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Classical Yamabe problem

Let (Mm, g0) be a compact Riemannian manifold, m ≥ 3.

The Yamabe problem

Does there exist a smooth positive function u such that the
conformal multiple

g = u
4

m−2 g0

has constant scalar curvature?

Yes! The classical proof [Yamabe; Trudinger; Aubin; Schoen]
(1960s-1984) uses variational and elliptic PDE theory for the
conformal factor:

−4
m − 1

m − 2
∆g0u + scal(g0)u = u

m+2
m−2 scal(g).

There is an alternative geometric flow approach.



The Yamabe flow

R. Hamilton introduced the Yamabe flow (YF){
∂tg(t) = − scal(g(t)) · g(t),

g(0) = g0,

and a volume normalized YF (NYF) ∂tg(t) =
(
ρ(t)− scal(g(t))

)
· g(t),

g(0) = g0,

where ρ(t) is the average scalar curvature functional

ρ(t) =
1

vol(g(t))

∫
M

scal(g(t))dvolg(t).



Sign of a conformal class

Consider the total scalar curvature functional

s(g) :=
1

vol(g)
m−2
m

∫
M

scal(g) dvolg

=
1

‖u‖2
2m
m−2

∫
M
u

−4
m − 1

m − 2
∆g0u + scal(g0)u︸ ︷︷ ︸
:=�g0u

 dvolg0

=
1

‖u‖2
2m
m−2

∫
M

4
m − 1

m − 2
|∇u|2 + scal(g0)u2dvolg0 .

Define the Yamabe invariant:

Y([g ]) = inf
{
s(g̃) | g̃ = u

4
m−2 g , u ∈ H1,2(M), u > 0

}
.



Sign of a conformal class II

The Yamabe invariant:

Y([g ]) = inf
{
s(g̃) | g̃ = u

4
m−2 g , u ∈ H1,2(M), u > 0

}
.

Sign of a conformal class

A conformal class [g ] is positive, negative or zero if Y([g ]) is
positive, negative or zero, respectively.

Theorem (Folklore? Schoen)

The following are equivalent.

1 [g ] is positive (resp. negative or zero).

2 First eigenvalue of �g is positive (resp. negative or zero).

3 There exists a metric g̃ = u
4

m−2 g such that scal(g̃) > 0
(resp. < 0 or = 0).



The Yamabe flow (YF) II

We may write the flow as an nonlinear equation for the conformal
factor. For m ≥ 3, let

g(t) = u(t)
4

m−2 g0.

The NYF becomes (N = m+2
m−2 , c(m) = m+2

4 ){
∂tu

N = N(m − 1)∆g0u − c(m) scal(g0)u + c(m)ρuN ,

u|t=0 = 1.

For (M, g0) compact, the flow exists for all time (Hamilton).

Convergence results:
Chow, R. Ye, Schwetlick-Struwe, Brendle.

Convergence for all data if 3 ≤ m ≤ 5. For m ≥ 6, requires
technical assumption on Weyl curvature.



Incomplete edge metrics

We assume Mm is a compact manifold with boundary, ∂M.

∂M is the total space of a fibre bundle with compact fibre F n

(n ≥ 1) and compact base (Bb, gB). Let x be the radial
coordinate.

F n −−−−→ ∂Myφ
Bb

Model rigid incomplete edge metric

grigid = dx2 + x2gF + φ∗gB .



grigid = dx2 + x2gF + φ∗gB

Here

gB is a Riemannian metric on B,

gF is a symmetric 2-tensor that restricts to a metric on the
fibres.

φ : (∂M, gF + φ∗gB)→ (B, gB) is a Riemannian submersion.

We then say (M, g) is a feasible edge metric if

g = grigid + h,

and

The gF are isospectral, and the lowest nonzero eigenvalue of
∆F satisfies λ0 > n.

|h|grigid
= O(x2) as x → 0.



Related work

There has been work on the Yamabe problem on general stratified
spaces, generalizing the variational approach.

Local Yamabe invariant; existence of Yamabe minimizers for
iterated edge spaces, (Akutagawa-Carron-Mazzeo, 2014). c.f.
earlier work (Akutagawa-Botvinnik), and (Mondello, 2015).

There is an obstruction. For an exact conic metric with
n-dimensional link, if g = dx2 + x2k, then

scal(g) =
scal(k)− n(n − 1)

x2
.



Recent work with flows

There has been a lot of work on the Ricci flow on surfaces with
conic singularities.

Short-time existence for angle preserving flow with conic
singularities (Mazzeo-Rubinstein-Sesum 2015; Yin 2010)

Short-time existence for angle changing flow
(Mazzeo-Rubinstein-Sesum)

Long-time existence for angle-preserving flow and convergence
under “Troyanov condition”, (Mazzeo-Rubinstein-Sesum)

Instantaneously complete Ricci flows (Giesen-Topping, 2011)

Maximal regularity approaches (Shao, 2015)

and others...



Short-time existence

Theorem (B. & Vertman 2014)

Let g0 be a feasible incomplete edge metric such that
scal(g0) ∈ C2+σ

ie (M) for σ ∈ (0, 1). Let ∆g0 be the Friedrichs
extension of the Laplacian. Then the equation{

∂tu
N = N(m − 1)∆g0u − c(m) scal(g0)u + c(m)ρuN ,

u|t=0 = 1.

(recall (N = m+2
m−2 , c(m) = m+2

4 )) admits a positive solution

u ∈ C2+α
ie (M × [0,T ]) for some α ∈ (0, σ) for a short time T > 0.

g(t) = u
4

m−2 (t)g0 is a solution to the NYF that remains an
incomplete edge metric.



Motivation for the function spaces

To solve{
∂tu

N = N(m − 1)∆g0u − c(m) scal(g0)u + c(m)ρuN ,

u|t=0 = 1.

Look for a solution of the form u = 1 + v in parabolic Hölder
space. After linearization, we can abstractly write

(∂t + L)v = I + Q(v),

Look for a fixed point of

v = H(I + Q(v)),

where H is the appropriate convolution with the heat kernel.



Function spaces

For many classical parabolic problems, say{
(∂t −∆)v(t, p) = f (t, p),

v(0, p) = 0.

one may use anisotropic Hölder spaces, C k+α,(k+α)/2(M × [0,T ]).
Parabolic Hölder semi-norm:

[v ]α,α/2 := sup
(p,t)6=(p′,t′)

(
|v(p, t)− v(p′, t ′)|

d(p, p′)α + |t − t ′|α/2

)
,

‖v‖k+α,(k+α)/2 :=
∑

2i+j≤k
‖∂ it∇jv‖L∞ +

∑
2i+j=k

[∂ it∇jv ]α,α/2,

Classical Schauder estimate: there is a constant C > 0 where

‖v‖2+α,(1+α)/2 ≤ C‖f ‖α,α/2.



Function spaces

We adapt the function spaces for the geometric problem at hand.
For the NYF of an edge space, only need control of the Laplacian!
Parabolic Hölder semi-norm

[v ]α,α/2 := sup
(p,t)6=(p′,t′)

(
|v(p, t)− v(p′, t ′)|

d(p, p′)α + |t − t ′|α/2

)
,

d(p, q) ≈
√
|x − x ′|2 + |y − y ′|2 + (x + x ′)2(z − z ′)2.

Introduce C 2+α
ie (M × [0,T ]),

‖v‖2+α := ‖v‖α,α/2 + ‖∂tv‖α,α/2 +
∑
X∈Ve

‖x−1Xv‖α,α/2 + ‖∆v‖α,α/2.



Heat kernel asymptotics

∆ = Friedrich’s extension of the
Laplacian of a feasible edge metric.
Consider the inhomogeneous problem{

(∂t −∆)v(t, p) = f (t, p),

v(0, p) = 0.

Theorem (Mazzeo-Vertman, 2012)

Let (M, g) be an incomplete edge space
with a feasible edge metric g.

Then the lift β∗H of the heat kernel is
a polyhomogeneous distribution on M2

h
with the index set (−1 + m, 0) at ff,
(−m + N0, 0) at td, vanishing to infinite
order at tf, and with a discrete index
set (E , 0) at rf and lf, where E ≥ 0.

t

x x̃

rflf

tftf
td

ff

Figure: The heat-space M2
h.

From these asymptotics we obtain
Schauder-type estimates on the spaces
C2+α

ie (M).



Long-time existence/convergence

Theorem (B. & Vertman 2016)

Let g0 be a feasible incomplete edge metric such that
scal(g0) ∈ C4+σ

ie (M) for σ ∈ (0, 1), and moreover scal(g0) < 0. Let
∆g0 be the Friedrichs extension of the Laplacian. Then the
equation{

∂tu
N = N(m − 1)∆g0u − c(m) scal(g0)u + c(m)ρuN ,

u|t=0 = 1.

admits a positive solution u ∈ C2+α
ie (M × [0,∞)) for some

α ∈ (0, σ), and the NYF converges exponentially to a metric of
constant negative curvature.



Outline of proof

The basic strategy:

1 Establish short-time existence. X

2 Establish uniqueness. Key tool: maximum principle.

Theorem (B. & Vertman 2016)

If u ∈ C2+α
ie (M) attains its minimum (resp. maximum) at p then

∆u(p) ≥ 0 (resp. ≤ 0)

3 We may now speak of a maximum time of existence, TM .
Suppose for contradiction that TM <∞.

We conclude the proof by showing that u extends to t = TM

and the flow can be restarted.
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Outline of proof

4 (Following R. Ye) Establish a uniform L∞ estimate for u.

umax(t) = max
p
|u(p, t)|,

derive a differential inequality

duNmax

dt
≤ c(m) max | scal(g0)|umax + c(m)ρuNmax ,

from the maximum principle. This can be estimated to obtain
uniform upper bounds for u. Similar for lower bound. Here is
where we use the sign hypothesis on the scalar curvature.



Outline of proof

5 Return to the evolution of u, which can be rewritten

∂tu =
m − 2

4
(ρ(t)− scal(g(t))u.

The quantity ρ(t)− scal(g(t)) decreases exponentially along
the flow. This also uses the sign hypothesis of scalar
curvature and extra regularity of scal(g0). We obtain a
uniform L∞ estimate for ∂tu up to TM .

6 Heat kernel estimates then allow us to conclude u lies in
C1+α

ie (M × [0,TM ]).
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Outline of proof

7 In order to gain more regularity, we prove

Theorem (B. & Vertman 2016)

Let a ∈ C1+α
ie (M × [0,T ]) be positive and consider P = ∂t − a∆.

Then there is a bounded right inverse

Q : Cαie(M × [0,T ]) −→ C2+α
ie (M × [0,T ]),

where u = Qf solves

(∂t − a∆)u = f , u(p, 0) = 0.

From the theorem we conclude that u ∈ C2+α
ie (M × [0,TM ])

and we may restart the flow at time TM . This contradiction
proves TM =∞.

8 Convergence is obtained by studying the evolution equations
for scal and ρ.
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A final result

The ν Yamabe invariant:

ν([g ]) = inf
{
s(g̃) | g̃ = u

4
m−2 g , u ∈ C2+α

ie (M), u > 0
}
.

Theorem (B. & Vertman 2016)

The following are equivalent.

1 [g ] is positive (resp. negative or zero).

2 First eigenvalue of �g is positive (resp. negative or zero).

3 There exists a metric g̃ = u
4

m−2 g such that scal(g̃) > 0
(resp. < 0 or = 0).

Combined with the previous results, this gives a flow proof of the
Yamabe problem in the negative case.



Thank you!

Eric Bahuaud
Seattle University
bahuaude@seattleu.edu
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