The Friedrichs Extension for Elliptic Wedge Operators of Second Order

Thomas Krainer, Penn State Altoona Joint work with Gerardo Mendoza

References for this talk:

- [1] The Friedrichs extension for elliptic wedge operators of second order. arXiv preprint 1509.01842.
- [2] Elliptic systems of variable order. Rev. Mat. Iberoam. 31 (2015), 127-160.
- [3] The kernel bundle of a holomorphic Fredholm family. Comm. Partial Differential Equations 38 (2013), 2107–2125.

Research partially supported by NSF grants DMS-0901202 and DMS-0901173.

Cheeger, Brüning-Seeley, Lesch, Gil-Mendoza, Mazzeo-Vertman, Melrose-Vasy-Wunsch (Friedrichs form-domain).

Let H be a complex Hilbert space, and let

$$A:\mathcal{D}_c\subset H\to H$$

be symmetric, densely defined. Let $A_{max} := A^*$ and $A_{min} := A^{**}$. In fact, both operators act as A^* with domains

$$\begin{split} \mathcal{D}_{\mathsf{max}} &:= \mathcal{D}(A^{\star}) = \{ v \in H; \ \mathcal{D}_{c} \ni u \mapsto \langle Au, v \rangle \text{ is } H\text{-bounded} \}, \\ \mathcal{D}_{\mathsf{min}} &:= \mathsf{Closure of } \mathcal{D}_{c} \text{ with respect to } \|u\|_{A}^{2} = \|u\|_{H}^{2} + \|A_{\mathsf{max}}u\|_{H}^{2} \\ & \text{ in } \mathcal{D}_{\mathsf{max}}, \end{split}$$

respectively. The *closed extensions* of A are restrictions of A_{\max} to subspaces $\mathcal{D}_{\min} \subset \mathcal{D} \subset \mathcal{D}_{\max}$ that are closed in $(\mathcal{D}_{\max}, \|\cdot\|_A)$. This is an abstract framework of (homogeneous) *boundary conditions*.

Now suppose that $\langle Au, u \rangle \ge k \langle u, u \rangle$ for some $k \in \mathbb{R}$ for all $u \in \mathcal{D}_c$. Define an inner product

$$[u, v] := \langle Au, v \rangle + K \langle u, v \rangle, \quad u, v \in \mathcal{D}_c,$$

where $K \gg 0$ is sufficiently large.

Let $(\mathcal{H}, [\cdot, \cdot]) \hookrightarrow H$ be the completion of \mathcal{D}_c with respect to $[\cdot, \cdot]$. The space \mathcal{H} is independent of $K \gg 0$ involved in the definition of $[\cdot, \cdot]$. Then

$$A_F := A_{\max} : \mathcal{D}_F \subset H \to H$$

with domain $\mathcal{D}_F := \mathcal{D}_{max} \cap \mathscr{H}$ is selfadjoint. A_F is the *Friedrichs* extension of A.

Note: If A_D is any selfadjoint extension of A with $D \subset \mathcal{H}$, then $A_D = A_F$.

- **1** Characterize \mathcal{D}_{min} .
- 2 Characterize D_{max}/D_{min} via a 'suitable' complement E of D_{min} in D_{max}.
- **3** Domains are of the form $\mathcal{D} = \mathcal{D}_{\min} \oplus \mathcal{E}_{\mathcal{D}}$ with $\mathcal{E}_{\mathcal{D}} \subset \mathcal{E}$.

Regarding (2): Von Neumann formulas:

$$\mathcal{D}_{\max} = \mathcal{D}_{\min} \oplus (\ker(A_{\max} + i) \oplus \ker(A_{\max} - i)).$$

Issue: Generally impossible to determine kernels!

Now consider Riemannian manifold M, Hermitian bundle E, and $A \in \text{Diff}^m(M; E)$, m > 0, elliptic and symmetric.

$$A: C^{\infty}_{c}(M; E) \subset L^{2}(M; E) \rightarrow L^{2}(M; E).$$

Elliptic regularity: $H^m_{\text{comp}}(M; E) \subset \mathcal{D}_{\min} \subset \mathcal{D}_{\max} \subset H^m_{\text{loc}}(M; E)$.

• \mathcal{D}_{min} and \mathcal{D}_{max} differ at the singular locus (at infinity).

• Elliptic regularity (again): $\ker(A_{\max} \pm i) \subset C^{\infty}(M; E)$.

Goal: Find complement $\mathcal{E} \subset C^{\infty}(M; E)$ of \mathcal{D}_{\min} in \mathcal{D}_{\max} distinguished by the *asymptotic behavior* of functions towards the singular locus.

Leitmotif: Specify boundary conditions/domains by specifying asymptotics.

In case of the Friedrichs extension (abstractly defined boundary condition): Equivalent *characterization in terms of asymptotics*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Let $\Omega \Subset \mathbb{R}^{q+1}$,

$$\Delta: C^{\infty}_{c}(\Omega) \subset L^{2}(\Omega) \rightarrow L^{2}(\Omega).$$

Then:

•
$$\mathcal{D}_{\min} = H_0^2(\overline{\Omega})$$
 because $\|\cdot\|_{\Delta} \sim \|\cdot\|_{H_0^2}$ on C_c^{∞} .

• $\mathscr{H} = H_0^1(\overline{\Omega})$ (by definition + Poincaré Inequality). This leads to Dirichlet boundary condition $u|_{\partial\Omega} = 0$ if $\partial\Omega$ is smooth.

By definition:

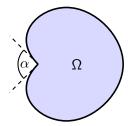
$$\mathcal{D}_F = \{ u \in H^1_0(\overline{\Omega}); \ \Delta u \in L^2(\Omega) \} = \mathcal{D}_{\max} \cap H^1_0(\overline{\Omega}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Classical Boundary Regularity Theorem)

If $\partial \Omega \in C^{\infty}$ we have $\mathcal{D}_F = \mathcal{D}_{\max} \cap H^1_0(\overline{\Omega}) = H^2(\Omega) \cap H^1_0(\overline{\Omega})$.

Result is 'delicate': Consider $\Omega \Subset \mathbb{R}^2$ as shown.



Let (r, θ) be polar coordinates centered at the singular point on the boundary. Then \mathcal{D}_F contains C^{∞} functions u with

$$u(r,\theta) \sim c(\theta) r^{\frac{\pi}{2\pi-\alpha}}$$

as $r \to 0$ with $c(\theta) \neq 0$. Note: $u \notin H^2(\Omega)$ for $0 < \alpha < \pi$.

Theorem (Classical Boundary Regularity Theorem)

If $\partial \Omega \in \mathcal{C}^{\infty}$ we have $\mathcal{D}_{\mathcal{F}} = \mathcal{D}_{\mathsf{max}} \cap H^1_0(\overline{\Omega}) = H^2(\Omega) \cap H^1_0(\overline{\Omega}).$

• Even if $\partial \Omega \in C^{\infty}$, $\mathcal{D}_{\max} \neq H^2(\Omega)$ (for q > 0, $\Omega \subset \mathbb{R}^{q+1}$): $H^2(\Omega) \hookrightarrow L^2(\Omega)$ compact, but $\mathcal{D}_{\max} \hookrightarrow L^2(\Omega)$ is not compact:

$$\dim\{u\in C^{\infty}(\overline{\Omega}); \ \Delta u=0 \text{ in } \Omega\}=\infty.$$

 Standard proofs of the regularity theorem involve approximation by difference quotients/extension across the boundary.
 Methods not generalizable to singular spaces.

Example: Classical boundary value problems

There is a split-exact sequence:

$$0 \longrightarrow H_0^2(\overline{\Omega}) \xrightarrow{\iota} H^2(\Omega) \xrightarrow{\mathcal{T}: u \mapsto \begin{bmatrix} u_0 \\ u_1 \end{bmatrix}} \xrightarrow{H^{3/2}(\partial \Omega)} \xrightarrow{H^{1/2}(\partial \Omega)} 0$$

Taylor expansion of $u \in H^2(\Omega)$ at $\partial \Omega$ (x defining function for $\partial \Omega$):

$$u \sim u_0(y)x^0 + u_1(y)x^1 + \mathcal{O}(x^2), \quad y \in \partial \Omega.$$

Note:

$$\begin{array}{l} H^{3/2}(\partial\Omega) \\ \oplus \\ H^{1/2}(\partial\Omega) \end{array} = H^{\mathfrak{g}}(\partial\Omega;\mathbb{C}^2), \quad \mathfrak{g} = \begin{bmatrix} 3/2 & 0 \\ 0 & 1/2 \end{bmatrix} \in \mathsf{End}(\mathbb{C}^2).$$

Example: Classical boundary value problems

In local coordinates U of $\partial \Omega$: $H^{\mathfrak{g}}$ -norm of $u \in C^{\infty}_{c}(U; \mathbb{C}^{2})$ given by

$$\|u\|_{H^{\mathfrak{g}}}^{2} = \int_{\mathbb{R}^{q}} \|\langle D_{y} \rangle^{\mathfrak{g}} u\|_{\mathbb{C}^{2}}^{2} dy.$$

Here $\langle D_y
angle^{\mathfrak{g}} = \mathcal{F}^{-1} \langle \eta
angle^{\mathfrak{g}} \mathcal{F}$ with

$$\langle \eta
angle^{\mathfrak{g}} = \langle \eta
angle egin{bmatrix} 3/2 & 0 \\ 0 & 1/2 \end{bmatrix} = egin{bmatrix} \langle \eta
angle^{3/2} & 0 \\ 0 & \langle \eta
angle^{1/2} \end{bmatrix} \in \mathsf{End}(\mathbb{C}^2).$$

For the Friedrichs extension we find:

Theorem (Friedrichs Extension for Classical BVPs)

There is a split-exact sequence

$$0 \longrightarrow H_0^2(\overline{\Omega}) = \mathcal{D}_{\min} \xrightarrow{\iota} \mathcal{D}_F \xrightarrow{T} H^{1/2}(\partial \Omega) \longrightarrow 0.$$

Manifolds with edges

 $M_{\rm sing}$

- M_{sing} compact manifold with edge Y.
- Near Y: M_{sing} is a cone bundle with link Z.
- After blow-up: Compact manifold M with boundary ∂M that is the total space of a fibration: $Z \hookrightarrow \partial M$

 \wp

Ζ

Y and Z closed manifolds. Let x be a defining function for the boundary of M, y ∈ Y, and z ∈ Z.

w-metrics and geometric operators

w-metric ^wg: Any metric on ^wT*M (wedge cotangent bundle of *M*).
 Near ∂M: ^wg given by positive definite 2-cotensor in the forms

 dx, dy_j, xdz_k

with coefficient functions that are smooth up to ∂M . Example: $dy^2 + dx^2 + x^2 dz^2$, a model wedge.

- Incomplete metrics, with singular locus on the boundary.
- Geometric operators: Laplacians Δ_{wg} give rise to wedge differential operators.
- Let ^wg be any w-metric. Then

$$^{wg}L^{2}(M) = x^{-\frac{\dim Z}{2}}L^{2}(M) = x^{-\frac{1+\dim Z}{2}}L^{2}_{b}(M).$$

Consider generally $H = x^{-\gamma} L_b^2$ as base Hilbert space, $\gamma \in \mathbb{R}$.

Wedge differential operators of order m: $A \in \text{Diff}^m(\mathring{M})$ that in adapted coordinates near the boundary take the form

$$A = x^{-m} \sum_{|\alpha|+|\beta|+k \le m} a_{\alpha,\beta,k}(x,y,z) (xD_x)^k D_z^\beta (xD_y)^\alpha$$

with coefficients $a_{\alpha,\beta,k}$ that are C^{∞} up to x = 0.

Notation: $A \in x^{-m} \operatorname{Diff}_{e}^{m}(M)$ (Diff_e \rightarrow Mazzeo '91).

Example: Any regular differential operator $A \in \text{Diff}^m(M)$ with coefficients smooth up to the boundary is an example for this with the trivial boundary fibration $Y = \partial M$ and $Z = \{\text{pt}\}$.

Example: Cone operators correspond to the other extreme case: $Y = {pt}$ and $Z = \partial M$.

A near the boundary:

$$A = x^{-m} \sum_{|\alpha|+|\beta|+k \le m} a_{\alpha,\beta,k}(x,y,z) (xD_x)^k D_z^\beta (xD_y)^\alpha$$

w-principal symbol ${}^{w} \sigma(A)$:

$${}^w \, \sigma(A) = \sum_{|lpha|+|eta|+k=m} a_{lpha,eta,k}(x,y,z) \xi^k \zeta^eta \eta^lpha$$

Is invariantly defined on ${}^{w}T^{*}M \setminus 0$. *w*-ellipticity: Invertibility of ${}^{w}\sigma(A)$ on ${}^{w}T^{*}M \setminus 0$ (assumed henceforth) Note: *w*-ellipticity reduces to standard ellipticity up to the

Note: w-ellipticity reduces to standard ellipticity up to boundary in the regular case.

A near the boundary:

$$A = x^{-m} \sum_{|\alpha|+|\beta|+k \le m} a_{\alpha,\beta,k}(x,y,z) (xD_x)^k D_z^\beta (xD_y)^\alpha$$

Conormal symbol/indicial family:

$$\hat{A}(y,\sigma) = \sum_{|eta|+k\leq m} \mathsf{a}_{0,eta,k}(0,y,z) \sigma^k D_z^eta: C^\infty(Z_y) o C^\infty(Z_y)$$

for $y \in Y$ and $\sigma \in \mathbb{C}$.

This is, for each $y \in Y$, a family of differential operators on Z_y depending on $\sigma \in \mathbb{C}$.

Proposition (Elliptic estimates and analytic Fredholm theory)

 $\hat{A}(y,\sigma)$ is a holomorphic family of Fredholm operators on Z_y that is meromorphically invertible with finitely many poles in each horizontal strip of finite width, for every $y \in Y$.

Example: In the regular case of $A \in \text{Diff}^m(M)$,

$$\hat{A}(y,\sigma) = \sigma(A)(d_y x)\sigma(\sigma+i)\cdots(\sigma+i(m-1)).$$

Since this is fully governed by $\sigma(A)$, the indicial family remains implicit in the classical theory of elliptic boundary value problems. Note: The poles of $\hat{A}(y, \sigma)^{-1}$ encode important fiberwise information about the boundary behavior of functions. They generally vary with $y \in Y$, which gives rise to the fundamental problem of analyzing branching of poles.

Indicial operator (quantized indicial family):

$${}^{b}A_{y} = x^{-m}\hat{A}(y, xD_{x}) : C^{\infty}(Z_{y}^{\wedge}) \to C^{\infty}(Z_{y}^{\wedge}),$$

where $Z_{y}^{\wedge} = \mathbb{R}_{+} \times Z_{y}.$
Fix $\alpha < \beta$, and consider
 $\mathcal{T}_{y} = \ker({}^{b}A_{y}) \cap \Big\{ \sum_{\substack{\alpha < \Im(\sigma) < \beta \\ \noti \neq \hat{A}(y, \sigma)^{-1}}} \sum_{j=0}^{m_{\sigma}} c_{\sigma,j}(z) \log^{j}(x) x^{i\sigma} : c_{\sigma,j} \in C^{\infty}(Z_{y}) \Big\}.$

Example: In the regular case, ${}^{b}A_{y} = \sigma(A)(d_{y}x)D_{x}^{m}$, and $\mathcal{T}_{y} = \{\sum_{j=0}^{m-1} e_{j,y}x^{j} : e_{j,y} \in E_{y}\}$ if $\alpha < -(m-1)$ and $\beta > 0$.

Theorem (K. & Mendoza '13)

Let $\alpha < \beta$, and suppose that $\hat{A}(y, \sigma)^{-1}$ exists for all $y \in Y$ and all $\Im(\sigma) = \alpha$ and $\Im(\sigma) = \beta$. Then

$$\mathcal{T} = \bigsqcup_{y \in Y} \mathcal{T}_y$$

is a C^{∞} vector bundle over Y whose space of smooth sections are all s(y, x, z) such that $s(y, \cdot, \cdot) \in T_y$, and s is smooth in all variables.

The operator $x\partial_x$ restricts to a C^∞ bundle endomorphism on \mathcal{T} and generates the radial action

$$\varrho^{X\partial_X}$$
: $s(y, x, z) \longmapsto s(y, \varrho x, z), \quad \varrho > 0.$

 \mathcal{T} is the trace bundle associated with A and $\alpha < \Im(\sigma) < \beta$.

The trace bundle

Guiding Principle

Traces/Cauchy data of functions on M with respect to Y are generalized sections of (a certain) \mathcal{T} over Y.

Example: Consider a regular elliptic operator $A \in \text{Diff}^m(M)$. Cauchy data of u are

$$(u_0,\ldots,u_{m-1})=(u\big|_Y,\partial_X u\big|_Y,\ldots,\frac{1}{(m-1)!}\partial_x^{m-1}u\big|_Y).$$

By Taylor expansion near $Y = \partial M$

$$u \sim \sum_{j=0}^{m-1} u_j x^j + \mathcal{O}(x^m)$$

where $\tau = \sum_{j=0}^{m-1} u_j x^j$ is a (generalized) section of \mathcal{T} .

Friedrichs extension for cone operators

$$A \in x^{-2} \operatorname{Diff}_{b}^{2}(M)$$
 near the boundary:

$$A = x^{-2} \sum_{k+|\alpha| \leq 2} a_{k,\alpha}(x,z) (xD_x)^k D_z^{\alpha}.$$

$$\hat{A}(\sigma) = \sum_{k+|\alpha|\leq 2} a_{k,\alpha}(0,z)\sigma^k D_z^{lpha}: C^{\infty}(Z) \to C^{\infty}(Z), \quad \sigma \in \mathbb{C}.$$

Let spec_b(A) = { $\sigma \in \mathbb{C}$; $\nexists \hat{A}(\sigma)^{-1}$ }. Consider semibounded A : $C_c^{\infty}(\mathring{M}) \subset x^{-\gamma} L_b^2(M) \to x^{-\gamma} L_b^2(M)$.

Theorem (Gil-Mendoza '03)

$$\begin{aligned} \mathcal{D}_{\min} &= \mathcal{D}_{\max} \cap \bigcap_{\varepsilon > 0} x^{-\gamma + 2 - \varepsilon} H_b^2(M). \\ \mathcal{D}_{\min} &= x^{-\gamma + 2} H_b^2(M) \Longleftrightarrow \operatorname{spec}_b(A) \cap \{\Im(\sigma) = \gamma - 2\} = \emptyset. \end{aligned}$$

Theorem (Lesch '97, Gil-Mendoza '03)

dim $\mathcal{D}_{max}/\mathcal{D}_{min} < \infty$. More precisely, $\mathcal{D}_{max} = \mathcal{D}_{min} \oplus \omega \mathcal{E}$ (ω is a cut-off function near the boundary), where

$$\mathcal{E} = \bigoplus_{\substack{\sigma_0 \in \operatorname{spec}_b(A) \cap \{\sigma; \ \gamma - 2 < \Im(\sigma) < \gamma\} \\ \mathcal{E}_{\sigma_0} \ni \tau} \mathcal{E}_{\sigma_0}} \mathcal{E}_{\sigma_0}$$
$$\mathcal{E}_{\sigma_0} \ni \tau = \sum_{\substack{q \in \{0,1\} \\ \Im(\sigma_0 - iq) \ge \gamma - 2}} \sum_{\substack{k=0 \\ e = \tau_q}}^{m_q} c_{q,k}(z) \log^k(x) x^{i(\sigma_0 - iq)}$$

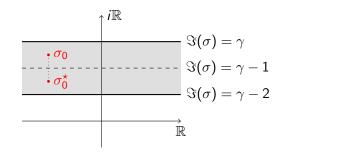
 $\hat{A}(\sigma)\mathcal{M}(\omega\tau_0)(\sigma)$ is holomorphic (at $\sigma = \sigma_0$), or ${}^{b}A\tau_0 = 0$, and τ_1 depends linearly on τ_0 .

Critical strip associated with $A \in x^{-2}$ Diff²_b acting in $x^{-\gamma}L_b^2$:

$$\{\sigma \in \mathbb{C}; \ \gamma - 2 < \Im(\sigma) < \gamma\}$$

- Base Hilbert space $x^{-\gamma}L_b^2$: Mellin transform holomorphic in $\Im(\sigma) > \gamma$.
- Minimal domain: Mellin transform holomorphic in $\Im(\sigma) > \gamma 2$.
- Maximal domain: Mellin transform meromorphic in critical strip. Principal parts of Laurent expansions determine regular-singular asymptotics as x → 0.
- Principal terms in the asymptotic behavior: Trace 'bundle' T associated with A and the critical strip.

Symmetry of A in $x^{-\gamma}L_b^2$: $\hat{A}(\sigma) = [\hat{A}(\sigma^*)]^*$, where σ^* is the reflection of σ about $\Im(\sigma) = \gamma - 1$. In particular, spec_b(A) is symmetric about $\Im(\sigma) = \gamma - 1$.



We have $\mathcal{D}_{\max}/\mathcal{D}_{\min} \cong \bigoplus_{\sigma_0 \in \operatorname{spec}_b(A) \cap \{\sigma; \ \gamma - 2 < \Im(\sigma) < \gamma\}} \mathcal{E}_{\sigma_0}$, and Green Formula of Gil-Mendoza (AJM '03) shows $\mathcal{E}_{\sigma_0} \cong \mathcal{E}_{\sigma_0^*}$.

Theorem (Gil-Mendoza '03 – special case)

Suppose $\Im(\sigma) = \gamma - 1$ is free of boundary spectrum. Let

$$\mathcal{E}_{\mathcal{F}} = \bigoplus_{\sigma_0 \in \operatorname{spec}_b(\mathcal{A}) \cap \{\sigma; \ \gamma - 2 < \Im(\sigma) < \gamma - 1\}} \mathcal{E}_{\sigma_0}.$$

Then $\mathcal{D}_F = \mathcal{D}_{\min} \oplus \omega \mathcal{E}_F$.

Let
$$\mathcal{D}_0 = \mathcal{D}_{\min} \oplus \omega \mathcal{E}_F$$
. Because
 $\dim \mathcal{D}_0 / \mathcal{D}_{\min} = \frac{1}{2} \dim \mathcal{D}_{\max} / \mathcal{D}_{\min}$

by Green Formula it is enough to show that $\mathcal{D}_0 \subset \mathcal{D}_F$.

Friedrichs extension for cone operators

Theorem (Gil-Mendoza '03 – special case)

Suppose $\Im(\sigma) = \gamma - 1$ is free of boundary spectrum. Let

$$\mathcal{E}_{\mathcal{F}} = \bigoplus_{\sigma_0 \in \operatorname{spec}_b(\mathcal{A}) \cap \{\sigma; \ \gamma - 2 < \Im(\sigma) < \gamma - 1\}} \mathcal{E}_{\sigma_0}$$

Then
$$\mathcal{D}_F = \mathcal{D}_{\min} \oplus \omega \mathcal{E}_F$$
.

• $A: x^{-\gamma+1}H_b^1 \to x^{-\gamma-1}H_b^{-1}$ continuous, and $x^{-\gamma}L_b^2$ -inner product gives $[x^{-\gamma+1}H_b^1]' \cong x^{-\gamma-1}H_b^{-1}$. Thus

$$\left|\langle Au, u \rangle_{x^{-\gamma}L_b^2}\right| \lesssim \|Au\|_{x^{-\gamma-1}H_b^{-1}} \|u\|_{x^{-\gamma+1}H_b^1} \lesssim \|u\|_{x^{-\gamma+1}H_b^1}^2$$

Consequently, $x^{-\gamma+1}H_b^1 \hookrightarrow \mathscr{H}$. • We have $\mathcal{D}_0 \subset x^{-\gamma+1}H_b^1 \cap \mathcal{D}_{\max} \subset \mathscr{H} \cap \mathcal{D}_{\max} = \mathcal{D}_F$.

Back to wedge differential operators...

A near the boundary
$$(m=2)$$
:

$$A = x^{-m} \sum_{|\alpha|+|\beta|+k \le m} a_{\alpha,\beta,k}(x,y,z) (xD_x)^k D_z^\beta (xD_y)^\alpha$$

Normal family:

$$A_{\wedge}(y,\eta): C_{c}^{\infty}(Z_{y}^{\wedge}) \subset x^{-\gamma}L_{b}^{2}(Z_{y}^{\wedge}) \to x^{-\gamma}L_{b}^{2}(Z_{y}^{\wedge})$$
$$A_{\wedge}(y,\eta) = x^{-m}\sum_{|\alpha|+|\beta|+k \leq m} a_{\alpha,\beta,k}(0,y,z)(xD_{x})^{k}D_{z}^{\beta}(x\eta)^{\alpha}$$

Operator family on $Z_{y}^{\wedge} = Z \times \mathbb{R}_{+}$, parametrized by $T^{*}Y \setminus 0$. Note: In the classical case of regular BVPs, we recover the boundary symbol:

$$A_{\wedge}(y,\eta) = \sigma(D)(y,0,\eta,D_x)$$

The normal family

Standing assumptions:

- $A \in x^{-2} \operatorname{Diff}_{e}^{2}(M)$ w-elliptic, bounded from below in $x^{-\gamma}L_{b}^{2}$.
- $\hat{A}(y,\sigma)$ invertible for all $y \in Y$ and $\Im(\sigma) = \gamma 2$ and $\Im(\sigma) = \gamma 1$.
- Let \mathcal{T}_F be the trace bundle associated with A and the strip $\gamma 2 < \Im(\sigma) < \gamma 1$.

Proposition

- $A_{\wedge}(y,\eta): \mathcal{D}_{\wedge,\max/\min} \to x^{-\gamma}L^2_b(Z^{\wedge}_y)$ is Fredholm on $T^*Y \setminus 0$.
- dim $\mathcal{D}_{\wedge,\max}/\mathcal{D}_{\wedge,\min} < \infty$, and complement represented by singular functions.
- $A_{\wedge}(y,\eta) \geq 0$ on $C_c^{\infty}(Z_y^{\wedge}) \subset x^{-\gamma}L_b^2(Z_y^{\wedge}).$
- $\mathcal{D}_{\wedge,F,y} = \mathcal{D}_{\wedge,\min} \oplus \omega \mathcal{T}_{F,y}$ (varies only with y).

Theorem (Friedrichs Extension for Wedge Operators)

Suppose
$$A_{\wedge}(y,\eta) > 0$$
 on $C_{c}^{\infty}(Z_{y}^{\wedge})$ for $(y,\eta) \in T^{*}Y \setminus 0$.
• $\mathcal{D}_{\min} = x^{-\gamma+2}H_{e}^{2}(M)$.
• Let $\mathfrak{g} = \gamma + (x\partial_{x}) \in \operatorname{End}(\mathcal{T}_{F})$. Then
 $0 \longrightarrow \mathcal{D}_{\min} \xrightarrow{\iota} \mathcal{D}_{F} \xrightarrow{T} H^{2-\mathfrak{g}}(Y;\mathcal{T}_{F}) \longrightarrow 0$
is split-exact.

For regular boundary value problems: L²(M) = x^{-1/2}L²_b(M), so γ = 1/2.

- $\mathcal{T}_F = \mathbb{C} \cdot x$. So $x \partial_x$ acts as the identity on \mathcal{T}_F .
- $\mathfrak{g} = 3/2$, and $H^{2-\mathfrak{g}}(Y; \mathcal{T}_F) = H^{1/2}(Y)$.

Sobolev space of sections of variable order

Idea of the space $H^{2-\mathfrak{g}}(Y;\mathcal{T}_F)$

"Eigensections of \mathcal{T}_F w.r.t. the eigenvalue λ of $2 - \mathfrak{g}$ (at y) are measured with Sobolev regularity $\operatorname{Re}(\lambda)$ (at y)."

Note that

$$\sum_{k=0}^{m_{\sigma_0}} c_k \log^k(x) x^{i\sigma_0}$$

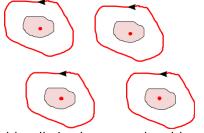
is a generalized eigensection of $2 - \mathfrak{g} = 2 - (\gamma + x\partial_x)$ associated with the eigenvalue $\lambda = 2 - \gamma - i\sigma_0$.

Formal construction:

- Pair (E, a) consisting of a complex vector bundle E → Y and an endomorphism a ∈ End(E).
- For $y \in Y$ consider $\varrho^{a|_{E_y}} : E_y \to E_y$, $\varrho > 0$. Then $\varrho^a \in \text{End}(E)$.

Sobolev space of sections of variable order

Fix y_0 and enclose eigenvalues of a at y_0 with contours $\Gamma_1, \ldots, \Gamma_N$:



Eigenvalues spread locally in clusters enclosed by these contours. The spectral projection onto \tilde{U}_k (= direct sum of generalized eigenspaces associated with eigenvalues in *k*-th cluster) is

$$P_{k,y} = \frac{1}{2\pi i} \int_{\Gamma_k} (\sigma - a(y))^{-1} \, d\sigma.$$

The formula depends smoothly on y (near y_0).

Sobolev space of sections of variable order

Definition

Fix $0 < \delta < 1$. A local trivialization $\phi : E|_{\Omega} \to \Omega \times \mathbb{C}^{L}$ is called δ -admissible for (E, a) if the following holds:

(a) \exists open $W_1, \ldots, W_N \subset \mathbb{C}$, $W_i \cap W_j = \emptyset$ for $i \neq j$, diam $(W_k) < \delta$, and $S_k \Subset W_k$ s.t. spec $(a|_{E_y}) \cap W_k \subset S_k$ and

$$\operatorname{\mathsf{spec}}(a|_{E_y}) = igcup_{k=1}^N \operatorname{\mathsf{spec}}(a|_{E_y}) \cap W_k ext{ for all } y \in \Omega$$

(b) ϕ is a direct sum of trivializations of the subbundles

$$\tilde{U}_k = \bigsqcup_{y \in \Omega} \left(\bigoplus_{\lambda \in \operatorname{spec}(a|_{E_y}) \cap W_k} \ker(a|_{E_y} - \lambda)^{\dim E_y} \right)$$

over Ω , $k = 1, \ldots, N$.

In a δ -admissible trivialization $\Omega \times \mathbb{C}^L$ over a chart, $a \in \operatorname{End}(E|_{\Omega})$ is represented by $a(y) \in C^{\infty}(\Omega, \mathscr{L}(\mathbb{C}^L))$.

Definition

$$u \in C_c^{-\infty}(\Omega; \mathbb{C}^L)$$
 belongs to $H^a_{\operatorname{comp}}(\Omega; \mathbb{C}^L)$ iff

$$\langle D_y \rangle^{a(y)} u = \operatorname{op}[\langle \eta \rangle^{a(y)}] u \in L^2_{\operatorname{loc}}(\Omega; \mathbb{C}^L)$$

This local definition gives rise to a well-defined global space $H^{a}(Y; E)$.

Idea of Proof of the Main Theorem

 Use duality of edge Sobolev spaces and continuity to argue exactly as in the case of cone operators that

$$x^{-\gamma+1}H^1_e(M) \hookrightarrow \mathscr{H}.$$

- Construct explicitly £ : H^{2-g}(Y; T_F) → D_{max} ∩ x^{-γ+1}H¹_e(M) that provides a splitting (local construction + patching – technical part, requires subtle estimates, pseudodifferential techniques adapted from Schulze's calculus).
- Let $\mathcal{D}_0 = x^{-\gamma+2}H^2_e(M) + \mathcal{E}(H^{2-\mathfrak{g}}(Y;\mathcal{T}_F)) \subset \mathcal{D}_F.$
- Show that A + λ² : D₀ → x^{-γ}L²_b is invertible for λ ≫ 0. Proof of this is based on parameter-dependent parametrix construction. Assumptions on the Friedrichs extension of the normal family A_∧(y, η) are needed for this construction to work.

Thank you!