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Some earlier work

Cheeger, Briining-Seeley, Lesch, Gil-Mendoza, Mazzeo-Vertman,
Melrose-Vasy-Wunsch (Friedrichs form-domain).



The Friedrichs extension

Let H be a complex Hilbert space, and let
A:D.CH—H

be symmetric, densely defined. Let Amax := A* and Anin 1= A
In fact, both operators act as A* with domains

Dmax := D(A*) = {v € H; Dc > u+ (Au,v) is H-bounded},

Dmin := Closure of D, with respect to ||ul|3 = ||ul|% + || Amaxt||%
in Dmax,

respectively. The closed extensions of A are restrictions of Apax to

subspaces Dpin C D C Dmax that are closed in (Dmax, || - [|a). This
is an abstract framework of (homogeneous) boundary conditions.



The Friedrichs extension

Now suppose that (Au, u) > k{u, u) for some k € R for all
u € D.. Define an inner product

[u,v] :== (Au,v) + K(u,v), u,v € D,

where K > 0 is sufficiently large.
Let (47, [,']) < H be the completion of D, with respect to [-,-].
The space 7 is independent of K > 0 involved in the definition
of [-,:]. Then

A = Anax :DFCH—H

with domain Df := Dpax N S is selfadjoint. Af is the Friedrichs
extension of A.

Note: If Ap is any selfadjoint extension of A with D C JZ, then
Ap = Af.



Problem: How to describe domains/boundary conditions

Characterize Din.

Characterize Dpmax/Dmin Vvia a ‘suitable’ complement £ of
Drnin in Diax.
Domains are of the form D = Dp,in ® Ep with Ep C £.

Regarding (2): Von Neumann formulas:
Dmax = Dmin ® (ker(A,mX + 1) @ ker(Amax — l))

Issue: Generally impossible to determine kernels!



Problem: How to describe domains/boundary conditions

Now consider Riemannian manifold M, Hermitian bundle E, and
A € Diff™(M; E), m > 0, elliptic and symmetric.

A: CX(M;E) C L(M;E) — L*(M; E).
Elliptic regularity: Ho(M; E) C Dmin C Dmax C HL.(M; E).

comp

B Dpin and Dpax differ at the singular locus (at infinity).

m Elliptic regularity (again): ker(Amax £ i) C C®(M; E).
Goal: Find complement & C C*°(M; E) of Dpin in Dmax
distinguished by the asymptotic behavior of functions towards the
singular locus.
Leitmotif: Specify boundary conditions/domains by specifying
asymptotics.
In case of the Friedrichs extension (abstractly defined boundary
condition): Equivalent characterization in terms of asymptotics.



Example: Classical boundary value problems

Let Q € Rt
A CX(Q) C L2(Q) — L3(Q).
Then:
® Dpin = H3(Q) because || - ||a ~ || - [z on C°.

m 7 = H}(Q) (by definition + Poincaré Inequality). This leads
to Dirichlet boundary condition u‘m = 0 if 9Q is smooth.

m By definition:

De = {u € H}(Q); Au € [2(Q)} = Dmax N Ha(Q).



Example: Classical boundary value problems

Theorem (Classical Boundary Regularity Theorem)
If 9Q € C* we have Df = Dmax N HE(Q) = H(Q) N H (Q).

m Result is ‘delicate’: Consider Q € R? as shown.
Let (r,0) be polar coordinates cen-

tered at the singular point on the
boundary. Then Dg contains C°-
functions u with

¢

P u(r,0) ~ c(0)r=—=

as r — 0 with ¢(0) # 0.
Note: u ¢ H?(Q) for 0 < a < 7.



Example: Classical boundary value problems

Theorem (Classical Boundary Regularity Theorem)
If 92 € C* we have Df = Dmax N HE(Q) = H2(Q) N H (Q).

m Even if 9Q € C®, Dmax # H?(Q) (for g > 0, Q C RI*H1):
H?(Q) — L2(Q) compact, but Dyax < L?(R) is not compact:

dim{u € C®(Q); Au=0in Q} = .

m Standard proofs of the regularity theorem involve
approximation by difference quotients/extension across the
boundary.

Methods not generalizable to singular spaces.



Example: Classical boundary value problems

There is a split-exact sequence:

T:u— [Z(j H3/2(8Q)
0 —— H2(Q) —— H*(Q) ————= &5 — 0
HY/2(0Q)

Taylor expansion of u € H?(Q2) at 99 (x defining function for 0Q):
u~ up(y)x° + ui(y)xt + O(x?), y€oQ.

Note:

H3/2(5Q)
® = H%(0Q;C?), g= {
H/2(6Q)

3/2 0

0 1/2] € End(C?).



Example: Classical boundary value problems

In local coordinates U of 9Q: H®-norm of u € C°(U; C?) given by

lulZe = / 1Dy )0u 2= dy.
R9
Here (D,)? = F~1(n)*F with

3/2 0

- [0 1/2}_ m32 0
(m?*=(n) = [”O <n>1/2] € End(C?).

For the Friedrichs extension we find:

Theorem (Friedrichs Extension for Classical BVPs)

There is a split-exact sequence

0 —— H3(Q) = Dmin —— D —L

B —— @



Manifolds with edges

m Mg compact manifold with edge Y.
m Near Y: Msi,g is a cone bundle with link Z.
m After blow-up: Compact manifold M with boundary OM that
is the total space of a fibration: Z — M
|
Y
m Y and Z closed manifolds. Let x be a defining function for
the boundary of M, y € Y, and z € Z.

\
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w-metrics and geometric operators

m w-metric ¥ g: Any metric on ¥ T*M (wedge cotangent bundle
of M).
Near OM: Y g given by positive definite 2-cotensor in the
forms
dx, dyj, xdz
with coefficient functions that are smooth up to M.
Example: dy? 4+ dx? + x?dz?, a model wedge.
m Incomplete metrics, with singular locus on the boundary.
m Geometric operators: Laplacians Aw, give rise to wedge
differential operators.
m Let ¥g be any w-metric. Then

dim Z
—dmZ o

L“(M) = x

_14dimZ
> 2

Ly (M).

Consider generally H = X_'Yle) as base Hilbert space, v € R.

"812(M) = x



Wedge differential operators

Wedge differential operators of order m: A € Diff’"(l\o/l) that in
adapted coordinates near the boundary take the form

A=x"T 3" aypi(x,y, 2)(xDx) DI (xDy)”
|al+|B|+k<m
with coefficients a, g x that are C*° up to x = 0.
Notation: A € x~™ Diff7(M) (Diffe — Mazzeo '91).

Example: Any regular differential operator A € Diff™(M) with
coefficients smooth up to the boundary is an example for this with
the trivial boundary fibration Y = OM and Z = {pt}.

Example: Cone operators correspond to the other extreme case:
Y = {pt} and Z = OM.



Wedge differential operators

A near the boundary:
A=x"T Z anp.k(x,y, z)(xDX)kDf(ny)o‘
|a|+[B]+k<m

w-principal symbol ¥ o (A):

W@'(A) = Z aa,ﬂ,k(x’y7z)§kcﬁna

laf+|B8]+k=m

Is invariantly defined on ¥ T*M \ 0.

w-ellipticity: Invertibility of “ @(A) on W T*M \ 0 (assumed
henceforth)

Note: w-ellipticity reduces to standard ellipticity up to the
boundary in the regular case.



Wedge differential operators

A near the boundary:

A=x"" > agpi(x,y, z)(xDy)* DS (xDy)
lae|+|B]+k<m

Conormal symbol /indicial family:
AA(y7O-) = Z aO,B,k(Ovyaz)o-kDf : COO(zy) - COO(Z}’)
|Bl+k<m

fory e Yand o € C.

This is, for each y € Y, a family of differential operators on Z,
depending on o € C.



Wedge differential operators

Proposition (Elliptic estimates and analytic Fredholm theory)

~

A(y,o) is a holomorphic family of Fredholm operators on Z, that
is meromorphically invertible with finitely many poles in each
horizontal strip of finite width, for every y € Y.

Example: In the regular case of A € Diff™(M),
Aly,0) = a(A)(dyx)o(o + i)+ (o + i(m—1)).

Since this is fully governed by @(A), the indicial family remains
implicit in the classical theory of elliptic boundary value problems.
Note: The poles of A(y, o)~! encode important fiberwise
information about the boundary behavior of functions. They
generally vary with y € Y, which gives rise to the fundamental
problem of analyzing branching of poles.



The trace bundle

Indicial operator (quantized indicial family):
PA, = x"MA(y, xDy) : C*(Z)) = C>=(Z)),

where Z) =Ry x Z,,.
Fix o« < B, and consider

Ty = ker(bAy)m{ Z ZCU,J )log/ (x)x7 : ¢, j € C‘X’(Zy)}.

a§3(0)<,3 j=0
FA(y,0)~!

Example In the regular case, ba, = a(A)(dyx)D, and
—{ZJ " eyx ey, € Eifa<—(m—1)and g >0.



The trace bundle

Theorem (K. & Mendoza '13)

Let o < 3, and suppose that /A\(y, o)~ ! exists for all y € Y and all
S(0) = a and (o) = . Then

YeyYy
is a C* vector bundle over Y whose space of smooth sections are
all s(y,x, z) such that s(y,-,-) € T,, and s is smooth in all
variables.
The operator x0Ox restricts to a C*° bundle endomorphism on T
and generates the radial action
X Ox . S(

0 y,x,z) — s(y,o0x,z), o0>0.

T is the trace bundle associated with A and a < 3(0) < 3.



The trace bundle

Guiding Principle

Traces/Cauchy data of functions on M with respect to Y are gen-
eralized sections of (a certain) 7 over Y.

Example: Consider a regular elliptic operator A € Diff™(M).
Cauchy data of u are

1 -1
(UO,...,Um_]_):(U‘Y,axu‘y7...,ma;n U‘Y)
By Taylor expansion near Y = M
m—1 )
un~ Z uix) + O(x™)
j=0

where 7 = ij:_ol ujx’ is a (generalized) section of T.



Friedrichs extension for cone operators

A € x~2 Diff2(M) near the boundary:

A= x2 Z ak.a(x, 2)(xDx)* D
k+|a|<2

Alo)= > ara(0,2)0"Dg : C*(2) - C*(Z), oeC.
k+|a]<2
Let spec,(A) = {0 € C; #A(s)~1}. Consider semibounded
A CR(M) C xL3(M) = x T L3(M).

Theorem (Gil-Mendoza '03)

Drmin = Dmax N no xTTT2EHZ(M).
e>
Diin = x TT2H2(M) <> spec,,(A) N {S(c) =~ — 2} = 0.



Friedrichs extension for cone operators

Theorem (Lesch '97, Gil-Mendoza '03)

dim Dmax/Dmin < 00. More precisely, Dmax = Dmin @ wWE (w is a
cut-off function near the boundary), where

5 = @ go’o

ooEspecy,(A)N{o; 7v—2<(0)<}

Mgq
Sy 2T = Z Z Cq.k(2) logh (x)x/(70i)
qe{0,1} k=0

S(oo—ig)>y—2 N
=7q

A(0) M(wo)(0) is holomorphic (at o = o), or PArg = 0, and 71
depends linearly on 1g.



Friedrichs extension for cone operators

Critical strip associated with A € x~2 Diff? acting in x~7L3:

{c0€eC;, v—2<3(0) <}

m Base Hilbert space X_’YL%Z Mellin transform holomorphic in

(o) > .
m Minimal domain: Mellin transform holomorphic in
S(o) >y —2.

m Maximal domain: Mellin transform meromorphic in critical
strip. Principal parts of Laurent expansions determine
regular-singular asymptotics as x — 0.

m Principal terms in the asymptotic behavior: Trace ‘bundle’ T
associated with A and the critical strip.



Friedrichs extension for cone operators

Symmetry of Ain x 7L%: Alo) = [/A\(a*)]*, where o* is the
reflection of o about (o) =~ — 1. In particular, spec,(A) is
symmetric about (o) = — 1.

iR

S(o) =~

2 o) =1

R e e Slo) = —

50-6 i

S(o)=~v-2
R
We have Dpax/Dmin = &b &y, and Green

oo€Especy,(A)N{o; 7v—2<¥(0)<}
Formula of Gil-Mendoza (AJM '03) shows &,, = &,;.



Friedrichs extension for cone operators

Theorem (Gil-Mendoza '03 — special case)

Suppose (o) = — 1 is free of boundary spectrum. Let

& = @ Eovp-

oo€specy(A)N{o; v—2<S(0)<y—1}

Then DF = Dmin Y OJ(‘:F.
m Let Dy = Dmin @ wEF. Because
) 1 .
dim DO/Dmin = 5 dim Dmax/Dmin

by Green Formula it is enough to show that Dy C Df.



Friedrichs extension for cone operators

Theorem (Gil-Mendoza '03 — special case)

Suppose (o) = v — 1 is free of boundary spectrum. Let

EF = @ Eoo-

ao€specy,(A)N{o; v—2<S(0)<y—1}

Then Dg = Dpin ® wWEF.

m A x‘7+1Hg — x‘”‘le_l continuous, and x‘"*L%—inner
product gives [x 7*1H} =2 x7"1H, 1. Thus

(A, 0) 2] S 1Al gyt S 6Py

Consequently, x 7F1H} — 7.
m We have Dy C x " HE N Dmax C S N Dmax = Dr.



Back to wedge differential operators...

A near the boundary (m = 2):
A=x"" 3" agpi(x,y, 2)(xDy)* D} (xDy)
|lal+|B8|+k<m

Normal family:
Any,n) : C(ZD) € xTTLE(Zy) = x L (Z))

Ay, m)=x"" 3" aapk(0,y, 2)(xDy)* DS (xn)
a8k <m

Operator family on ZyA = Z x R4, parametrized by T*Y \ 0.
Note: In the classical case of regular BVPs, we recover the
boundary symbol:

A/\(Yﬂ?) = U(D)(ya 07 B DX)



The normal family

Standing assumptions:
m A € x 2 Diff2(M) w-elliptic, bounded from below in x~7L2.
m A(y,o) invertible for all y € Y and (o) =~ — 2 and
(o) =~ - 1.
Let 7r be the trace bundle associated with A and the strip
7—2<3(o)<y—-1

m Ar(Y57) : Damax/min — X_’YL%(Z;\) is Fredholm on T*Y \ 0.

# dim Dp max/Damin < 00, and complement represented by
singular functions.

m Ar(y,m) > 0o0n CX(Z)) C X_WL%(Z;\).
® Dy ry = Damin ®wTF, (varies only with y).




The main result

Theorem (Friedrichs Extension for Wedge Operators)
Suppose A(y,n) >0 on C(Z)) for (y,n) € T*Y '\ 0.
8 Dpin = x 7F2H2(M).
m Let g =+ (x0x) € End(TF). Then

0 — Dmin ——— Df —1— HZ9(Y;Tr) —— 0

is split-exact.

m For regular boundary value problems: L2(M) = x~1/212(M),
soy=1/2.

m 7r = C - x. So x0x acts as the identity on TF.

m g =3/2 and H?>78(Y;TF) = HY/3(Y).



Sobolev space of sections of variable order

Idea of the space H>~8(Y; TF)

“Eigensections of Tr w.r.t. the eigenvalue A of 2 — g (at y) are
measured with Sobolev regularity Re(\) (at y).”

Note that

mgo

Z cx logk(x)x0
k=0

is a generalized eigensection of 2 — g = 2 — ( 4 x0x) associated
with the eigenvalue A =2 — v — ioyg.

Formal construction:

m Pair (E, a) consisting of a complex vector bundle E — Y and
an endomorphism a € End(E).

m For y € Y consider ¢?& : E, — E,, 0> 0. Then
0? € End(E).



Sobolev space of sections of variable order

Fix yo and enclose eigenvalues of a at yp with contours '1,...,[y:

Eigenvalues spread locally in clusters enclosed by these contours.
The spectral projection onto Uy (= direct sum of generalized
eigenspaces associated with eigenvalues in k-th cluster) is

o rk(ff —a(y)) .

The formula depends smoothly on y (near yp).

Pk,y:



Sobolev space of sections of variable order

Definition
Fix 0 < 0 < 1. A local trivialization ¢ : E|q — Q x Cl is called
d-admissible for (E, a) if the following holds:
(a) Jopen Wi,...,Wy CC, W;NnW,; =0 for i # j,
diam(Wy) < 6, and Sx € W s.t. spec(alg,) N Wi C Sk and

N
spec(alg,) = U spec(alg,) N W for all y € Q.
k=1

(b) ¢ is a direct sum of trivializations of the subbundles
OG=]( B  terlalg —Nm)
y€Q Aespec(alg, )N Wk

over Q, k=1,...,N.



Sobolev space of sections of variable order

In a §-admissible trivialization Q x Ct over a chart, a € End(E|q)
is represented by a(y) € C=(Q,.Z(Ch)).

Definition

u € C-°(; Ch) belongs to HZ,,.,(Q; CL) iff

comp

(Dy)*Mu = op[(n)*M]u € L{ (2 Ch)

loc

This local definition gives rise to a well-defined global space
H3(Y; E).



Idea of Proof of the Main Theorem

m Use duality of edge Sobolev spaces and continuity to argue
exactly as in the case of cone operators that

xTTLHY (M) — 2.

m Construct explicitly € : H279(Y; TF) — Dmax N x 7TLHY(M)
that provides a splitting (local construction + patching —
technical part, requires subtle estimates, pseudodifferential
techniques adapted from Schulze's calculus).

m Let Do = x Y P2HZ(M) + E(H?>79(Y; TF)) C Df.

m Show that A+ A2 : Dy — x~7L% is invertible for A > 0.
Proof of this is based on parameter-dependent parametrix
construction. Assumptions on the Friedrichs extension of the

normal family Ax(y,n) are needed for this construction to
work.



Thank you!



