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Some earlier work

Cheeger, Brüning-Seeley, Lesch, Gil-Mendoza, Mazzeo-Vertman,
Melrose-Vasy-Wunsch (Friedrichs form-domain).



The Friedrichs extension

Let H be a complex Hilbert space, and let

A : Dc ⇢ H ! H

be symmetric, densely defined. Let A
max

:= A? and A
min

:= A??.
In fact, both operators act as A? with domains

D
max

:= D(A?) = {v 2 H; Dc 3 u 7! hAu, vi is H-bounded},
D

min

:= Closure of Dc with respect to kuk2A = kuk2H + kA
max

uk2H
in D

max

,

respectively. The closed extensions of A are restrictions of A
max

to
subspaces D

min

⇢ D ⇢ D
max

that are closed in (D
max

, k · kA). This
is an abstract framework of (homogeneous) boundary conditions.



The Friedrichs extension

Now suppose that hAu, ui � khu, ui for some k 2 R for all
u 2 Dc . Define an inner product

[u, v ] := hAu, vi+ K hu, vi, u, v 2 Dc ,

where K � 0 is su�ciently large.
Let (H , [·, ·]) ,! H be the completion of Dc with respect to [·, ·].
The space H is independent of K � 0 involved in the definition
of [·, ·]. Then

AF := A
max

: DF ⇢ H ! H

with domain DF := D
max

\ H is selfadjoint. AF is the Friedrichs
extension of A.
Note: If AD is any selfadjoint extension of A with D ⇢ H , then
AD = AF .



Problem: How to describe domains/boundary conditions

1 Characterize D
min

.

2 Characterize D
max

/D
min

via a ‘suitable’ complement E of
D

min

in D
max

.

3 Domains are of the form D = D
min

� ED with ED ⇢ E .
Regarding (2): Von Neumann formulas:

D
max

= D
min

� �

ker(A
max

+ i)� ker(A
max

� i)
�

.

Issue: Generally impossible to determine kernels!



Problem: How to describe domains/boundary conditions

Now consider Riemannian manifold M, Hermitian bundle E , and
A 2 Di↵m(M;E ), m > 0, elliptic and symmetric.

A : C1
c (M;E ) ⇢ L2(M;E ) ! L2(M;E ).

Elliptic regularity: Hm
comp

(M;E ) ⇢ D
min

⇢ D
max

⇢ Hm
loc

(M;E ).

D
min

and D
max

di↵er at the singular locus (at infinity).

Elliptic regularity (again): ker(A
max

± i) ⇢ C1(M;E ).

Goal: Find complement E ⇢ C1(M;E ) of D
min

in D
max

distinguished by the asymptotic behavior of functions towards the
singular locus.
Leitmotif: Specify boundary conditions/domains by specifying
asymptotics.
In case of the Friedrichs extension (abstractly defined boundary
condition): Equivalent characterization in terms of asymptotics.



Example: Classical boundary value problems

Let ⌦ b Rq+1,

� : C1
c (⌦) ⇢ L2(⌦) ! L2(⌦).

Then:

D
min

= H2

0

(⌦) because k · k
�

⇠ k · kH2

0

on C1
c .

H = H1

0

(⌦) (by definition + Poincaré Inequality). This leads
to Dirichlet boundary condition u

�

�

@⌦
= 0 if @⌦ is smooth.

By definition:

DF = {u 2 H1

0

(⌦); �u 2 L2(⌦)} = D
max

\ H1

0

(⌦).



Example: Classical boundary value problems

Theorem (Classical Boundary Regularity Theorem)

If @⌦ 2 C1 we have DF = D
max

\ H1

0

(⌦) = H2(⌦) \ H1

0

(⌦).

Result is ‘delicate’: Consider ⌦ b R2 as shown.

↵ ⌦

Let (r , ✓) be polar coordinates cen-
tered at the singular point on the
boundary. Then DF contains C1-
functions u with

u(r , ✓) ⇠ c(✓)r
⇡

2⇡�↵

as r ! 0 with c(✓) 6⌘ 0.
Note: u /2 H2(⌦) for 0 < ↵ < ⇡.



Example: Classical boundary value problems

Theorem (Classical Boundary Regularity Theorem)

If @⌦ 2 C1 we have DF = D
max

\ H1

0

(⌦) = H2(⌦) \ H1

0

(⌦).

Even if @⌦ 2 C1, D
max

6= H2(⌦) (for q > 0, ⌦ ⇢ Rq+1):
H2(⌦) ,! L2(⌦) compact, but D

max

,! L2(⌦) is not compact:

dim{u 2 C1(⌦); �u = 0 in ⌦} = 1.

Standard proofs of the regularity theorem involve
approximation by di↵erence quotients/extension across the
boundary.
Methods not generalizable to singular spaces.



Example: Classical boundary value problems

There is a split-exact sequence:

0 ����! H2

0

(⌦)
◆����! H2(⌦)

T :u 7!

2

4u0
u
1

3

5

�������!
H3/2(@⌦)

�
H1/2(@⌦)

����! 0

Taylor expansion of u 2 H2(⌦) at @⌦ (x defining function for @⌦):

u ⇠ u
0

(y)x0 + u
1

(y)x1 +O(x2), y 2 @⌦.

Note:

H3/2(@⌦)
�

H1/2(@⌦)
= Hg(@⌦;C2), g =



3/2 0
0 1/2

�

2 End(C2).



Example: Classical boundary value problems

In local coordinates U of @⌦: Hg-norm of u 2 C1
c (U;C2) given by

kuk2Hg =

Z

Rq

khDy iguk2C2

dy .

Here hDy ig = F�1h⌘igF with

h⌘ig = h⌘i

2

43/2 0
0 1/2

3

5

=

h⌘i3/2 0
0 h⌘i1/2

�

2 End(C2).

For the Friedrichs extension we find:

Theorem (Friedrichs Extension for Classical BVPs)

There is a split-exact sequence

0 ����! H2

0

(⌦) = D
min

◆����! DF
T����! H1/2(@⌦) ����! 0.



Manifolds with edges

M
sing

compact manifold with edge Y .
Near Y : M

sing

is a cone bundle with link Z .
After blow-up: Compact manifold M with boundary @M that
is the total space of a fibration: Z ,! @M

.

........

........

........

........

........

........

.....

?
}

Y
Y and Z closed manifolds. Let x be a defining function for
the boundary of M, y 2 Y , and z 2 Z .

M
sing Y

Z



w -metrics and geometric operators

w -metric wg : Any metric on wT ⇤M (wedge cotangent bundle
of M).
Near @M: wg given by positive definite 2-cotensor in the
forms

dx , dyj , xdzk

with coe�cient functions that are smooth up to @M.
Example: dy2 + dx2 + x2dz2, a model wedge.

Incomplete metrics, with singular locus on the boundary.

Geometric operators: Laplacians �wg give rise to wedge
di↵erential operators.

Let wg be any w -metric. Then

wgL2(M) = x�
dim Z

2 L2(M) = x�
1+dim Z

2 L2b(M).

Consider generally H = x��L2b as base Hilbert space, � 2 R.



Wedge di↵erential operators

Wedge di↵erential operators of order m: A 2 Di↵m(
�
M) that in

adapted coordinates near the boundary take the form

A = x�m
X

|↵|+|�|+km

a↵,�,k(x , y , z)(xDx)
kD�

z (xDy )
↵

with coe�cients a↵,�,k that are C1 up to x = 0.

Notation: A 2 x�m Di↵m
e (M) (Di↵e ! Mazzeo ’91).

Example: Any regular di↵erential operator A 2 Di↵m(M) with
coe�cients smooth up to the boundary is an example for this with
the trivial boundary fibration Y = @M and Z = {pt}.
Example: Cone operators correspond to the other extreme case:
Y = {pt} and Z = @M.



Wedge di↵erential operators

A near the boundary:

A = x�m
X

|↵|+|�|+km

a↵,�,k(x , y , z)(xDx)
kD�

z (xDy )
↵

w -principal symbol w ��(A):

w ��(A) =
X

|↵|+|�|+k=m

a↵,�,k(x , y , z)⇠
k⇣�⌘↵

Is invariantly defined on wT ⇤M \ 0.
w -ellipticity: Invertibility of w ��(A) on wT ⇤M \ 0 (assumed
henceforth)
Note: w -ellipticity reduces to standard ellipticity up to the
boundary in the regular case.



Wedge di↵erential operators

A near the boundary:

A = x�m
X

|↵|+|�|+km

a↵,�,k(x , y , z)(xDx)
kD�

z (xDy )
↵

Conormal symbol/indicial family:

Â(y ,�) =
X

|�|+km

a
0,�,k(0, y , z)�

kD�
z : C1(Zy ) ! C1(Zy )

for y 2 Y and � 2 C.

This is, for each y 2 Y , a family of di↵erential operators on Zy

depending on � 2 C.



Wedge di↵erential operators

Proposition (Elliptic estimates and analytic Fredholm theory)

Â(y ,�) is a holomorphic family of Fredholm operators on Zy that
is meromorphically invertible with finitely many poles in each
horizontal strip of finite width, for every y 2 Y .

Example: In the regular case of A 2 Di↵m(M),

Â(y ,�) = ��(A)(dyx)�(� + i) · · · (� + i(m � 1)).

Since this is fully governed by ��(A), the indicial family remains
implicit in the classical theory of elliptic boundary value problems.
Note: The poles of Â(y ,�)�1 encode important fiberwise
information about the boundary behavior of functions. They
generally vary with y 2 Y , which gives rise to the fundamental
problem of analyzing branching of poles.



The trace bundle

Indicial operator (quantized indicial family):

bAy = x�mÂ(y , xDx) : C
1(Z^

y ) ! C1(Z^
y ),

where Z^
y = R

+

⇥ Zy .
Fix ↵ < �, and consider

Ty = ker(bAy )\
n

X

↵<=(�)<�

69 ˆA(y ,�)�1

m�
X

j=0

c�,j(z) log
j(x)x i� : c�,j 2 C1(Zy )

o

.

Example: In the regular case, bAy = ��(A)(dyx)Dm
x , and

Ty = {Pm�1

j=0

ej ,yx
j : ej ,y 2 Ey} if ↵ < �(m � 1) and � > 0.



The trace bundle

Theorem (K. & Mendoza ’13)

Let ↵ < �, and suppose that Â(y ,�)�1 exists for all y 2 Y and all
=(�) = ↵ and =(�) = �. Then

T =
G

y2Y
Ty

is a C1 vector bundle over Y whose space of smooth sections are
all s(y , x , z) such that s(y , ·, ·) 2 Ty , and s is smooth in all
variables.
The operator x@x restricts to a C1 bundle endomorphism on T
and generates the radial action

%x@x : s(y , x , z) 7�! s(y , %x , z), % > 0.

T is the trace bundle associated with A and ↵ < =(�) < �.



The trace bundle

Guiding Principle

Traces/Cauchy data of functions on M with respect to Y are gen-
eralized sections of (a certain) T over Y .

Example: Consider a regular elliptic operator A 2 Di↵m(M).
Cauchy data of u are

(u
0

, . . . , um�1

) = (u
�

�

Y
, @xu

�

�

Y
, . . . ,

1

(m � 1)!
@m�1

x u
�

�

Y
).

By Taylor expansion near Y = @M

u ⇠
m�1

X

j=0

ujx
j +O(xm)

where ⌧ =
Pm�1

j=0

ujx
j is a (generalized) section of T .



Friedrichs extension for cone operators

A 2 x�2Di↵2

b(M) near the boundary:

A = x�2

X

k+|↵|2

ak,↵(x , z)(xDx)
kD↵

z .

Â(�) =
X

k+|↵|2

ak,↵(0, z)�
kD↵

z : C1(Z ) ! C1(Z ), � 2 C.

Let specb(A) = {� 2 C; @Â(�)�1}. Consider semibounded

A : C1
c (

�
M) ⇢ x��L2b(M) ! x��L2b(M).

Theorem (Gil-Mendoza ’03)

D
min

= D
max

\ T

">0

x��+2�"H2

b(M).

D
min

= x��+2H2

b(M) () specb(A) \ {=(�) = � � 2} = ;.



Friedrichs extension for cone operators

Theorem (Lesch ’97, Gil-Mendoza ’03)

dimD
max

/D
min

< 1. More precisely, D
max

= D
min

� !E (! is a
cut-o↵ function near the boundary), where

E =
M

�
0

2specb(A)\{�; ��2<=(�)<�}

E�
0

E�
0

3 ⌧ =
X

q2{0,1}
=(�

0

�iq)���2

mq
X

k=0

cq,k(z) log
k(x)x i(�0

�iq)

| {z }

=:⌧q

Â(�)M(!⌧
0

)(�) is holomorphic (at � = �
0

), or bA⌧
0

= 0, and ⌧
1

depends linearly on ⌧
0

.



Friedrichs extension for cone operators

Critical strip associated with A 2 x�2Di↵2

b acting in x��L2b:

{� 2 C; � � 2 < =(�) < �}

Base Hilbert space x��L2b: Mellin transform holomorphic in
=(�) > �.

Minimal domain: Mellin transform holomorphic in
=(�) > � � 2.

Maximal domain: Mellin transform meromorphic in critical
strip. Principal parts of Laurent expansions determine
regular-singular asymptotics as x ! 0.

Principal terms in the asymptotic behavior: Trace ‘bundle’ T
associated with A and the critical strip.



Friedrichs extension for cone operators

Symmetry of A in x��L2b: Â(�) =
⇥

Â(�?)
⇤?
, where �? is the

reflection of � about =(�) = � � 1. In particular, specb(A) is
symmetric about =(�) = � � 1.

iR

R

=(�) = �

=(�) = � � 2

=(�) = � � 1
�
0

�?
0

We have D
max

/D
min

⇠= L

�
0

2specb(A)\{�; ��2<=(�)<�}
E�

0

, and Green

Formula of Gil-Mendoza (AJM ’03) shows E�
0

⇠= E�?
0

.



Friedrichs extension for cone operators

Theorem (Gil-Mendoza ’03 – special case)

Suppose =(�) = � � 1 is free of boundary spectrum. Let

EF =
M

�
0

2specb(A)\{�; ��2<=(�)<��1}

E�
0

.

Then DF = D
min

� !EF .

Let D
0

= D
min

� !EF . Because

dimD
0

/D
min

=
1

2
dimD

max

/D
min

by Green Formula it is enough to show that D
0

⇢ DF .



Friedrichs extension for cone operators

Theorem (Gil-Mendoza ’03 – special case)

Suppose =(�) = � � 1 is free of boundary spectrum. Let

EF =
M

�
0

2specb(A)\{�; ��2<=(�)<��1}

E�
0

.

Then DF = D
min

� !EF .

A : x��+1H1

b ! x���1H�1

b continuous, and x��L2b-inner
product gives [x��+1H1

b ]
0 ⇠= x���1H�1

b . Thus

�

�hAu, uix��L2b

�

� . kAukx���1H�1

b
kukx��+1H1

b
. kuk2x��+1H1

b
.

Consequently, x��+1H1

b ,! H .

We have D
0

⇢ x��+1H1

b \D
max

⇢ H \D
max

= DF .



Back to wedge di↵erential operators...

A near the boundary (m = 2):

A = x�m
X

|↵|+|�|+km

a↵,�,k(x , y , z)(xDx)
kD�

z (xDy )
↵

Normal family:

A^(y , ⌘) : C
1
c (Z^

y ) ⇢ x��L2b(Z
^
y ) ! x��L2b(Z

^
y )

A^(y , ⌘) = x�m
X

|↵|+|�|+km

a↵,�,k(0, y , z)(xDx)
kD�

z (x⌘)
↵

Operator family on Z^
y = Z ⇥ R

+

, parametrized by T ⇤Y \ 0.
Note: In the classical case of regular BVPs, we recover the
boundary symbol:

A^(y , ⌘) = ��(D)(y , 0, ⌘,Dx)



The normal family

Standing assumptions:

A 2 x�2Di↵2

e(M) w -elliptic, bounded from below in x��L2b.

Â(y ,�) invertible for all y 2 Y and =(�) = � � 2 and
=(�) = � � 1.

Let TF be the trace bundle associated with A and the strip
� � 2 < =(�) < � � 1.

Proposition

A^(y , ⌘) : D^,max /min

! x��L2b(Z
^
y ) is Fredholm on T ⇤Y \ 0.

dimD^,max

/D^,min

< 1, and complement represented by
singular functions.

A^(y , ⌘) � 0 on C1
c (Z^

y ) ⇢ x��L2b(Z
^
y ).

D^,F ,y = D^,min

� !TF ,y (varies only with y).



The main result

Theorem (Friedrichs Extension for Wedge Operators)

Suppose A^(y , ⌘) > 0 on C1
c (Z^

y ) for (y , ⌘) 2 T ⇤Y \ 0.
D

min

= x��+2H2

e (M).

Let g = � + (x@x) 2 End(TF ). Then

0 ����! D
min

◆����! DF
T����! H2�g(Y ; TF ) ����! 0

is split-exact.

For regular boundary value problems: L2(M) = x�1/2L2b(M),
so � = 1/2.

TF = C · x . So x@x acts as the identity on TF .
g = 3/2, and H2�g(Y ; TF ) = H1/2(Y ).



Sobolev space of sections of variable order

Idea of the space H2�g(Y ; TF )
“Eigensections of TF w.r.t. the eigenvalue � of 2 � g (at y) are
measured with Sobolev regularity Re(�) (at y).”

Note that
m�

0

X

k=0

ck log
k(x)x i�0

is a generalized eigensection of 2� g = 2� (� + x@x) associated
with the eigenvalue � = 2� � � i�

0

.

Formal construction:

Pair (E , a) consisting of a complex vector bundle E ! Y and
an endomorphism a 2 End(E ).

For y 2 Y consider %a|Ey : Ey ! Ey , % > 0. Then
%a 2 End(E ).



Sobolev space of sections of variable order

Fix y
0

and enclose eigenvalues of a at y
0

with contours �
1

, . . . , �N :

Eigenvalues spread locally in clusters enclosed by these contours.
The spectral projection onto Ũk (= direct sum of generalized
eigenspaces associated with eigenvalues in k-th cluster) is

Pk,y =
1

2⇡i

Z

�k

(� � a(y))�1 d�.

The formula depends smoothly on y (near y
0

).



Sobolev space of sections of variable order

Definition

Fix 0 < � < 1. A local trivialization � : E |
⌦

! ⌦⇥ CL is called
�-admissible for (E , a) if the following holds:

(a) 9 open W
1

, . . . ,WN ⇢ C, Wi \Wj = ; for i 6= j ,
diam(Wk) < �, and Sk b Wk s.t. spec(a|Ey ) \Wk ⇢ Sk and

spec(a|Ey ) =
N
[

k=1

spec(a|Ey ) \Wk for all y 2 ⌦.

(b) � is a direct sum of trivializations of the subbundles

Ũk =
G

y2⌦

⇣

M

�2spec(a|Ey )\Wk

ker(a|Ey � �)dimEy

⌘

over ⌦, k = 1, . . . ,N.



Sobolev space of sections of variable order

In a �-admissible trivialization ⌦⇥ CL over a chart, a 2 End(E |
⌦

)
is represented by a(y) 2 C1(⌦,L (CL)).

Definition

u 2 C�1
c (⌦;CL) belongs to Ha

comp

(⌦;CL) i↵

hDy ia(y)u = op[h⌘ia(y)]u 2 L2
loc

(⌦;CL)

This local definition gives rise to a well-defined global space
Ha(Y ;E ).



Idea of Proof of the Main Theorem

Use duality of edge Sobolev spaces and continuity to argue
exactly as in the case of cone operators that

x��+1H1

e (M) ,! H .

Construct explicitly E : H2�g(Y ; TF ) ! D
max

\ x��+1H1

e (M)
that provides a splitting (local construction + patching –
technical part, requires subtle estimates, pseudodi↵erential
techniques adapted from Schulze’s calculus).

Let D
0

= x��+2H2

e (M) + E(H2�g(Y ; TF )) ⇢ DF .

Show that A+ �2 : D
0

! x��L2b is invertible for � � 0.
Proof of this is based on parameter-dependent parametrix
construction. Assumptions on the Friedrichs extension of the
normal family A^(y , ⌘) are needed for this construction to
work.



Thank you!


