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Prologue Main Act

The Neumann-Poincaré Operator

� Ω ⊂ Rn, n ≥ 3, bounded with connected complement, exterior unit
normal ν, E = cn

∣∣z − z′|2−n fundamental solution for ∆ on Rn.
Then:

K(z, z′) = 2∂ν(z′)E(z, z′) = c′n
< ν(z′), z − z′ >
|z − z′|n

defines an operator L2(Γ) −→ L2(Γ).

� Used in the method of layer potentials to solve Dir– and Neu–
problems

� Can be used to study the DN–operator and related transmission
problems across ∂Ω
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Earlier & Related Results

The NP-operator has been studied extensively over the past 100 years. In
the past decade, there has been growing interest in related transmission
problems for Ω (or Rn \ Ω) having corners, cusps, etc.

The spectrum of K is of particular interest. One may define a scalar
product on H

1
2 (∂Ω) with respect to which K : H

1
2 (∂Ω) −→ H

1
2 (∂Ω) is

self-adjoint. On this space:

� If ∂Ω is C1,α, α > 0 : σess(K) = {0}
� If Ω is a plane domain with unique corner with angle 0 < ϑ < 2π:

σess(K) =
{
x ∈ R : |x| ≤ |1− ϑ

π |
}

(Perfekt–Putinar, see also Chesnel–Claeys–Nazarov)

� Goal: If Rn \ Ω has a certain type of cusp, show:

σess(K) = [−1, 1]
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Touching Hypersurfaces

Assume Ω = Ω− ∪ Ω+ is given by two touching domains in Rn, n ≥ 3,
where ∂Ω± smooth, Ω− ∩ Ω+ = {0} and each has connected
complement.

We resolve the singular stratum using two blow-ups: First, we blow up
the intersection of ∂Ω± and then the intersections of the their lifts.

(This resolves the exterior region Rn \ Ω as well. We could also employ a
quasi-homogeneous blow up.)

A neighbourhood of the newly created face fibres trivially over the set
[0, ε)× Sn−2: This can be given explicitly using rescaled cylindrical
coordinates z = ( xr2 , r, ω) by φ(z) = (r, ω).
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Behaviour near ∂Γ

How does this fibration relate to K? If

|< ν(z′), z − z′ >| ≤ |z − z′|2 ,

for all z, z′ and as |z − z′| −→ 0, K defines a compact operator.

This fails when z, z′ belong to the same fibre of φ but to different
connected components of Γ, in which case we have
|< ν(z′), z − z′ >| ∼ |z − z′| as |z − z′| → 0.

When restricted to ∂Γ, φ gives

{±1} ∂Γ
φ∂−−→ Sn−2 ,

and we might consider K as a φ–ΨDO, as introduced by R. Mazzeo and
R. Melrose. (Seems overly complicated, but might be useful when dealing
with transmission problems.)
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φ–Pseudodifferential Operators

Brief description: A φ–ΨDO (in the full calculus) is given by a bφ–half
density kernel which is polyhomogeneous conormal on the φ–double
space of Γ with respect to the lifted diagonal:

Γ2 ←− Γ2
b =

[
Γ2; (∂Γ)2

]
←− Γ2

φ =
[
Γ2
b ; ∆φ

]
,

where ∆φ =
{

(h, h′, 1) ∈ (∂Γ)2 × [−1, 1] ∼= bf : φ∂(h) = φ∂(h′)
}

is the
fibre diagonal of the b–face.
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Mapping Properties of K

Theorem 1:

i. K lifts to define an element of the full φ-calculus,

K ∈ Ψ−1,(0,n−1,1,0)(Γ)

ii. If α > 1− n, β < 0 and β ≤ α, then

K : ραHs−1
φ (Γ; bΩ

1
2 ) −→ ρβHs

φ(Γ; bΩ
1
2 ) (∗)

is bounded.

iii. If in addition β < α, then (∗) is compact.

Proof: Explicitly compute the index family for K, then apply a general
theorem by D. Grieser and E. Hunsicker.
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The Normal Operator

Theorem 1 is useful for the study of transmission problems, but does
not directly help to compute σess(K). But we can use another object
from the φ–calculus:

The kernel of the normal operator N(P ) of a φ–ΨDO P is given by
restriction of the kernel of P to the φ–face.

In our case, with fibres being S0, it is a 2× 2–matrix of functions on
Sn−2 × Rn−1. Its symbol can be interpreted to act as a convolution
operator on Fourier transforms of functions on a neighbourhood of ∂Γ.
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The Normal Operator

Lemma 2:

i. The symbol of the normal operator of λ−K is given by

(2π)1−n
(
−λ χ̂(τ, η)

χ̂(τ, η) −λ

)
,

where χ(T, Y ) = 2
|Sn−1|

κ(ω)

(κ(ω)2+T 2+|Y |2)
n
2

.

ii. It is invertible if and only if |λ| > 1.
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The Essential Spectrum

Theorem 3:

The essential spectrum of K is σess(K) = [−1, 1].

Proof:

� Given λ ∈ [−1, 1], there is a zero (τ0, η0) of the symbol of
N(λ−K).

� Approximate δ(τ0,η0) by suitably normalised, compactly supported
functions.

� These can be used to obtain a Weyl-sequence for λ−K: A sequence
uk so that ‖(λ−K)uk‖ ‖uk‖−1 −→ 0 and uk −→ 0 weakly.

� For more general symmetry reasons: σ(K) ⊂ [−1, 1], whence
σess(K) = [−1, 1].
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