yamabe constant of stratified spaces with Ricci tensor bounded below.

$$Y(X,[g]) \geq \frac{n(n-2)}{4} \operatorname{Vol}_{g}(X)^{\frac{2}{n}};$$

• compute the local Yamabe constant when the links carry an Einstein metric.

For example, for (X^n, g) stratified space with one singular stratum Σ^{n-2} of angle $\alpha < 2\pi$, the local Yamabe constant is :

$$Y_{\ell}(X) = \left(\frac{\alpha}{2\pi}\right)^{\frac{2}{n}} Y(\mathbb{S}^n, [\operatorname{can}]).$$

The singular Lichnerowicz theorem allows one to

• give a lower bound for the Yamabe constant of stratified spaces with Ricci tensor bounded below.

$$Y(X,[g]) \geq \frac{n(n-2)}{4} \operatorname{Vol}_{g}(X)^{\frac{2}{n}};$$

• compute the local Yamabe constant when the links carry an Einstein metric.

For example, for (X^n, g) stratified space with one singular stratum Σ^{n-2} of angle $\alpha < 2\pi$, the local Yamabe constant is :

$$Y_{\ell}(X) = \left(\frac{\alpha}{2\pi}\right)^{\frac{2}{n}} Y(\mathbb{S}^n, [\operatorname{can}]).$$

The singular Lichnerowicz theorem allows one to

• give a lower bound for the Yamabe constant of stratified spaces with Ricci tensor bounded below.

$$Y(X,[g]) \geq \frac{n(n-2)}{4} \operatorname{Vol}_{g}(X)^{\frac{2}{n}};$$

• compute the local Yamabe constant when the links carry an Einstein metric.

For example, for (X^n, g) stratified space with one singular stratum Σ^{n-2} of angle $\alpha < 2\pi$, the local Yamabe constant is :

$$Y_{\ell}(X) = \left(\frac{\alpha}{2\pi}\right)^{\frac{2}{n}} Y(\mathbb{S}^n, [\mathsf{can}]).$$

Thanks to the Obata-Lichnerowicz singular theorem :

Theorem (M., '15)

Let (X^n, g) a stratified space such that $\operatorname{Ric}_g = (n-1)g$ on the regular set Ω and the angle along the stratum Σ^{n-2} is less than or equal to 2π . Then the metric g attains the Yamabe constant Y(X, [g]). Moreover, there exists other conformal metrics \tilde{g} , not homothetic to g, with constant scalar curvature, if and only if (X^n, g) is isometric to a warped product $([-\pi/2, \pi/2] \times \hat{X}^{n-1}, dt^2 + \cos^2 t\hat{g})$.

Lower bound on Y(X, [g]) attained if Ric_g = (n − 1)g.
 ∃ğ̃ = u^{4/n−2}g non-trivial, S_{ğ̃} = const ⇒ ∃φ s.t. Δ_gφ = nφ.

Thanks to the Obata-Lichnerowicz singular theorem :

Theorem (M., '15)

Let (X^n, g) a stratified space such that $\operatorname{Ric}_g = (n-1)g$ on the regular set Ω and the angle along the stratum Σ^{n-2} is less than or equal to 2π . Then the metric g attains the Yamabe constant Y(X, [g]). Moreover, there exists other conformal metrics \tilde{g} , not homothetic to g, with constant scalar curvature, if and only if (X^n, g) is isometric to a warped product $([-\pi/2, \pi/2] \times \hat{X}^{n-1}, dt^2 + \cos^2 t\hat{g})$.

• Lower bound on Y(X, [g]) attained if $Ric_g = (n-1)g$. • $\exists \tilde{g} = u^{4/n-2}g$ non-trivial, $S_{\tilde{g}} = const \Rightarrow \exists \varphi$ s.t. $\Delta_g \varphi = n\varphi$.

Thanks to the Obata-Lichnerowicz singular theorem :

Theorem (M., '15)

Let (X^n, g) a stratified space such that $\operatorname{Ric}_g = (n-1)g$ on the regular set Ω and the angle along the stratum Σ^{n-2} is less than or equal to 2π . Then the metric g attains the Yamabe constant Y(X, [g]). Moreover, there exists other conformal metrics \tilde{g} , not homothetic to g, with constant scalar curvature, if and only if (X^n, g) is isometric to a warped product $([-\pi/2, \pi/2] \times \hat{X}^{n-1}, dt^2 + \cos^2 t\hat{g})$.

- Lower bound on Y(X, [g]) attained if $Ric_g = (n-1)g$.
- $\exists \tilde{g} = u^{4/n-2}g$ non-trivial, $S_{\tilde{g}} = const \Rightarrow \exists \varphi \text{ s.t. } \Delta_g \varphi = n\varphi$.

Thanks to the Obata-Lichnerowicz singular theorem :

Theorem (M., '15)

Let (X^n, g) a stratified space such that $\operatorname{Ric}_g = (n-1)g$ on the regular set Ω and the angle along the stratum Σ^{n-2} is less than or equal to 2π . Then the metric g attains the Yamabe constant Y(X, [g]). Moreover, there exists other conformal metrics \tilde{g} , not homothetic to g, with constant scalar curvature, if and only if (X^n, g) is isometric to a warped product $([-\pi/2, \pi/2] \times \hat{X}^{n-1}, dt^2 + \cos^2 t\hat{g})$.

- Lower bound on Y(X, [g]) attained if $Ric_g = (n-1)g$.
- $\exists \tilde{g} = u^{4/n-2}g$ non-trivial, $S_{\tilde{g}} = const \Rightarrow \exists \varphi \text{ s.t. } \Delta_g \varphi = n\varphi.$