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Lie groupoids

A Lie groupoid is a pair of manifolds (G,G(0)) (arrows, units) with:

G
s,r
⇒ G(0) (source, range); υ : G(0) −→ G (inclusion of units);

m : G(2) := G×
s,r

G −→ G (multiplication); ι : G −→ G (inversion);

s, r,m submersions; all maps C∞;
r(υ(x)) = s(υ(x)) = x;
(γ1γ2)γ3 = γ1(γ2γ3);
r(γ)γ = γ; γs(γ) = γ;
r(γ−1) = s(γ); s(γ−1) = r(γ);
r(γ1γ2) = r(γ1); s(γ1γ2) = s(γ2);
γγ−1 = r(γ); γ−1γ = s(γ).

(Consequences: ι−1 = ι, υ is an embedding)
Simplifying assumption : G(0) is compact.



Examples
Lie groups, bundles of Lie groups are Lie groupoids.
X × X ⇒ X, with (x, y).(y, z) = (x, z), etc. . . .
Let π : H → S be a submersion. This gives: H ×

S
H ⇒ H.

G a Lie group acting on X. Transformation gpd: G× X ⇒ X with

s(g, x) = x, r(g, x) = g.x, (g, hx).(h, x) = (gh, x), ι(g, x) = (g−1, gx).

X a (cpct) mfd with boundary H and π : H → S a submersion.

Gπ :=
◦
X ×

◦
X ∪ π̃∗(TS× R)⇒ X,

where π̃ : H ×
S

H → S. This arises as a sub-mfd of a suitable

blow-up (twice) of X2.
Following these lines, one can define similar blow-up spaces and
Lie groupoids associated with any mfd with iterated fibred
corners (Debord-Rochon-L.), a companion category to stratified
spaces.
We will go back to this example (depth 1 only) later.



Convolution

f ∗ g(γ) =

∫
m−1(γ)

f (γ1)g(γ2) = m∗(f ⊗ g|G(2)), f , g ∈ C∞c (G,Ω1/2)

G-operator
Any continuous linear map P : C∞c (G)→ C∞(G) such that

P(f ∗ g) = P(f ) ∗ g for any f , g ∈ C∞c .

A G-op P has an adjoint if there exists a G-op Q such that

P(f )? ∗ g = f ? ∗ Q(g) ; ∀f , g ∈ C∞c .

Questions
Can one define convolution of distributions on G ?
Relationship between G-ops and convolution ops. by
distributions ?



Transversal distributions
Consider the submersion s : G→ G(0) and set:

D′s(G) = {u ∈ D′(G) ; ∀f ∈ C∞c (G), s∗(u.f ) ∈ C∞(G(0))}.

Thm (Schwartz Kernel Thms for groupoids):

D′(G) ' LC∞(M)(C∞c (G),D′(M)),

D′s(G) ' LC∞(M)(C∞c (G),C∞(M)) ' C∞s (M,D′(G)).

Here M = G(0) and densities are hidden, similar statement for D′r .

Theorem (LMV)

Convolution of functions extends to:

D′s(G)× E ′(s)(G)
∗−→ D′(s)(G); D′r(G)× C∞c (G)

∗−→ C∞(G).

In particular E ′s(G) is an algebra with unit: 〈δ, f 〉 =
∫

G(0) f .
E ′r,s(G) is a unital subalgebra with involution: u? = ι∗(u).



G-ops and convolution

We can make precise the statement “G-ops are convolution
operators”:

Theorem (LMV)

The map u 7→ u ∗ · gives

D′r(G) ' OpG (space of G-operators)

D′r,s(G) ' Op∗G (subspace of G-operators with adjoints)

Question
How to compute the Wave Front set of a convolution product ?

It brings in the cotangent symplectic groupoid T∗G of
Coste-Dazord-Weinstein (CDW)



CDW groupoid

Lie Algebroid of G: AG = TG(0)G/TG(0) −→ G(0).
Also

AG ' ker ds|G(0) ' ker dr|G(0)

Dual Lie Algebroid of G: A∗G = N∗G(0) ⊂ T∗G.

Differentiating all structure maps of a Lie gpd G produces another Lie
groupoid: TG⇒ TG(0).

Transposing everything in TG leads to a gpd structure on the
cotangent space T∗G with unit space A∗G.



CDW groupoid

The cotangent groupoid Γ = (T∗G⇒ A∗G) is given as follows.

(Source) sΓ(γ, ξ) = (s(γ),L∗γ(ξ)) ∈ A∗s(γ)G,

(Range) rΓ(γ, ξ) = (r(γ),R∗γ(ξ)) ∈ A∗r(γ)G,

ie, for sΓ(γ, ξ), you restrict the linear form ξ to the subspace TγGr(γ) and then transport it over

x = s(γ) (with the only natural operation available : the co-differential at x of left multiplication

Lγ : Gx → Gr(γ)). The result is in a canonical way a linear form on TxG vanishing on TxG(0), thus

an element of A∗x G.

When sΓ(γ1, ξ1) = rΓ(γ2, ξ2) ∈ A∗G then

(product) mΓ(γ1, ξ1, γ2, ξ2) = (γ, ξ) ∈ T∗G

where
γ = γ1γ2 and ξ = (tdm(γ1,γ2))

−1(ξ1, ξ2).

Finally,
(Inversion) (γ, ξ)−1 = (γ−1,−t(dιγ)(ξ)).



CDW groupoid

• All structure maps of T∗G⇒ A∗G are linear.
• Γ = (T∗G, ω) is a symplectic groupoid, which means that

Graph(mΓ) = {(δ, δ1, δ2) ∈ Γ3 ; δ = δ1δ2}

is a Lagrangian submanifold of (−Γ)× Γ× Γ.
Follows from

Graph(mΓ) = φ(N∗Graph(m))

where φ = (−Id, Id, Id) : Γ3 '−→ (−Γ)× Γ× Γ.

Let us give two basic examples.



T∗G: Examples

If G is a Lie group then A∗G = g∗.
G acts on g∗ on the right by:

Ad∗g .ξ = L∗g R∗g−1ξ.

This gives a Lie groupoid g∗ o G⇒ g∗ (transformation gpd).
Then the map

Φ : T∗G −→ g∗ o G

(g, ξ) 7−→ (g,R∗gξ)

is a Lie groupoid isomorphism.



T∗G: Examples

If G = X × X × Z ⇒ X × Z, then

Γ(0) = A∗G = {(x, x, z, ξ,−ξ, 0) ; (x, ξ) ∈ T∗X, z ∈ Z}
' N∗(∆X)× Z

' T∗X × Z.

We get

sΓ(x, y, z, ξ, η, σ) = (y,−η, z) ; rΓ(x, y, z, ξ, η, σ) = (x, ξ, z)

and

(x, y, z, ξ, η, σ).(y, x′, z,−η, ξ′, σ′) = (x, x′, z, ξ, ξ′, σ + σ′),

(x, y, z, ξ, η, σ)−1 = (y, x, z,−η,−ξ,−σ).



Convolution, Wave Front and T∗G

Some notations:
◦
Γ := r−1

Γ (A∗G \ 0) ∩ s−1
Γ (A∗G \ 0) ⊂ T∗G (admissible or no-zeros sub-gpd),

D′a(G) := {u ∈ D′(G) ; WF(u) ⊂
◦
Γ} (admissible distributions).

Easy facts: Ψ(G) = I(G,G(0)) ⊂ D′a(G) ⊂ D′s,r(G).

Theorem (LMV)

Let uj ∈ E ′a(G), j = 1, 2. Then: WF(u1 ∗ u2) ⊂WF(u1) .WF(u2) .

Convolution is permitted under the weaker assumption:

WF(u1)×WF(u2)∩ ker mΓ = ∅,

and then WF(u1 ∗ u2) ⊂ mΓ((WF(u1)∪0)× (WF(u2)∪0) \ 0× 0).



A calculus for Lagrangians in T∗G

Definition: G-relations (a replacement of canonical relations)

Any conic Lagrangian submanifold of Γ = T∗G contained in
◦
Γ.

If G = X × X, these are the conic Lagrangian submanifolds of T∗(X × X) contained in

⊂ T∗X \ 0× T∗X \ 0.

Theorem (LV)

1 Let Λ1,Λ2 be two G-relations.
If Λ1 × Λ2 and Γ(2) intersect cleanly (cleanly composable), then

Λ1.Λ2 ⊂ Γ

is a local (= immersed) G-relation.
2 Let Λ be a G-relation. Then

Λ? := ιΓ(Λ)

is a G-relation.



A calculus for Lagrangians in T∗G

Theorem (LV)

Let Λ be a G-relation. The following conditions are equivalent:
1 There exists a G-relation Λ′ cleanly composable with Λ such that

Λ.Λ′ = rΓ(Λ) and Λ′.Λ = sΓ(Λ).

2 Λ is a bissection, that is, the maps

rΓ : Λ −→ Γ(0) and sΓ : Λ −→ Γ(0)

are diffeomorphisms onto their images.
3 Λ and Λ? are transversally composable, that is Λ×Λ? t Γ(2), and

Λ.Λ? = rΓ(Λ) and Λ?.Λ = sΓ(Λ).

In that case, we say that Λ is invertible.



Reminder: Lagrangian distributions

Let
X be a C∞ manifold of dimension n,
Λ be a conic Lagrangian submanifold of T∗X \ 0.

The set Im(X,Λ), m ∈ R, consists of distributions u ∈ D′(X) of the
form:

u =
∑
j∈J

∫
eiφj(x,θj)aj(x, θj)dθj mod C∞(X)

where for all j,
(x, θj) ∈ Vj ⊂ Uj × RNj (here Uj a coordinate patch and Vj an open
cone);
φj : Vj → R is a non-degenerate phase function parametrizing Λ;
aj(x, θj) ∈ Sm+(nX−2Nj)/4(Uj × RNj) and supp(aj) ⊂ Vj \ 0.

Such distributions are called Lagrangian distributions subordinated to
Λ.



G-FIOs: definition, composition

Definition
G-FIO are the Lagrangian distributions on G subordinated to
G-relations.

Theorem (LV)

1 If Λ is a G-relation and A ∈ Im(G,Λ), then A? ∈ Im(G,Λ?).
2 If Λ1,Λ2 are closed G-relations, cleanly composable with excess

e and A1 ∈ Im1
c (G,Λ1), A2 ∈ Im2(G,Λ2), then

A1 ∗ A2 ∈ Im1+m2+e/2−(n−2n(0))/4(G,Λ1.Λ2).

Here n is the dimension of G and n(0) is the dimension of G(0).

Observation : Λ being a G-relation, G-FIO are adjointable
G-operators.

Convention : Ψm(G) := Im+(n−2n(0))/4(G,A∗G).



Principal symbols

Remember that densities have been hidden:

I(G,Λ) ⊂ D′(G,Ω1/2) and Ω1/2 = Ω1/2(ker ds)⊗ Ω1/2(ker dr).

It yields: σ : Im(G,Λ) −→ S[m+n/4](Λ,MΛ ⊗ Ω
1/2
Λ ⊗ Ω1/2(ker dsΓ)).

When Λ = A∗G, the Maslov bundle MΛ is trivial and

Ω
1/2
A∗G ⊗ Ω1/2(ker dsΓ) = (Ω

1/2
T∗G)|A∗G ' A∗G× C.

The last trivialization decreases by (n− n(0))/2 the degree of symbols, thus :

σ : Ψm(G) = Im+(n−2n(0))/4(G,A∗G) −→ S[m](A∗G).

If a1, a2 and a are principal symbols of A1, A2 and A1.A2 then

a(δ) =

∫
δ1δ2=δ,
δj∈Λj

a1(δ1)a2(δ2).



First consequences

Corollary : Module structure, Egorov thm
1 Any G-relation Λ is transversally composable with A∗G, and:

Ψ∗c (G) ∗ I(G,Λ) ⊂ I(G,Λ)

2 Assume that two composable G-relations Λ1,Λ2 satisfy
Λ1.Λ2 ⊂ A∗G. Then

Ic(G,Λ1) ∗Ψ(G) ∗ Ic(G,Λ2) ⊂ Ψ(G).

Corollary: C∗-continuity

Let Λ be an invertible closed G-rel. and A ∈ I(n−2n(0))/4
c (G,Λ). Then

A ∈M(C∗(G)).

If A ∈ Im
c (G,Λ) with m < (n− 2n(0))/4 then A ∈ C∗(G).

(Hint: if A ∈ I(n−2n(0))/4
c (G,Λ) with Λ invertible, then A∗A ∈ I(n−2n(0))/4

c (G, A∗G) = Ψ0
c(G).)



Representations of G-FIOs
Remind: P is a G-op iff
P is a C∞ equivariant family Px ∈ L(C∞c (Gx),C∞(Gx)), x ∈ G(0).
(Which means that

1 ∀x ∈ G(0), ∀f ∈ C∞c (G), f |Gx = 0⇒ P(f )|Gx = 0.

2 ∀γ ∈ G, ∀f ∈ C∞c (G), R∗γPs(γ)(f ) = Pr(γ)(R∗γ f ).)

Also, if P is a (compactly supported) G-op, then the formula

r#(P)(f )(x) = P(r∗f )(x), f ∈ C∞(G(0)), x ∈ G(0)

defines an operator r#(P) ∈ L(C∞(G(0))).

Questions
When P is a G-FIO, nature of Px ? nature of r#(P) ?

Consider :
The orbits in G(0): Ox = r(s−1(x)), x ∈ G(0),
The orbits in G: L = GO = r−1(O), O ∈ {orbits of G(0)}.

(Orbits are immersed sub-mfds. Orbits in G are saturated sub-gpds.)



Representations of G-FIOs

G-FIOs represented in the fibers
Assume that Λ is a family G-relation, that is:

T∗UG t Λ for any orbit U in G (family G-relation).

Then Λ produces, by functorial operations, an equivariant family of
canonical relations (*) Λx ⊂ T∗Gx × T∗Gx and

P ∈ Im(G,Λ)⇒ Px ∈ Im−(n−2n(0))/4(Gx × Gx,Λx), ∀x.

Remarks:

If Λ fails to be a family G-relation, then the Px are still given by oscillatory integrals, the
phases being possibly degenerated.

If Λ is invertible, then it is a family G-relation.

(*) means

c∗γ(Λy) = Λx, for any γ ∈ Gx
y, where cγ : Gx × Gx −→ Gy × Gy.

Setting π : G×
s

G→ G(0), (γ1, γ2) 7→ s(γ1),

L = ∪x∈G(0)Λx ⊂ (ker dπ)∗ is a C∞ submanifold,
L t π̃, where π̃ : (ker dπ)∗ → G(0) is the natural extension of π.



Representations of G-FIOs

There are converse statements:

Theorem
Let (Λx)x∈G(0) be an equivariant C∞ family of Lagrangians
⊂ T∗Gx \ 0× T∗Gx \ 0. Then there exists a unique (family) G-relation Λ
“gluing” the family in the sense that

d∗x (Λ) = Λx ∀x ∈ G(0).

Here dx is the map: (γ1, γ2)→ γ1γ
−1
2 .

Proposition
G-FFIOs are in one-to-one correspondence with G-op P such that for
all x, the operator Px is a FIO on Gx.

G-FFIO = G-FIO associated with a family G-rel.



Representations of G-FIOs

Now, consider r#P ∈ L(C∞(G(0)):

r#P(f )(x) = P(f ◦ r)(x).

We take P ∈ Ic(G,Λ).

Firstly, r#(P) extends to D′(G(0)):

Indeed: ∀u ∈ D′(G(0)),WF(r∗u) ⊂ ker sΓ. By assumption on Λ, we have
Λ× ker sΓ ∩ ker mΓ = ∅ so that the convolution P ∗ (r∗u) is permitted and

WF(P ∗ (r∗u)) ⊂ (Λ ∪ 0). ker sΓ ⊂ ker sΓ.

Since ker sΓ ∩ A∗G = 0, the following restriction is well defined:

r#P(u) = υ∗(P ∗ (r∗u)) ∈ D′(G(0)).



Representations of G-FIOs

Secondly, assume that the G-relation Λ of P satisfies

Λ t ker sΓ + ker rΓ.

Then for any orbit O and x ∈ O, one obtains from Λ and functorial
operations a Lagrangian

Λx ⊂ T∗O.

Gluing these Lagrangian produces a canonical relation
I = Ix∈O(Λx) ⊂ T∗O× O and

r#,OP ∈ Im−(n−2n(0))/4(O× O, I).

Here r#,OP ∈ L(C∞(O)) is obtained from r#P in the obvious way.

Remarks:

Without the extra transversality (or any weaker) assumption on Λ, r#,OP is still
given by oscillatory integrals, but the phases can be degenerated.

invertible G relations satisfy the condition above.



Illustration: manifold with fibred boundary
Model case only: X = [0,∞)× H, H = Rk × Rn−1−k, π = p1. Recall

G =
◦
X ×

◦
X ∪ R× TS× Z × Z =

◦
G ∪ ∂G.

Write m = (x, y, z) ∈ X. Then the bijection ψ : [0,∞)x × ∂G→ G
defined by:

ψ(x, t, y, v, z1, z2) =

{
(0, t, y, v, z1, z2) ∈ ∂G if x = 0

(x + x2t, y + xv, z1, x, y, z2) ∈
◦
X ×

◦
X if x > 0.

provides a C∞ structure to G. In these coordinates, the Lie algebroid,
at a unit point m ∈ X is the linear span of ∂t, ∂v, ∂z1 and the anchor map

a = dr : AG −→ TX

sends them, respectively, to x2∂x, x∂y, ∂z. It induces an injective map

r# : Γ(AG) −→ Γ(TX)

with image Vπ(X) = {χ ∈ Vb(X), | χ|∂X ∈ ker dπ and χ.x ∈ x2C∞(X)}.



Illustration: manifold with fibred boundary

In particular:
AG ' πTX and A∗G ' πT∗X.

This gives the compactly supported part of the Φ-pseudodifferential
calculus (Mazzeo-Melrose) on X:

r# : Ic(G,A∗G) = Ψc(G) −→ ΨΦ(X).

Let Λ be a conic Lagrangian submanifold of T∗G \ 0. Then Λ satisfy
the no-zeros condition for Lagrangians if

Λ|◦
G
⊂ (T∗

◦
X \ 0)× (T∗

◦
X \ 0).

Λ|∂G avoids
ker sΓ, which is characterized by vanishing coordinates on dt, dv, dz2.
ker rΓ, which is characterized by vanishing coordinates on dt, dv, dz1.

Asuming this holds for Λ, let us have a look to the extra transversality
assumptions.



Illustration: manifold with fibred boundary

Recall that Λ is a family G-relation iff T∗F G t Λ (∗) for any orbit in G.
((∗), equivalently : TF + dp(TΛ) = TG, where p : T∗G→ G.)
Here, G has the following orbits :

◦
X ×

◦
X: above condition empty.

For all y ∈ S, Uy = R× Z × Z × TyS: above condition non empty,
can be tested easily on phase functions.

Assuming that P ∈ I(G,Λ) with Λ as above, we get , for any m ∈ X:

if m ∈
◦
X, a single πm(P) = r

#,
◦
X
(P) FIO on the mfd

◦
X,

if m = (0, y, z) ∈ ∂X, a family πm(P) = πy(P) of FIOs on the mfds
R× TyS× Z, commuting with the translation operators coming
from R× TyS.



(R× G)-FIO as a solution of a Cauchy problem
Going back to a general Lie gpd G, consider:

P ∈ Ψ1
c(G) elliptic and positive.

Let p ∈ C∞(A∗G \ 0) be the principal symbol of P and χt be the

hamiltonian flow of r∗Γp ∈ C∞(
◦

T∗G) (commutes with right
multiplication, complete). Then

C = {(t, τ, γ, ξ) ∈ T∗(R× G) | τ + p(rΓ(γ, ξ)) = 0, (γ, ξ) ∈ χt(A∗G \ 0)}

is a family R× G-relation.

Theorem (in preparation, Vassout-L.)

The one parameter group U : t 7→ e−itP satisfies
U ∈ I−1/4+(n−2n(0))/4(R× G, C).

The proof uses the fact that U satisfies the Cauchy problem{
(Dt + P)U = 0
U(0) = δ.



Historical Notes

1 Lie groups: Invariant Fourier integral operators on Lie groups,
Nielsen-Stetkær (1974).

2 Mfds with boundary, b-geometry framework: Boundary
Transformation Problems, R. Melrose (1981).

3 Foliations: Functional calculus for tangentially elliptic operators
on foliated manifolds, Y. Kordyukov (1994).

4 Mfds with conical sing.: The index of FIO on manifolds with
conical singularities”, V. Nazaikinskii, B. Schulze, B. Yu. Sternin
(2001). Also a chapter in Elliptic theory on singular manifolds,
Nazaikinskii-Savin-Schulze-Sternin.

5 Mfds with boundary, Boutet de Monvel’s framework: Fourier
Integral Operators of B-d-M Type, On a Class of Fourier Integral
Operators on Mfds with Bdy and Fourier integral operators and
the index of symplectomorphisms on Mfds with Bdy by U.
Battisti-S. Coriasco-E. Schrohe (2014-2015).


