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ALC manifolds

� (Σ, gΣ) closed connected (n − 2)–dimensional smooth Riemannian
manifold

� π : N → Σ a circle bundle.

� θ a connection on π : N → Σ, ` > 0 a constant

 model metric on M∞ = R+ × N

g∞ = dr2 + r2π∗gΣ + `2θ2

Definition A complete Riemannian manifold (Mn, g) with only one end is
an ALC manifold asymptotic to M∞ with rate ν < 0 if there exists a
compact set K ⊂ M, a positive number R > 0 and a diffeomorphism
φ : M∞ ∩ {r > R} → M \ K such that for all j ≥ 0

|∇j
g∞(φ∗g − g∞)|g∞ = O(rν−j).

Remark: ALF vs. ALC
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The 4–dimensional hyperkähler case

ALF gravitational instantons: hyperkähler 4–dimensional ALC manifolds

N = S3/Γ where Γ is a cyclic or binary dihedral group, Σ = S2 or RP2

Examples: Taub–NUT, Atiyah–Hitchin, . . .

Page (1981): consider the Kummer construction of K3 along a 1–parameter
family of “split” 4-tori T4 = T3 × S1

` with a circle of length `→ 0.

A “periodic but nonstationary” gravitational instanton asymptotic to
(R3 × S1)/Z2 appears as a rescaled limit.

Theorem (F., 2016) Every collection of 8 ALF spaces of dihedral type
M1, . . . ,M8 and n ALF spaces of cyclic type N1, . . . ,Nn satisfying

8∑
j=1

χ(Mj) +
n∑

i=1

χ(Ni ) = 24

appears as the collection of “bubbles” forming in a sequence of Kähler
Ricci-flat metrics on the K3 surface collapsing to the flat orbifold T 3/Z2

with bounded curvature away from n + 8 points.
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� Construct (incomplete) S1–invariant hyperkähler metrics on circle
bundles over a punctured 3–torus.

Gibbons–Hawking Ansatz: π : M → U ⊂ R3 principal circle bundle;

h π∗gR3 + h−1θ2

is hyperkähler iff (h, θ) is a monopole on M: ∗dh = dθ

Fix an involution τ with 8 fixed points on T 3, choose a Z2–invariant
configuration of 2n + 8 punctures and construct a monopole with
Dirac-type singularities at these points. Pass to a Z2 quotient.

� Complete the resulting hyperkähler metrics by gluing in ALF spaces at
the n + 8 punctures:

an ALF space of dihedral type at each of the 8 fixed points of τ ,
an ALF space of cyclic type at each of the other punctures.

� Deform the resulting approximately hyperkähler metric using the Implicit
Function Theorem.

By allowing clusters of punctures coalescing together at different rates could
also obtain “bubble trees” of ALF and ALE spaces



� Construct (incomplete) S1–invariant hyperkähler metrics on circle
bundles over a punctured 3–torus.

Gibbons–Hawking Ansatz: π : M → U ⊂ R3 principal circle bundle;

h π∗gR3 + h−1θ2

is hyperkähler iff (h, θ) is a monopole on M: ∗dh = dθ

Fix an involution τ with 8 fixed points on T 3, choose a Z2–invariant
configuration of 2n + 8 punctures and construct a monopole with
Dirac-type singularities at these points. Pass to a Z2 quotient.

� Complete the resulting hyperkähler metrics by gluing in ALF spaces at
the n + 8 punctures:

an ALF space of dihedral type at each of the 8 fixed points of τ ,
an ALF space of cyclic type at each of the other punctures.

� Deform the resulting approximately hyperkähler metric using the Implicit
Function Theorem.

By allowing clusters of punctures coalescing together at different rates could
also obtain “bubble trees” of ALF and ALE spaces



� Construct (incomplete) S1–invariant hyperkähler metrics on circle
bundles over a punctured 3–torus.

Gibbons–Hawking Ansatz: π : M → U ⊂ R3 principal circle bundle;

h π∗gR3 + h−1θ2

is hyperkähler iff (h, θ) is a monopole on M: ∗dh = dθ

Fix an involution τ with 8 fixed points on T 3, choose a Z2–invariant
configuration of 2n + 8 punctures and construct a monopole with
Dirac-type singularities at these points. Pass to a Z2 quotient.

� Complete the resulting hyperkähler metrics by gluing in ALF spaces at
the n + 8 punctures:

an ALF space of dihedral type at each of the 8 fixed points of τ ,
an ALF space of cyclic type at each of the other punctures.

� Deform the resulting approximately hyperkähler metric using the Implicit
Function Theorem.

By allowing clusters of punctures coalescing together at different rates could
also obtain “bubble trees” of ALF and ALE spaces



� Construct (incomplete) S1–invariant hyperkähler metrics on circle
bundles over a punctured 3–torus.

Gibbons–Hawking Ansatz: π : M → U ⊂ R3 principal circle bundle;

h π∗gR3 + h−1θ2

is hyperkähler iff (h, θ) is a monopole on M: ∗dh = dθ

Fix an involution τ with 8 fixed points on T 3, choose a Z2–invariant
configuration of 2n + 8 punctures and construct a monopole with
Dirac-type singularities at these points. Pass to a Z2 quotient.

� Complete the resulting hyperkähler metrics by gluing in ALF spaces at
the n + 8 punctures:

an ALF space of dihedral type at each of the 8 fixed points of τ ,
an ALF space of cyclic type at each of the other punctures.

� Deform the resulting approximately hyperkähler metric using the Implicit
Function Theorem.

By allowing clusters of punctures coalescing together at different rates could
also obtain “bubble trees” of ALF and ALE spaces



ALC G2 manifolds
(joint work with Mark Haskins and Johannes Nordström)

G2 holonomy: the whole geometric structure (including the metric) is
determined by a closed and coclosed 3–form ϕ.

The model M∞ for an ALC G2 manifold:

� Σ is a Sasaki–Einstein 5–manifold: the cone C (Σ) is Calabi–Yau (CY).

� (ωC ,ΩC ) conical CY structure + Hermitian–Yang–Mills connection θ on
a circle bundle M∞ → C (Σ)  model 3–form

ϕ∞ = θ ∧ ωC + ReΩC

Motivation:

� Construct compact G2 manifolds collapsing to CY 3–folds with isolated
conical singularities.

� More in general, ALC G2 manifolds provide a source of examples to
explore collapsing phenomena in G2 geometry.

� Duality between Type IIA String theory and M theory.
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Examples

ALC G2 B7 C7 D7

AC CY T ∗S3 KP1×P1 small resolution ODP

An explicit example in the B7 case, the other examples are numerical.

� Existence of a cohomogeneity one ALC G2 manifold with an isolated
conical singularity modelled on C (S3 × S3)

� Smoothing of the previous example by gluing in Bryant–Salamon’s AC G2

metric on S3 × R4: 3 different ways to smooth the singularity  B7 and
D7 examples.
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Examples

ALC G2 B7 C7 D7

AC CY T ∗S3 KP1×P1 small resolution ODP

� A cohomogeneity one conically singular ALC G2 manifold.
� Smoothing of the previous example  B7 and D7 families.

� ALC G2 manifolds with an S1 action with small orbits.
� Apostolov–Salamon (2004): reduction of the PDEs for G2 holonomy in the

presence of a Killing field.

� Pass to the adiabatic limit: collapsed limit endowed with a CY structure
(ω0,Ω0) and a CY monopole (h, θ): ∗dh = dθ ∧ ReΩ0, dθ ∧ ω2

0 = 0.
Dichotomy: codim 3 Dirac-type singularities along a sLag submanifold, or
HYM connections with h const.

� (i) Construct CY monopoles on an AC CY manifold M  closed G2

structures with small torsion on circle bundles over M.
(ii) Perturb these approximate solutions near infinity to improve the decay
of the torsion. (At the moment need Σ = S2 × S3.)
(iii) Deform to honest ALC G2 metrics using Joyce’s deformation results.
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Deformation theory of ALC G2 manifolds

Theorem For −3 < ν < −1 the moduli space of ALC G2 manifolds with
rate ν is a smooth manifold of dimension

dim H3
ν = dim {ρ ∈ Ω3 such that dρ = 0 = d∗ρ, ρ = O(rν)}

� Eigenvalue estimate for the Laplacian on 2–forms on regular SE 5–mnflds
 ν = −3 and ν = −2 are the only indicial roots for d + d∗ in [−3,−1].

� Hausel–Hunsicker–Mazzeo (2004): consider compactification X of M
obtained by collapsing the circle at infinity: M = X \ Σ. L2–cohomology:

dim H3
−3−ε = dim

(
H3

c (M)→ H3(X )
)

� Identify jump of dimension as we cross the indicial roots −3 and −2:

dim H3
−3+ε − dim H3

−3−ε = dim im
(
H3(X )→ H3(Σ)

)
+ dim im

(
H4(M)→ H3(Σ)

)
dim H3

−2+ε − dim H3
−2−ε = dim im

(
H3(M)→ H2(Σ)

)
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dim H3
−3+ε dim H3

−2+ε

B7 1 1
C7 1 1
D7 0 1

Comparison with the dimension of the moduli space of AC CY structures on
the collapsed limit explains the origin of these deformations.

A second parameter in the C7 family forced to vary in a discrete way.


