The L[•]-Homology Fundamental Class for Singular Spaces and the Stratified Novikov Conjecture

Markus Banagl

Universität Heidelberg

June 2016

joint work with Gerd Laures, Jim McClure.

- ► $\mathbb{L}^{\bullet} = \mathbb{L}^{\bullet} \langle 0 \rangle(\mathbb{Z})$ Ranicki's symmetric *L*-spectrum, $\pi_n(\mathbb{L}^{\bullet}) = L^n(\mathbb{Z})$
- ► Objective: For a (closed, oriented) singular space Xⁿ, give a detailed construction of an L[•]-homology fundamental class

$[X]_{\mathbb{L}} \in \mathbb{L}_n^{\bullet}(X),$

using the formalism of "ad theories".

- ► Applications to stratified homotopy invariance of higher signatures, geometric cycle theory for L[•]-homology.
- ► $[X]_{\mathbb{L}}$ appeared first in work of Cappell, Shaneson, Weinberger: $\Delta^{G}(X) \in \mathrm{KO}^{G}_{*}(X)[\frac{1}{2}], X$ Witt, G finite group; TOP inv.
- > Th. Eppelmann: sheaf complexes in the derived category

The $\mathbb{L}\text{-}\mathsf{Homology}$ Fundamental Class for Manifolds

- **MSTop** Thom spectrum of oriented topological bordism.
- ▶ Ranicki: "symmetric signature map" **MSTop** $\rightarrow \mathbb{L}^{\bullet}$.
- ► *M*: *n*-dim. closed oriented topological manifold.

•
$$[M]_{\operatorname{Top}} := [M \xrightarrow{\operatorname{id}} M] \in \Omega_n^{\operatorname{STop}}(M).$$

Def.

$$\begin{array}{rcl} \Omega^{\mathsf{STop}}_n(M) & \longrightarrow & \mathbb{L}^{\bullet}_n(M) \\ [M]_{\mathsf{STop}} & \mapsto & [M]_{\mathbb{L}}. \end{array}$$

Is an oriented homeomorphism invariant.

[M]_⊥ is an integral refinement of the Top. (Hirzebruch) L-class:

$$[M]_{\mathbb{L}} \otimes 1 = L^*(TM) \cap [M]_{\mathbb{Q}} \in \mathbb{L}^{\bullet}_n(M) \otimes \mathbb{Q} \cong \bigoplus_{j \ge 0} H_{n-4j}(M; \mathbb{Q}),$$

 $L^*(TM) \in H^{4*}(M; \mathbb{Q}),$ stable tangent bundle $TM : M \to BSTop.$

► Non-simply connected generalization of the Hirzebruch Signature Theorem: Image of [M]_⊥ under assembly

$$\mathbb{L}^{\bullet}_{n}(M) \to L^{n}(\mathbb{Z}[\pi_{1}M])$$

is the symmetric signature $\sigma^*(M)$ (Mishchenko, Ranicki).

Intersection Homology Poincaré Spaces

Def. An *n*-dimensional *PL pseudomanifold* is a PL space X for which some (and hence every) triangulation has the following properties.

- 1. Every simplex is contained in an *n*-simplex.
- 2. Every (n-1)-simplex is a face of exactly/at most two *n*-simplices.

Def. (Goresky, Siegel) An *n*-dimensional *Intersection homology Poincaré* (*IP-*) *space* is an *n*-dimensional PL pseudomanifold X such that:

- 1. $IH_k^{\overline{m}}(L^{2k};\mathbb{Z}) = 0$ for links L^{2k} and
- 2. $IH_k^{\overline{m}}(L^{2k+1};\mathbb{Z})$ is torsion free for links L^{2k+1} .

► Thm. (Goresky-Siegel.) If (Xⁿ, ∂X) is an oriented compact IP-space, then

 $\mathsf{IC}^{\bullet}_{\bar{m}}(X - \partial X; \mathbb{Z}) \cong \mathsf{RHom}^{\bullet}(\mathsf{IC}^{\bullet}_{\bar{m}}(X - \partial X; \mathbb{Z}), \mathbb{D}^{\bullet}_{X - \partial X})[n]$

(Verdier self-duality over $\mathbb Z$ in the derived category of sheaf complexes) and intersection of cycles induces a nonsingular pairing

$$H_i(X, \partial X; \mathbb{Z})/\operatorname{Tors} imes H_{n-i}(X; \mathbb{Z})/\operatorname{Tors} \longrightarrow \mathbb{Z}.$$

• W. Pardon: IP-bordism $\Omega^{IP}_*(-)$, is a gen. homology theory,

$$\Omega^{\mathsf{IP}}_n(\mathsf{pt}) = egin{cases} \mathbb{Z}, & n \equiv \mathsf{0}(4), \ \mathbb{Z}/_2, & n \geq 5, n \equiv \mathsf{1}(4), \ \mathfrak{0} & ext{otherwise}. \end{cases}$$

Note: very close to $L^n(\mathbb{Z})$.

The Symmetric Signature of IP-Spaces

- ► G. Friedman, J. McClure: for Witt spaces X^n , $\sigma^*_{Witt}(X) \in L^n(\mathbb{Q}[\pi_1 X]).$
- Their methods apply to yield

$$\sigma^*_{\mathsf{IP}}(X) \in L^n(\mathbb{Z}[\pi_1 X])$$

for IP-spaces X.

- agrees with previous $\sigma^*(X)$ when X is a manifold.
- ▶ Def. A stratified homotopy equivalence f : X → Y is a homotopy equivalence with homotopy inverse g : Y → X such that for H : gf ≃ id_X,

 H^{-1} (pure stratum of codim k) = \bigcup pure strata of codim k,

same condition for $H' : fg \simeq id_Y$.

- $\sigma_{\rm IP}^*(X)$ is an oriented stratified homotopy invariant.
- $\sigma_{\rm IP}^*(X)$ is a bordism invariant over $B\pi$.

Ad Theories (Quinn; Buoncristiano-Rourke-Sanderson; Laures-McClure).

- Def. Ball complex K: like a finite simplicial complex, but as closed cells σ take PL balls ⊂ ℝ^N instead of simplices. (Want K × I again to be a ball complex.)
- Morphisms of ball complexes: (subcomplex incl.) (isom.)
- K' a subdivision of K. A subcomplex R ⊂ K is residual if R is also a subcomplex of K'.

Target categories \mathcal{A} of an ad-theory:

 \mathbb{Z} -graded categories \mathcal{A} (no morphisms that decrease dimension), with involution (will suppress). (Have inclusions of cells $\tau \subset \sigma$ only when dim $\tau \leq \dim \sigma$.)

Ad Theories

To simplify exposition, will suppress orientation of cells. **Def.** An *ad-theory* ad with target category A is an assignment

$$k \in \mathbb{Z}$$
, ball complex pairs $(K, L) \mapsto \operatorname{ad}^{k}(K, L)$,

 $\operatorname{ad}^k(K,L) \subset \{ \operatorname{functors} F : K - L \to \mathcal{A} \mid F \operatorname{decr.} \operatorname{dim.} \operatorname{by} k \}$

such that

- ► Reindexing: (K₁, L₁) ≅ (K₂, L₂) (decr. dim. by k) induces bij. ad^l(K₂, L₂) ≅ ad^{l+k}(K₁, L₁).
- ► Gluing: For every subdivision K' of K and F' ∈ ad^k(K') exists F ∈ ad^k(K) such that F = F' on residual subcomplexes.

• **Cylinder**: Have natural transformation

$$J : ad^k(K) \rightarrow ad^k(K \times I)$$
 such that
 $J(F)|_{K \times 0} = F = J(F)|_{K \times 1}$.

 $F \in \operatorname{ad}^{k}(K, L)$ is called a (K, L)-ad.

Ad Theories: Bordism and Quinn Spectra

- A morphism of ad theories is a functor of target categories which takes ads to ads.
- F, F' ∈ ad^k(pt) are *bordant*, if exists *I*-ad G:
 G|₀ = F, G|₁ = F'. (Is an equivalence relation by axioms reindexing, gluing, cylinder.)
- bordism groups $\Omega_k :=$ bordism classes in $ad^{-k}(pt)$.
- ▶ Geometric realization Q_k := |Q_k| of semisimplicial sets Q_k with *n*-simplices ad^k(∆ⁿ) gives associated Quinn spectrum Q.

- $\pi_*(\mathbf{Q}) = \Omega_*$
- Morphism $\mathsf{ad}_1 \to \mathsf{ad}_2 \rightsquigarrow \mathbf{Q}_1 \to \mathbf{Q}_2$.

IP-ads:

• Target category $\mathcal{A}^{\mathsf{IP}}$:

Objects: compact, oriented IP-spaces $(X, \partial X)$. *Morphisms*: orientation-preserving PL-homeomorphisms and stratum preserving PL-embeddings \hookrightarrow boundary.

▶ ad^{IP,k}(K): all functors $F : K \to A^{IP}$, decr. dim. by k, s.t. for all cells $\sigma \in K$:

$$\operatorname{colim}_{\tau\in\partial\sigma}F(\tau)\overset{\cong}{\longrightarrow}\partial(F(\sigma)).$$

• **Prop.** ad^{IP} is an ad theory.

• Get spectrum \mathbf{Q}^{IP} with $\pi_*(\mathbf{Q}^{\mathsf{IP}}) = \Omega^{\mathsf{IP}}_*(\mathsf{pt})$.

Suitable Model for the Symmetric L-spectrum

Target category $\mathcal{A}^{\mathbb{L}}$:

Objects in deg. n: (C, D, β, φ)

- C chain complex, degreewise free abelian, \simeq finite complex,
- *D* chain complex with $\mathbb{Z}/_2$ -action,
- $\beta: C \otimes C \rightarrow D$ quasi-isom., $\mathbb{Z}/_2$ -equivariant,

•
$$\varphi \in D_n^{\mathbb{Z}/2}$$
.

Morphisms: $f = (f_C, f_D) : (C, D, \beta, \varphi) \rightarrow (C', D', \beta', \varphi')$

- $f_C: C \rightarrow C', f_D: D \rightarrow D'$ chain maps,
- ▶ f_D Z/₂-equivariant,
- $f_D \circ \beta = \beta' \circ (f_C \otimes f_C), f_D(\varphi) = \varphi'.$

Key Example: $(M, \partial M)$ compact oriented *n*-manifold. $\xi \in S_n(M)$ representative of fundamental class. $C = S_*(M)$, $D = S_*(M \times M)$, $\beta = \text{cross product}$, $\varphi = d_*(\xi)$, $d : M \to M \times M$ diagonal. \mathbb{L} -ads:

• For a functor $F: K \to \mathcal{A}^{\mathbb{L}}$, put for $\sigma \in K$,

$$F(\sigma) =: (C_{\sigma}, D_{\sigma}, \beta_{\sigma}, \varphi_{\sigma}) \text{ and } C_{\partial \sigma} := \operatorname{colim}_{\tau \in \partial \sigma} C_{\tau}.$$

- ▶ ad^{L,k}(K): all functors $F : K \to A^{L}$, decr. dim. by k, s.t. for all cells $\sigma \in K$:
 - F(τ ⊂ σ)_C : C_τ → C_σ, C_{∂σ} → C_σ degreewise split monomorphisms (sim. for D). (Thus

$$\beta_*: H_*(C_{\sigma} \otimes C_{\sigma}, (C \otimes C)_{\partial \sigma}) \longrightarrow H_*(D_{\sigma}, D_{\partial \sigma})$$

is an isomorphism.)

The map

$$C^{\mathsf{cell}}_*(\sigma) \longrightarrow D_\sigma, \ \tau \mapsto F(\tau \subset \sigma)_D(\varphi_\tau)$$

is a chain map. (Thus $[\varphi_{\sigma}] \in H_n(D_{\sigma}, D_{\partial \sigma})$, $n = \dim \sigma - k$.) \blacktriangleright *F* is **nondegenerate**:

$$\beta_*^{-1}[\varphi_\sigma]/-: H^*(\operatorname{Hom}(C_\sigma), \mathbb{Z}) \xrightarrow{\cong} H_{\dim \sigma - k - *}(C_\sigma/C_{\partial \sigma}).$$

- ▶ **Prop.** (Laures, McClure) ad[⊥] is an ad theory.
- Get Quinn spectrum $\mathbf{Q}^{\mathbb{L}}$.
- Have canonical weak equivalence

$$\mathbb{L}^{\bullet} \xrightarrow{\simeq} \mathbf{Q}^{\mathbb{L}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

induced by a morphism of ad theories.

Enriched IP-ads:

► Orientation of compact *IP*-space Xⁿ ~→

$$[X] \in IH^{\overline{0}}_n(X, \partial X; \mathbb{Z}).$$

- Target category A^[IP] : Objects: pairs (X, ξ)
 - compact, oriented IP-spaces $(X, \partial X)$,
 - ξ ∈ IS⁰_n(X; ℤ) representative for [X].
 (Singular intersection chains, H. King, G. Friedman)

Morphisms: dimension-preserving morphisms must respect ξ .

- ► For [IP]-ads $F : K \to \mathcal{A}^{[IP]}$, require $\partial \xi_{\sigma} = \sum_{\tau \in \partial \sigma} \pm \xi_{\tau}$.
- Prop. ad^[IP] is an ad theory.
- Forgetful functor $\mathcal{A}^{[IP]} \rightarrow \mathcal{A}^{IP}$
- Induces morphism $\operatorname{ad}^{[IP]} \to \operatorname{ad}^{IP}$
- ► Induces weak equivalence Q^[IP] ~ Q^{IP}. (Check iso. on bordism groups.)

- n
 upper middle perversity.
- On $X \times X$, for strata $S, T \subset X$, let

$$ar{p}(S imes T) = egin{cases} ar{n}(S) + ar{n}(T) + 2, & ext{codim } S, ext{codim } T > 0 \ ar{n}(S) + ar{n}(T), & ext{otherwise} \end{cases}$$

• Diagonal $d: X \rightarrow X \times X$ induces

$$d_*: IS^{\overline{0}}_*(X) \longrightarrow IS^{\overline{p}}_*(X \times X).$$

Have cross product

$$\beta: IS^{\overline{n}}_*(X) \otimes IS^{\overline{n}}_*(X) \stackrel{\simeq}{\longrightarrow} IS^{\overline{p}}_*(X \times X).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(D. Cohen, M. Goresky, Lizhen Ji, G. Friedman)

• Functor Sig : $\mathcal{A}^{[IP]} \to \mathcal{A}^{\mathbb{L}}$:

$$(X,\xi)\mapsto (C,D,\beta,\varphi)$$

- Give X the intrinsic stratification.
- $C := IS^{\overline{n}}_{*}(X; \mathbb{Z})$, indeed \simeq finite complex,
- $D := IS^{\overline{p}}_*(X \times X; \mathbb{Z}),$
- $\beta := \text{cross product}$,

•
$$\varphi := d_*(\xi).$$

A morphism $(X,\xi) \rightarrow (X',\xi')$ induces maps on intersection chains.

- ▶ **Prop.** If $F \in ad^{[IP]}(K)$, then $Sig \circ F \in ad^{\mathbb{L}}(K)$.
- Get morphism Sig : $ad^{[IP]} \rightarrow ad^{\mathbb{L}}$.
- On Quinn spectra Sig : $\mathbf{Q}^{[IP]} \rightarrow \mathbf{Q}^{\mathbb{L}}$.

 \blacktriangleright In the stable category, define Sig : ${\bm Q}^{\mathsf{IP}} \to {\bm Q}^{\mathbb{L}}$ by

$$\mathbf{Q}^{\mathsf{IP}} \xleftarrow{\simeq} \mathbf{Q}^{[\mathsf{IP}]} \overset{\mathsf{Sig}}{\longrightarrow} \mathbf{Q}^{\mathbb{L}}$$

Define

$$\Omega^{\mathsf{IP}}_*(Y) \longrightarrow \mathbb{L}^{ullet}_*(Y)$$

to be

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thm.

The map $\Omega_n^{\mathsf{IP}}(\mathsf{pt}) \to \mathbb{L}_n^{\bullet}(\mathsf{pt}) = L^n(\mathbb{Z})$ is an isomorphism for all $n \neq 1$.

$$(\Omega_1^{\mathsf{IP}}(\mathsf{pt})=0,\ L^1(\mathbb{Z})=\mathbb{Z}/_2.)$$

 X^n a closed oriented IP-space.

•
$$[X]_{\mathsf{IP}} := [X \xrightarrow{\mathsf{id}} X] \in \Omega_n^{\mathsf{IP}}(X).$$

Def.

$$\begin{array}{rcl} \Omega^{\mathsf{IP}}_n(X) & \longrightarrow & \mathbb{L}^\bullet_n(X) \\ [X]_{\mathsf{IP}} & \mapsto & [X]_{\mathbb{L}}. \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thm. (B., Laures, McClure)

For an *n*-dimensional compact oriented IP-space X there is a fundamental class $[X]_{\mathbb{L}} \in \mathbb{L}_{n}^{\bullet}(X)$ with the following properties:

- 1. $[X]_{\mathbb{L}}$ is an oriented PL homeomorphism invariant,
- 2. The image of $[X]_{\mathbb{L}}$ under assembly is the symmetric signature:

- If X is a PL manifold, then [X]_⊥ is the same as the fundamental class constructed by Ranicki.
- 4. Rationally, $[X]_{\mathbb{L}}$ agrees with the Goresky-MacPherson *L*-class of $X (\rightarrow \text{next slide})$.

An IP-space X has characteristic L-classes

 $L_j(X) \in H_j(X; \mathbb{Q}).$

(Cheeger, Goresky, MacPherson, Siegel.)

▶ For X a smooth manifold: L_j(X) are the Poincaré duals of the Hirzebruch L-classes of TX.

$$\mathbb{L}^{\bullet}\otimes\mathbb{Q}\simeq\prod_{j\geq 0}K(\mathbb{Q},4j),$$

Induces natural isomorphisms

$$S_X: \mathbb{L}^{ullet}_n(X)\otimes \mathbb{Q} \stackrel{\cong}{\longrightarrow} \bigoplus_{j\geq 0} H_{n-4j}(X; \mathbb{Q}).$$

▶ Thm. (B., Laures, McClure) $S_X([X]_{\mathbb{L}} \otimes 1) = L(X)$.

Application: Higher Signatures

- G = π₁(X), r : X → BG a classifying map for the universal cover of X.
- $r_*: H_*(X; \mathbb{Q}) \longrightarrow H_*(BG; \mathbb{Q}).$
- ▶ The higher signatures of X are the rational numbers

 $\langle a, r_*L(X) \rangle, \ a \in H^*(BG; \mathbb{Q}).$

Thm. (B., Laures, McClure) Let X be an n-dimensional oriented closed IP-space such that the assembly map

$$\alpha: \mathbb{L}_n^{\bullet}(BG) \longrightarrow L^n(\mathbb{Z}[G])$$

is rationally injective. Then the higher signatures of X are (orient. pres.) stratified homotopy invariants.

Proof.

f: X' → X an orient. pres. stratified homotopy equivalence. *r*: X → BG, r' = r ∘ f : X' → BG.

- ► $\alpha r_*[X]_{\mathbb{L}} = \sigma_{\mathsf{IP}}^*(X) = \sigma_{\mathsf{IP}}^*(r) = \sigma_{\mathsf{IP}}^*(rf) = \sigma_{\mathsf{IP}}^*(X') = \alpha r'_*[X']_{\mathbb{L}}.$ ► Injectivity assumption $\Rightarrow r_*[X]_{\mathbb{L}} = r'_*[X']_{\mathbb{L}} \in \mathbb{L}^\bullet_{\mathsf{n}}(BG) \otimes \mathbb{Q}.$
- Injectivity assumption $\Rightarrow r_*[X]_{\mathbb{L}} = r_*[X]_{\mathbb{L}} \in \mathbb{L}_n^{\circ}(BG) \otimes \mathbb{Q}.$

$$\mathbb{L}_{n}^{\bullet}(X) \otimes \mathbb{Q} \xrightarrow{r_{*}} \mathbb{L}_{n}^{\bullet}(BG) \otimes \mathbb{Q}$$

$$S_{X} \downarrow \cong \cong \downarrow S_{BG}$$

$$\bigoplus_{j} H_{n-4j}(X; \mathbb{Q}) \xrightarrow{r_{*}} \bigoplus_{j} H_{n-4j}(BG; \mathbb{Q})$$

$$\begin{aligned} r_*L(X) &= r_*S_X[X]_{\mathbb{L}} = S_{BG}r_*[X]_{\mathbb{L}} \\ &= S_{BG}r'_*[X']_{\mathbb{L}} = r'_*S_{X'}[X']_{\mathbb{L}} = r'_*L(X'). \end{aligned}$$

Analytic Approach.

► Thm. (Albin, Leichtnam, Mazzeo, Piazza) Let (X, g) be an *n*-dimensional oriented closed Cheeger space (e.g. smoothly stratified Witt space) such that the assembly map

$$\beta: K_*(BG) \longrightarrow K_*(C_r^*G)$$

is rationally injective. Then the higher signatures of X are (orient. pres. smoothly) stratified homotopy invariants.

▶ **Pf.** Instead of $[X]_{\mathbb{L}} \in \mathbb{L}_n^{\bullet}(X)$, use *K*-homology class

$$[\eth_{\mathsf{sign}}] \in K_*(X) = KK_*(C(X), \mathbb{C})$$

of a suitable signature operator \eth_{sign} .

- Index gives analytic signature σ_G^{an} ∈ K₀(C_r^{*}G; Q), is stratified homotopy invariant, agrees with σ_{Witt}^{*}(X) under L^{*}(Q[G]) → K_{*}(C_r^{*}G) ⊗ Q.
- ▶ Instead of S_X , use $Ch : K_*(X) \otimes \mathbb{Q} \to H_*(X; \mathbb{Q})$; $Ch[\overline{\partial}_{sign}] = L(X)$ (Cheeger, Moscovici-Wu, ALMP).