ALC manifolds with special holonomy

Lorenzo Foscolo

Stony Brook University

Analysis, Geometry and Topology of Stratified Spaces, CIRM, Luminy, June 15 2016

ALC manifolds

- (Σ, g_{Σ}) closed connected (n-2)-dimensional smooth Riemannian manifold
- $\pi: N \to \Sigma$ a circle bundle.
- θ a connection on $\pi: N \to \Sigma$, $\ell > 0$ a constant

 \rightsquigarrow model metric on $M_\infty = \mathbb{R}^+ imes N$

$$g_{\infty} = dr^2 + r^2 \pi^* g_{\Sigma} + \ell^2 \theta^2$$

ALC manifolds

- (Σ, g_Σ) closed connected (n 2)-dimensional smooth Riemannian manifold
- $\pi: N \to \Sigma$ a circle bundle.
- θ a connection on $\pi: N \to \Sigma$, $\ell > 0$ a constant

 \rightsquigarrow model metric on $M_\infty = \mathbb{R}^+ imes N$

$$g_{\infty} = dr^2 + r^2 \pi^* g_{\Sigma} + \ell^2 \theta^2$$

Definition A complete Riemannian manifold (M^n, g) with only one end is an **ALC manifold** asymptotic to M_∞ with rate $\nu < 0$ if there exists a compact set $K \subset M$, a positive number R > 0 and a diffeomorphism $\phi: M_\infty \cap \{r > R\} \to M \setminus K$ such that for all $j \ge 0$

$$|
abla_{g_\infty}^j(\phi^*g-g_\infty)|_{g_\infty}=O(r^{\nu-j}).$$

Remark: ALF vs. ALC

The 4-dimensional hyperkähler case

ALF gravitational instantons: hyperkähler 4–dimensional ALC manifolds $N = S^3/\Gamma$ where Γ is a cyclic or binary dihedral group, $\Sigma = S^2$ or \mathbb{RP}^2 Examples: Taub–NUT, Atiyah–Hitchin, ...

The 4-dimensional hyperkähler case

ALF gravitational instantons: hyperkähler 4–dimensional ALC manifolds $N = S^3/\Gamma$ where Γ is a cyclic or binary dihedral group, $\Sigma = S^2$ or \mathbb{RP}^2 Examples: Taub–NUT, Atiyah–Hitchin, ...

Page (1981): consider the Kummer construction of K3 along a 1-parameter family of "split" 4-tori $\mathbb{T}^4 = \mathbb{T}^3 \times S^1_{\ell}$ with a circle of length $\ell \to 0$.

A "periodic but nonstationary" gravitational instanton asymptotic to $(\mathbb{R}^3 \times S^1)/\mathbb{Z}_2$ appears as a rescaled limit.

The 4-dimensional hyperkähler case

ALF gravitational instantons: hyperkähler 4–dimensional ALC manifolds $N = S^3/\Gamma$ where Γ is a cyclic or binary dihedral group, $\Sigma = S^2$ or \mathbb{RP}^2 Examples: Taub–NUT, Atiyah–Hitchin, ...

Page (1981): consider the Kummer construction of K3 along a 1-parameter family of "split" 4-tori $\mathbb{T}^4 = \mathbb{T}^3 \times S^1_\ell$ with a circle of length $\ell \to 0$.

A "periodic but nonstationary" gravitational instanton asymptotic to $(\mathbb{R}^3\times S^1)/\mathbb{Z}_2$ appears as a rescaled limit.

Theorem (F., 2016) Every collection of 8 ALF spaces of dihedral type M_1, \ldots, M_8 and *n* ALF spaces of cyclic type N_1, \ldots, N_n satisfying

$$\sum_{j=1}^{8} \chi(M_j) + \sum_{i=1}^{n} \chi(N_i) = 24$$

appears as the collection of "bubbles" forming in a sequence of Kähler Ricci-flat metrics on the K3 surface collapsing to the flat orbifold T^3/\mathbb{Z}_2 with bounded curvature away from n + 8 points.

Gibbons–Hawking Ansatz: $\pi : M \to U \subset \mathbb{R}^3$ principal circle bundle;

$$h\pi^*g_{\mathbb{R}^3}+h^{-1}\theta^2$$

is hyperkähler iff (h, θ) is a **monopole** on M: $*dh = d\theta$

Gibbons–Hawking Ansatz: $\pi : M \to U \subset \mathbb{R}^3$ principal circle bundle;

$$h\pi^*g_{\mathbb{R}^3}+h^{-1}\theta^2$$

is hyperkähler iff (h, θ) is a **monopole** on M: $*dh = d\theta$ Fix an involution τ with 8 fixed points on T^3 , choose a \mathbb{Z}_2 -invariant configuration of 2n + 8 punctures and construct a monopole with Dirac-type singularities at these points. Pass to a \mathbb{Z}_2 quotient.

Gibbons–Hawking Ansatz: $\pi : M \to U \subset \mathbb{R}^3$ principal circle bundle;

$$h\pi^*g_{\mathbb{R}^3}+h^{-1}\theta^2$$

is hyperkähler iff (h, θ) is a **monopole** on M: $*dh = d\theta$

Fix an involution τ with 8 fixed points on T^3 , choose a \mathbb{Z}_2 -invariant configuration of 2n + 8 punctures and construct a monopole with Dirac-type singularities at these points. Pass to a \mathbb{Z}_2 quotient.

Complete the resulting hyperkähler metrics by gluing in ALF spaces at the n + 8 punctures:

an ALF space of dihedral type at each of the 8 fixed points of τ , an ALF space of cyclic type at each of the other punctures.

Gibbons–Hawking Ansatz: $\pi : M \to U \subset \mathbb{R}^3$ principal circle bundle;

$$h\pi^*g_{\mathbb{R}^3}+h^{-1}\theta^2$$

is hyperkähler iff (h, θ) is a **monopole** on M: $*dh = d\theta$

Fix an involution τ with 8 fixed points on T^3 , choose a \mathbb{Z}_2 -invariant configuration of 2n + 8 punctures and construct a monopole with Dirac-type singularities at these points. Pass to a \mathbb{Z}_2 quotient.

Complete the resulting hyperkähler metrics by gluing in ALF spaces at the n + 8 punctures:

an ALF space of dihedral type at each of the 8 fixed points of τ , an ALF space of cyclic type at each of the other punctures.

• Deform the resulting approximately hyperkähler metric using the Implicit Function Theorem.

By allowing clusters of punctures coalescing together at different rates could also obtain "bubble trees" of ALF and ALE spaces

ALC G₂ manifolds

(joint work with Mark Haskins and Johannes Nordström)

 G_2 holonomy: the whole geometric structure (including the metric) is determined by a closed and coclosed 3–form φ .

The model M_{∞} for an ALC G_2 manifold:

- Σ is a Sasaki–Einstein 5–manifold: the cone $C(\Sigma)$ is Calabi–Yau (CY).
- (ω_C, Ω_C) conical CY structure + Hermitian–Yang–Mills connection θ on a circle bundle $M_{\infty} \to C(\Sigma) \rightsquigarrow$ model 3–form

$$\varphi_{\infty} = \theta \wedge \omega_{\mathcal{C}} + \operatorname{Re} \Omega_{\mathcal{C}}$$

ALC G₂ manifolds

(joint work with Mark Haskins and Johannes Nordström)

 G_2 holonomy: the whole geometric structure (including the metric) is determined by a closed and coclosed 3–form φ .

The model M_{∞} for an ALC G_2 manifold:

- Σ is a Sasaki–Einstein 5–manifold: the cone $C(\Sigma)$ is Calabi–Yau (CY).
- (ω_C, Ω_C) conical CY structure + Hermitian–Yang–Mills connection θ on a circle bundle $M_{\infty} \to C(\Sigma) \rightsquigarrow$ model 3–form

$$\varphi_{\infty} = \theta \wedge \omega_{\mathcal{C}} + \operatorname{Re} \Omega_{\mathcal{C}}$$

Motivation:

- Construct compact G₂ manifolds collapsing to CY 3–folds with isolated conical singularities.
- More in general, ALC G₂ manifolds provide a source of examples to explore collapsing phenomena in G₂ geometry.
- Duality between Type IIA String theory and M theory.

ALC G_2	\mathbb{B}_7	\mathbb{C}_7	\mathbb{D}_7
AC CY	T^*S^3	$K_{\mathbb{P}^1 imes \mathbb{P}^1}$	small resolution ODP

An explicit example in the \mathbb{B}_7 case, the other examples are numerical.

An explicit example in the \mathbb{B}_7 case, the other examples are numerical.

Existence of a cohomogeneity one ALC G₂ manifold with an isolated conical singularity modelled on C(S³ × S³)

An explicit example in the \mathbb{B}_7 case, the other examples are numerical.

- Existence of a cohomogeneity one ALC G₂ manifold with an isolated conical singularity modelled on C(S³ × S³)
- Smoothing of the previous example by gluing in Bryant–Salamon's AC G₂ metric on S³ × ℝ⁴: 3 different ways to smooth the singularity → B₇ and D₇ examples.

ALC G_2	\mathbb{B}_7	\mathbb{C}_7	\mathbb{D}_7
AC CY	T^*S^3	$K_{\mathbb{P}^1 imes \mathbb{P}^1}$	small resolution ODP

- A cohomogeneity one conically singular ALC G₂ manifold.
- \blacksquare Smoothing of the previous example $\rightsquigarrow \mathbb{B}_7$ and \mathbb{D}_7 families.
- ALC G_2 manifolds with an S^1 action with small orbits.
 - □ Apostolov–Salamon (2004): reduction of the PDEs for G_2 holonomy in the presence of a Killing field.

ALC G_2	\mathbb{B}_7	\mathbb{C}_7	\mathbb{D}_7
AC CY	T^*S^3	$K_{\mathbb{P}^1 imes \mathbb{P}^1}$	small resolution ODP

- A cohomogeneity one conically singular ALC G₂ manifold.
- \blacksquare Smoothing of the previous example $\rightsquigarrow \mathbb{B}_7$ and \mathbb{D}_7 families.
- ALC G_2 manifolds with an S^1 action with small orbits.
 - □ Apostolov–Salamon (2004): reduction of the PDEs for G_2 holonomy in the presence of a Killing field.
 - □ Pass to the adiabatic limit: collapsed limit endowed with a CY structure (ω_0, Ω_0) and a CY monopole (h, θ) : $*dh = d\theta \land \operatorname{Re} \Omega_0, d\theta \land \omega_0^2 = 0$. Dichotomy: codim 3 Dirac-type singularities along a sLag submanifold, or HYM connections with *h* const.

ALC G_2	\mathbb{B}_7	\mathbb{C}_7	\mathbb{D}_7
AC CY	T^*S^3	$K_{\mathbb{P}^1 imes \mathbb{P}^1}$	small resolution ODP

- A cohomogeneity one conically singular ALC G₂ manifold.
- \blacksquare Smoothing of the previous example $\rightsquigarrow \mathbb{B}_7$ and \mathbb{D}_7 families.
- ALC G_2 manifolds with an S^1 action with small orbits.
 - \Box Apostolov–Salamon (2004): reduction of the PDEs for G_2 holonomy in the presence of a Killing field.
 - □ Pass to the adiabatic limit: collapsed limit endowed with a CY structure (ω_0, Ω_0) and a CY monopole (h, θ) : $*dh = d\theta \land \operatorname{Re} \Omega_0, d\theta \land \omega_0^2 = 0$. Dichotomy: codim 3 Dirac-type singularities along a sLag submanifold, or HYM connections with *h* const.
 - □ (i) Construct CY monopoles on an AC CY manifold $M \rightsquigarrow$ closed G_2 structures with small torsion on circle bundles over M.

ALC G_2	\mathbb{B}_7	\mathbb{C}_7	\mathbb{D}_7
AC CY	T^*S^3	$K_{\mathbb{P}^1 imes \mathbb{P}^1}$	small resolution ODP

- A cohomogeneity one conically singular ALC G₂ manifold.
- \blacksquare Smoothing of the previous example $\rightsquigarrow \mathbb{B}_7$ and \mathbb{D}_7 families.
- ALC G_2 manifolds with an S^1 action with small orbits.
 - \Box Apostolov–Salamon (2004): reduction of the PDEs for G_2 holonomy in the presence of a Killing field.
 - □ Pass to the adiabatic limit: collapsed limit endowed with a CY structure (ω_0, Ω_0) and a CY monopole (h, θ) : $*dh = d\theta \land \operatorname{Re} \Omega_0, d\theta \land \omega_0^2 = 0$. Dichotomy: codim 3 Dirac-type singularities along a sLag submanifold, or HYM connections with *h* const.
 - □ (i) Construct CY monopoles on an AC CY manifold M → closed G₂ structures with small torsion on circle bundles over M.
 (ii) Perturb these approximate solutions near infinity to improve the decay of the torsion. (At the moment need Σ = S² × S³.)

ALC G_2	\mathbb{B}_7	\mathbb{C}_7	\mathbb{D}_7
AC CY	T^*S^3	$K_{\mathbb{P}^1 imes \mathbb{P}^1}$	small resolution ODP

- A cohomogeneity one conically singular ALC G₂ manifold.
- Smoothing of the previous example $\rightsquigarrow \mathbb{B}_7$ and \mathbb{D}_7 families.
- ALC G_2 manifolds with an S^1 action with small orbits.
 - \Box Apostolov–Salamon (2004): reduction of the PDEs for G_2 holonomy in the presence of a Killing field.
 - □ Pass to the adiabatic limit: collapsed limit endowed with a CY structure (ω_0, Ω_0) and a CY monopole (h, θ) : $*dh = d\theta \land \operatorname{Re} \Omega_0, d\theta \land \omega_0^2 = 0$. Dichotomy: codim 3 Dirac-type singularities along a sLag submanifold, or HYM connections with *h* const.
 - □ (i) Construct CY monopoles on an AC CY manifold M → closed G₂ structures with small torsion on circle bundles over M.
 (ii) Perturb these approximate solutions near infinity to improve the decay of the torsion. (At the moment need Σ = S² × S³.)
 (iii) Deform to honest ALC G₂ metrics using Joyce's deformation results.

Deformation theory of ALC G₂ manifolds

Theorem For $-3 < \nu < -1$ the moduli space of ALC G_2 manifolds with rate ν is a smooth manifold of dimension

dim \mathcal{H}^3_{ν} = dim { $\rho \in \Omega^3$ such that $d\rho = 0 = d^*\rho$, $\rho = O(r^{\nu})$ }

Deformation theory of ALC G₂ manifolds

Theorem For $-3 < \nu < -1$ the moduli space of ALC G_2 manifolds with rate ν is a smooth manifold of dimension

dim
$$\mathcal{H}^3_{\nu}$$
 = dim { $\rho \in \Omega^3$ such that $d\rho = 0 = d^*\rho$, $\rho = O(r^{\nu})$ }

- Eigenvalue estimate for the Laplacian on 2-forms on regular SE 5-mnflds ~> ν = -3 and ν = -2 are the only indicial roots for d + d* in [-3, -1].
- Hausel-Hunsicker-Mazzeo (2004): consider compactification X of M obtained by collapsing the circle at infinity: M = X \ Σ. L²-cohomology:

dim
$$\mathcal{H}^3_{-3-\epsilon} = \dim \left(H^3_c(M) \to H^3(X) \right)$$

• Identify jump of dimension as we cross the indicial roots -3 and -2: dim $\mathcal{H}^3_{-3+\epsilon} - \dim \mathcal{H}^3_{-3-\epsilon} = \dim \operatorname{im} (H^3(X) \to H^3(\Sigma))$ $+ \dim \operatorname{im} (H^4(M) \to H^3(\Sigma))$ dim $\mathcal{H}^3_{-2+\epsilon} - \dim \mathcal{H}^3_{-2-\epsilon} = \dim \operatorname{im} (H^3(M) \to H^2(\Sigma))$

	dim $\mathcal{H}^3_{-3+\epsilon}$	dim $\mathcal{H}^3_{-2+\epsilon}$
\mathbb{B}_7	1	1
\mathbb{C}_7	1	1
\mathbb{D}_7	0	1

Comparison with the dimension of the moduli space of AC CY structures on the collapsed limit explains the origin of these deformations.

A second parameter in the \mathbb{C}_7 family forced to vary in a discrete way.