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General idea

Setting Strata of compact stratified spaces with general
adapted metrics.

Main goal Witten’s perturbation of the de Rham complex
~ Morse inequalities.

Main analytic tool A perturbation of
the Dunkl harmonic oscillator.
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Definitions and main theorems

Hilbert complex

@ § : graded Hilbert space.

@ Hilbert complex (on $): a differential complex given by a
closed densely defined operator d in $ (Brining-Lesch).

@ ~ Laplacian: A =dd* + d*d is self-adjoint in $.
@ Smooth core of A: D*(A) =(,,D(A™).
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Definitions and main theorems

Hilbert complex

@ § : graded Hilbert space.

@ Hilbert complex (on $): a differential complex given by a
closed densely defined operator d in $ (Brining-Lesch).

@ ~ Laplacian: A =dd* + d*d is self-adjoint in $.
@ Smooth core of A: D*(A) =(,,D(A™).

@ ~~ smooth subcomplex: (D*>(A),d)
determines d and has the same homology.

J.A. Alvarez Lépez & M. Calaza & C. Franco Witten’s perturbation on strata with general adapted metrics



Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

Ideal boundary condition

@ M : Riemannian manifold, possibly non-complete.
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Ideal boundary condition

@ M : Riemannian manifold, possibly non-complete.

@ d,  : de Rham differential and codifferential on Qy(M)
(compactly supported forms).
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Definitions and main theorems

Ideal boundary condition

@ M : Riemannian manifold, possibly non-complete.
@ d,  : de Rham differential and codifferential on Qy(M)
(compactly supported forms).

@ |deal boundary condition (i.b.c.) of d:
extension of d to a Hilbert complex d in L2Q(M).
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Ideal boundary condition

@ M : Riemannian manifold, possibly non-complete.

@ d,  : de Rham differential and codifferential on Qy(M)
(compactly supported forms).

@ |deal boundary condition (i.b.c.) of d:
extension of d to a Hilbert complex d in L2Q(M).

@ Imin/maxi.b.c.: Ouin = d, Omax = 0.
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Ideal boundary condition

@ M : Riemannian manifold, possibly non-complete.

@ d,  : de Rham differential and codifferential on Qy(M)
(compactly supported forms).

@ |deal boundary condition (i.b.c.) of d:
extension of d to a Hilbert complex d in L2Q(M).

@ Imin/maxi.b.c.: Ouin = d, Omax = 0.

@ ~~ Amin/max-
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Definitions and main theorems

Ideal boundary condition

M : Riemannian manifold, possibly non-complete.
d, § : de Rham differential and codifferential on Qo(M)
(compactly supported forms).

@ |deal boundary condition (i.b.c.) of d:
extension of d to a Hilbert complex d in L2Q(M).

@ Imin/maxi.b.c.: Ouin = d, Omax = 0.
@ ~ Amin/max-
@ M oriented = x: Anin = A pax.-
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Ideal boundary condition (contd.)

r;in/max ( M)’
o dmin/max ~ /Blglin/max(M) y

Xmin/max(M) (|f Brrnin/max < 00 VI’).
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Ideal boundary condition (contd.)

r;in/max ( M)’
o dmin/max ~ 1’;1in/max ( M) )

Xmin/max(M) (|f Brrnin/max < 00 VI’).
@ These are quasi-isometric invariants.
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Ideal boundary condition (contd.)

&in/max(M)v
° dmin/max ~ Iglin/max(M)7
Xmin/max(M) (If Brrnin/max <0 VI’).
@ These are quasi-isometric invariants.

© Hf (M) = Hip (M) (the L2 cohomology).

max
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Definitions and main theorems

Ideal boundary condition (contd.)

min/max (M),

min/max

° dmin/max ~ ' (M),

min/max
Xmin/max(M) (i Bl i/max < 00 V7).
@ These are quasi-isometric invariants.
© Hf (M) = Hip (M) (the L2 cohomology).
@ M complete — Onin = Omax,
but assume that M may not be complete.

J.A. Alvarez Lépez & M. Calaza & C. Franco Witten’s perturbation on strata with general adapted metrics



Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

Contents

0 Definitions and main theorems

@ Stratified spaces and general adapted metrics

J.A. Alvarez Lépez & M. Calaza & C. Franco Witten’s perturbation on strata with general adapted metrics



Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

Stratified space

@ (Thom-Mather) stratified space: a space A with a partition
into (C*>°) manifolds (strata) satisfying certain conditions.
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@ (Thom-Mather) stratified space: a space A with a partition
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@ (Thom-Mather) stratified space: a space A with a partition
into (C*>°) manifolds (strata) satisfying certain conditions.
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Stratified space

@ (Thom-Mather) stratified space: a space A with a partition
into (C*>°) manifolds (strata) satisfying certain conditions.

@ In particular, V stratum X, X = |Jstrata.
@ ~ order relation of the strata; X < Yif X C Y.

@ ~~ depth of a stratum X: maximum ¢ such that 3 a chain of
strata Xop < Xj <--- < X, = X.
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Definitions and main theorems

Stratified space

@ (Thom-Mather) stratified space: a space A with a partition
into (C*>°) manifolds (strata) satisfying certain conditions.

@ In particular, V stratum X, X = |Jstrata.
@ ~ order relation of the strata; X < Yif X C Y.

@ ~~ depth of a stratum X: maximum ¢ such that 3 a chain of
strata Xop < Xj <--- < X, = X.

@ depthX =0 < X s closed in A.
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Definitions and main theorems

Stratified space

(Thom-Mather) stratified space: a space A with a partition
into (C*>°) manifolds (strata) satisfying certain conditions.

In particular, V stratum X, X = |Jstrata.
~ order relation of the strata: X < Yif X C Y.

~+ depth of a stratum X: maximum ¢ such that 3 a chain of
strata Xop < Xj <--- < X, = X.

depth X =0 < X s closed in A.
~ depth of A: supremum of the depths of its strata.
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@ M: stratum of A. Assume A= M.
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Definitions and main theorems

Charts

@ M: stratum of A. Assume A = M.
@ Achartof Acenteredat x € X < M:
ADO=0 c R"xc(L),
open open
where
L: a compact stratified space of lower depth;
c(L) = %53 « cone with link L;
x=(0,%): *=Lx{0}e€c(L): vertex;
MNO=MnO, M =R"x N xR, N stratum of L;
m=myx =dimX, L=Ly.
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Definitions and main theorems

Charts

@ M: stratum of A. Assume A = M.
@ Achartof Acenteredat x € X < M:
Aopaen o=0 < R" x ¢(L) ,

where
L: a compact stratified space of lower depth;
c(L) = %53 « cone with link L;
x=(0,%): *=Lx{0}e€c(L): vertex;
MNO=MnO, M =R"x N xR, N stratum of L;
m=myx =dimX, L=Ly.
@ p:c(L) — [0,00) : radial function,

it's induced by pr, : L x [0,00) — [0, 00).
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Definitions and main theorems

Charts

@ M: stratum of A. Assume A = M.
@ Achartof Acenteredat x € X < M:
AOPDen o=0 < R™ x ¢(L),
where
e L: a compact stratified space of lower depth;

c(L) = %53 « cone with link L;
x=(0,%): *=Lx{0}e€c(L): vertex;
MNO=MnO, M =R"x N xR, N stratum of L;
m=myx =dimX, L=Ly.
@ p:c(L) — [0,00) : radial function,

it's induced by pr, : L x [0,00) — [0, 00).
@ ~ (|| |&m + p?)'/2 : radial function of R™ x ¢(L).
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Definitions and main theorems

Charts

@ M: stratum of A. Assume A = M.
@ Achartof Acenteredat x € X < M:
Aopaen o=0 < R" x ¢(L) ,
where
e L: a compact stratified space of lower depth;

c(L) = %53 « cone with link L;
x=(0,%): *=Lx{0}e€c(L): vertex;
MNO=MnO, M =R"x N xR, N stratum of L;
m=myx =dimX, L=Ly.
@ p:c(L) — [0,00) : radial function,

it's induced by pr, : L x [0,00) — [0, 00).
@ ~ (|| |&m + p?)'/2 : radial function of R™ x ¢(L).
@ Charts around points in M: the usual manifold charts.

J.A. Alvarez Lépez & M. Calaza & C. Franco Witten’s perturbation on strata with general adapted metrics



Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions
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Adapted metrics on strata

@ A Riemannian metric g on M is called adapted if 3 a chart
centered atany x € X < M,

AD>O0O=0 cR"xc(L), with
ONM=0nM, M=R"xNxR", suchthat
g~go+plg+dp®> on ONM=0nM,

where
@ go: Euclidean metric of R,
@ Jis an adapted metric on N (induction on the depth),
@ u=ux >0, k:=codimX=dimN—+1.
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Definitions and main theorems

Adapted metrics on strata

@ A Riemannian metric g on M is called adapted if 3 a chart
centered atany x € X < M,

AD>O0O=0 cR"xc(L), with
ONM=0nM, M=R"xNxR", suchthat
g~go+plg+dp®> on ONM=0nM,

where
@ go: Euclidean metric of R,
@ Jis an adapted metric on N (induction on the depth),
@ u=ux >0, k:=codimX=dimN—+1.
@ If Ais a pseudomanifold ( A strata of codim 1)
~ U= (Ug,...,up) : the type of g.
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Definitions and main theorems

Intersection homology

@ Perversity : a sequence p = (p2, ps, ... ) in N such that
P2=0, Pk <pry1 < pc+1.
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Definitions and main theorems

Intersection homology

@ Perversity : a sequence p = (p2, ps, ... ) in N such that
p2=0, px<pxr1 <pc+T.

@ Examples: 0= (0,0,...), t=(0,1,2,3,...) (top),
m=(0,0,1,1,2,2,3,...), n=(0,1,1,2,2,3,3,...).
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Definitions and main theorems

Intersection homology

@ Perversity : a sequence p = (p2, ps, ... ) in N such that
p2=0, px<pxr1 <pc+T.

@ Examples: 0= (0,0,...), t=(0,1,
m=(0,0,1,1,2,2,3,...), h=(0,1

@ pand g are complementary if p+ q =
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Definitions and main theorems

Intersection homology

@ Perversity : a sequence p = (p2, ps, ... ) in N such that
P2=0, px<pPxk1 <px+1.

@ Examples: 0 = (0,0,...), ? (0,1,2,3,...) (top),
m=(0,0,1,1,2,2,3,...), h=(0,1,1,2,2,3,3,...).

@ pand gare complementary ifp+qg=rt.

@ ~~ IPH,(A) = IPH,(A;R) : intersection homology with
perversity p (Goresky & MacPherson, 1980).
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Definitions and main theorems

Intersection homology

@ Perversity : a sequence p = (p2, ps, ... ) in N such that
P2=0, px<pPxk1 <px+1.

@ Examples: 0 = (0,0,...), ? (0,1,2,3,...) (top),
m=(0,0,1,1,2,2,3,...), h=(0,1,1,2,2,3,3,...).

@ pand gare complementary ifp+qg=rt.

@ ~~ IPH,(A) = IPH,(A;R) : intersection homology with
perversity p (Goresky & MacPherson, 1980).

o B =dim PH/(A), xP =37 o(—1)8F.
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Definitions and main theorems

Intersection homology

@ Perversity : a sequence p = (p2, ps, ... ) in N such that
P2=0, px<pPxk1 <px+1.

@ Examples: 0 = (0,0,...), ? (0,1,2,3,...) (top),
m=(0,0,1,1,2,2,3,...), h=(0,1,1,2,2,3,3,...).

@ pand gare complementary ifp+qg=rt.

@ ~ IPH,(A) = IPH,(A;R) : intersection homology with
perversity p (Goresky & MacPherson, 1980).

o B =dim PH/(A), xP =37 o(—1)8F.

@ IPH,(A) = [9H,_,(A) if pand g are complementary and A
is oriented (M is oriented).
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Adapted metrics & intersection homology

@ A Riemannian metric g on M of type & = (U, ..., up) is
associated to a perversity p < mif :

ﬁizp’(SUk<ﬁi2pk |f 2pk§k—3,
1 <ug<oo if 2ok =k—-2.
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Adapted metrics & intersection homology

@ A Riemannian metric g on M of type & = (U, ..., up) is
associated to a perversity p < mif :

ﬁizp’(SUk<ﬁi2pk |f 2pk§k—3,
1 <ug <oo if 20h=k—2.

® ~ PH/(A)* = Hfy (M) = HE, (M) ¥p <
Nagase 1983, 1&&6,
Cheeger-Goresky-MacPherson 1982 in the case of m and
conic metrics (ux = 1 Y k).

J.A. Alvarez Lépez & M. Calaza & C. Franco Witten’s perturbation on strata with general adapted metrics



Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

Adapted metrics & intersection homology

@ A Riemannian metric g on M of type & = (U, ..., up) is
associated to a perversity p < mif :

ﬁizp’(SUk<ﬁi2pk |f 2pk§k—3,
1 <ug <oo if 20h=k—2.

@ ~ PH,(A)* = Hfp (M) = Hl,, (M) VB < m
Nagase 1983, 1&&6,
Cheeger-Goresky-MacPherson 1982 in the case of m and
conic metrics (ux = 1 Y k).

@ ~ [9H,(A)* = H". (M) VYg>n if Mis oriented.

min
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General charts

@ The product of two stratified spaces has a non-canonical
stratified structure. The product of two cones is a cone.
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Definitions and main theorems

General charts

@ The product of two stratified spaces has a non-canonical
stratified structure. The product of two cones is a cone.

@ ~~ general chart centered at x € X < N,

a
A>0=0 c R"x[]e(L),

open open -
i=1

where

L;: a compact stratified space of lower depth;

X = (0,%1,...,%3), *;: vertex of ¢(L;);
ONM=0nM,M =R" xT[;(N; x Rt), N; stratum of L;;
m=my, a-=ax, L,‘ = LX,,'.
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Definitions and main theorems

General charts

@ The product of two stratified spaces has a non-canonical
stratified structure. The product of two cones is a cone.

@ ~~ general chart centered at x € X < N,

a
A>0=0 c R"x[]e(L),

open open -
i=1

where

L;: a compact stratified space of lower depth;

X = (0,%1,...,%3), *;: vertex of ¢(L;);
ONM=0nM,M =R" xT[;(N; x Rt), N; stratum of L;;
m=my, a-=ax, L,‘ = LX,,'.

@ p;: c(L;) — [0,00) : radial function.
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Definitions and main theorems

General charts

@ The product of two stratified spaces has a non-canonical
stratified structure. The product of two cones is a cone.

@ ~~ general chart centered at x € X < N,

a
A>0=0 c R"x[]e(L),

open open -
i=1

where

L;: a compact stratified space of lower depth;

X = (0,%1,...,%3), *;: vertex of ¢(L;);
ONM=0nM,M =R" xT[;(N; x Rt), N; stratum of L;;
m=my, a=ayx, Li=1Lx,

@ p;: c(L;) — [0,00) : radial function.

@ ~ (|| [[Bm + 3;p7)!/2 : radial function of R™ x [T2, ¢(L;).
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Definitions and main theorems

General adapted metrics on strata

@ A Riemannian metric g on M is called general adapted if 3
a general chart centered at any x € X < M,

A>0=0 cR"x[]e(L), with
i

ONM=0nM, M=R"x][(N;xR"), suchthat
i

g~go+ > (pE"3i+dpf) on ONM=0nM |
i
where:
@ go : Euclidean metric of R,
e g; : general adapted metric on N; (induction on the depth),
e p; : radial function on ¢(L;), u; = uyx,; > 0.

J.A. Alvarez Lépez & M. Calaza & C. Franco Witten’s perturbation on strata with general adapted metrics



Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

General adapted metrics on strata

@ A Riemannian metric g on M is called general adapted if 3
a general chart centered at any x € X < M,

A>0=0 cR"x[]e(L), with
i

ONM=0nM, M=R"x][(N;xR"), suchthat
i

g~go+ > (pE"3i+dpf) on ONM=0nM |
i
where:
@ go : Euclidean metric of R,
e g; : general adapted metric on N; (induction on the depth),
e p; : radial function on ¢(L;), u; = uyx,; > 0.
@ X — (ux,,.--,Ux.a) : the general type of g.
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Definitions and main theorems

General adapted metrics on strata (contd)

@ The class of general adapted metrics is preserved by
products.
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Definitions and main theorems

General adapted metrics on strata (contd)

@ The class of general adapted metrics is preserved by
products.

@ ki:=dmN,; + 1.
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Definitions and main theorems

General adapted metrics on strata (contd)

@ The class of general adapted metrics is preserved by
products.

@ ki:=dmN,; + 1.
@ gis called good if

Ui§1a

The are currently under reform
~+ to leave out this condition and make some corrections.
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

General adapted metrics on strata (contd)

@ The class of general adapted metrics is preserved by
products.

@ ki:=dmN,; + 1.
@ gis called good if

Ui§1a

The are currently under reform
~+ to leave out this condition and make some corrections.

@ 1 good adapted metrics associated to any p < m.
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

General adapted metrics on strata (contd)

@ The class of general adapted metrics is preserved by
products.

@ ki:=dmN,; + 1.
@ gis called good if

Ui§1a

The are currently under reform
~+ to leave out this condition and make some corrections.

@ 1 good adapted metrics associated to any p < m.
o dmin/maXa Amin/max on M.
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

S peCtrU m Amin/max

Theorem (up to reform )

For any general adapted metric on a stratum of a compact
stratified space:

() Aminvmax has a discrete spectrum:  Apinmax.k-
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

S peCtrU m Amin/max

Theorem (up to reform )

For any general adapted metric on a stratum of a compact
stratified space:

() Aminvmax has a discrete spectrum:  Apinmax.k-
(i) 30 > 0 such that liminfy M > 0.

J.A. Alvarez Lépez & M. Calaza & C. Franco Witten’s perturbation on strata with general adapted metrics



Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

S peCtrU m Amin/max

Theorem (up to reform )

For any general adapted metric on a stratum of a compact
stratified space:

() Aminvmax has a discrete spectrum:  Apinmax.k-
(i) 30 > 0 such that liminfy M > 0.

@ Cheeger: (i) in the case of pseudomanifolds with conic
metrics.
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

S peCtrU m Amin/max

Theorem (up to reform )

For any general adapted metric on a stratum of a compact
stratified space:

() Aminvmax has a discrete spectrum:  Apinmax.k-
(i) 30 > 0 such that liminfy M > 0.

@ Cheeger: (i) in the case of pseudomanifolds with conic
metrics.

@ (ii) is a weak version of the Weyl formula.

J.A. Alvarez Lépez & M. Calaza & C. Franco Witten’s perturbation on strata with general adapted metrics



Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

Contents

0 Definitions and main theorems

@ Relatively Morse functions
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

Relatively admissible functions

@ f € C>®(M) is rel-admissible if |df| y | Hess f| are bounded.
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

Relatively admissible functions

@ f € C>®(M) is rel-admissible if |df| y | Hess f| are bounded.

@ -~ f has a continuous extension to the metric completion M
of M (possibly not to M).
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Definitions and main theorems Gl SRUmEE ColiEn
Stratified spaces and general adapted metrics

Relatively Morse functions

Relatively admissible functions

@ f € C>®(M) is rel-admissible if |df| y | Hess f| are bounded.

@ -~ f has a continuous extension to the metric completion M
of M (possibly not to M).

@ xeMis a rel-critical point of f when 3 (¥k) in M such that
Yk — x in M and |df(yx)| — O.
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

Relatively admissible functions

@ f € C>®(M) is rel-admissible if |df| y | Hess f| are bounded.

@ -~ f has a continuous extension to the metric completion M
of M (possibly not to M).

@ xeMis a rel-critical point of f when 3 (¥k) in M such that
Yk — x in M and |df(yx)| — O.

@ Critrel(f).
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

Relatively Morse functions

Rel-Morse function: a rel-admissible Morse function f on M so
that, Vx € Crit, (f), if x € X < M, then 3 a general chart of M
centered at x,

a
A>0=0cR"x[]e(L), with OnM=0nM,
i=1
M =R™ x R™ x JT(N; x RT) x J[T(N; x RY)

icl; icl;
1

such that f|p = f(x) + E(pi -)lo

m=my+m_, {1,...;a}=1 Ul

where N; : a stratum of L,
p+ : the radial function of R™ x [, ¢(L/),
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

Relatively Morse functions

If x € Critye(f) N M = Crit(f), ~~ the usual description of the
Morse function f around x:

ADO=0CcR"=R™ xR™, x=0;
1
f\oEf(X)JrE(Pi—P%Nou

where p1 = || || on R+,
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

The numbers v/’

min/max

@ For x € Crityi(f), x € X < M, as above,and r =0,...,n:

r —
Vx,max/min - Z HI—1 Bmax/mm( ’)’ where
a
r=m_+3iq i+,
n<®14 L ifiel,
2 for v”
] ki—1 1 i s X,max >
="+ ifiel
<kl ifiel,
22 for v/
n> K-t ifiel omin”
! 2 2u;j -
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

The numbers v/’

min/max

@ For x € Crityi(f), x € X < M, as above,and r =0,...,n:

r —
Vx,max/min - Z HI_1 Bmax/mm( /)’ where
a
r=m_+3iq i+,

o ki1 1
<7+ ifi el or o
; ki—1 1 o X,max >’
="+ ifiel
<kl ifiel,

22 for v’
n> K-t ifiel omin”
! 2 2u;j -

@ For x € Crit(f) = Critea(f) "M, ] jmax = Or,m_, @s usual.
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

The numbers v/’

min/max

@ For x € Crityi(f), x € X < M, as above,and r =0,...,n:

r —
Vx,max/min - Z HI—1 Bmax/mm( ’)’ where
a
r=m_+3iq i+,
n< bzl g ifiely o
1%
] ki—1 1 i s X,max >
="+ ifiel
n< bt - b ifiely f
n> K-t ifiel O Vimin
! 2 2u;j -
@ For x € Crit(f) = Cl’ltre1( f)n Ul max = Or.m_, @s usual.
° min/max — erCrltrel mm/max
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

A version of Morse inequalities

Theorem (up to reform )
For any rel-Morse function on a stratum of dim n of a compact

stratified space, equipped with a general adapted metric,
k k
Z(_1)k_r Br’:nax/min < Z(_1 )k—r Vr%ax/min (O < k < n) )
r=0 r=0
n
Xmax/min = (_1 )r Vr’;lax/min 0
r=0
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

A version of Morse inequalities

Theorem (up to reform )
For any rel-Morse function on a stratum of dim n of a compact

stratified space, equipped with a general adapted metric,
k k
Z(_1)k_r Br’:nax/min < Z(_1 )k—r Vr%ax/min (O < k < n) )
r=0 r=0
n
Xmax/min = (_1 )r Vr’;lax/min 0
r=0

U. Ludwig: case of pseudomanifolds with conic metrics.
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Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

The numbers P

@ Suppose that A is a pseudomanifold.
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

The numbers P

@ Suppose that A is a pseudomanifold.

@ Fix a perversity p < m with complementary perversity
q>n.
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

The numbers P

@ Suppose that A is a pseudomanifold.

@ Fix a perversity p < m with complementary perversity
qg=n.

° yfzr and v* are defined like Vy max @Nd 1., Using the
numbers BP(L;) instead of B (N;).
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

The numbers P

@ Suppose that A is a pseudomanifold.

@ Fix a perversity p < m with complementary perversity
qg=n.

° yfzr and v* are defined like Vy max @Nd Vs
numbers SP(L;) mstead of ,Bmdx( 1)

@ If Ais oriented, ux ,and 1/, are defined like v}

X mm

using only the numbers 89(L;) instead of 8. (N;).

using the

and v’

min?’
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

The numbers P

@ Suppose that A is a pseudomanifold.

@ Fix a perversity p < m with complementary perversity
qg=n.

° yfzr and v* are defined like Vy max @Nd Vs
numbers P(L;) mstead of ,Bmdx( ).

@ If Ais oriented, ux , and v are defined like Vy min

using only the numbers 89(L;) instead of 8. (N;).
@ The metric is not used to define these numbers.

using the

and v’

min?’
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

A version of Morse inequalities (contd.)

Definitions and main theorems

Corollary (up to reform)

A: a compact pseudomanifold of dim n, p: a perversity.
Ifp < m, orif A is oriented and p > n, then, for any rel-Morse
function on the regular stratum (w.r.t. any adapted metric),
k _ k _
DN <Y (-1 (0<k<n),
r=0 r=0
n -
XP =) (1)
r=0
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Ideal boundary condition
Stratified spaces and general adapted metrics
Relatively Morse functions

Definitions and main theorems

A version of Morse inequalities (contd.)

Corollary (up to reform)

A: a compact pseudomanifold of dim n, p: a perversity.
Ifp < m, orif A is oriented and p > n, then, for any rel-Morse
function on the regular stratum (w.r.t. any adapted metric),
k _ k _
DN <Y (-1 (0<k<n),
r=0 r=0
n -
XP =) (1)
r=0

In the Morse inequalities of Goresky-MacPherson, the functions
and numbers are different.
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Perturbations of the Dunkl harmonic oscillator
Analysis around the rel-critical points

Contents

Q Proofs

@ Witten’s perturbation
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs ) .
Analysis around the rel-critical points

Witten’s perturbation

@ M: a Riemannian manifold, fe C>*(M).
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs ) .
Analysis around the rel-critical points

Witten’s perturbation

@ M: a Riemannian manifold, fe C>*(M).
@ Witten’s perturbations on Q¢(M) (s > 0):

ds=ede =d+sdfa,
bs=ese s =5 —sdf,
As = dsds + 0sds = A+ s-“Hess f” + s% - |df|?.
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs ) .
Analysis around the rel-critical points

Witten’s perturbation

@ M: a Riemannian manifold, fe C>*(M).
@ Witten’s perturbations on Q¢(M) (s > 0):

ds=ede =d+sdfa,
bs=ese s =5 —sdf,
As = dsds + 0sds = A+ s-“Hess f” + s% - |df|?.

@ It was used by Witten to give an analytic proof of the Morse
inequalities on closed manifolds.
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Contents

Q Proofs

@ Perturbations of the Dunkl harmonic oscillator
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Dunkl harmonic oscillator

@ Dunkl operator: T, on C*°(R) defined by:

% on even functions

TO’ - d 1 .
4x T 205 onodd functions.
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Dunkl harmonic oscillator

@ Dunkl operator: T, on C*°(R) defined by:

T _ g on even functions
g +201 onodd functions.
@ Dunkl harmonic oscillator: J = J, = —T2 + sx?> (s > 0)

(the harmonic oscillator: H = —(j’—xzz + sx2).
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Dunkl harmonic oscillator (contd.)

@ Generalized Hermite polynomials: the sequence of
orthonormal polynomials py for the measure e‘sx2]x|2" ax
on R with positive leading coefficients.
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Dunkl harmonic oscillator (contd.)

@ Generalized Hermite polynomials: the sequence of
orthonormal polynomials py for the measure e‘sx2]x|2" ax
on R with positive leading coefficients.

@ ~~ generalized Hermite functions: ¢, = pkefsxz/?
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Dunkl harmonic oscillator (contd.)

@ Generalized Hermite polynomials: the sequence of
orthonormal polynomials py for the measure e‘sx2]x|2" ax
on R with positive leading coefficients.

@ ~ generalized Hermite functions: ¢, = pre—5°/2.
@ Schwartz space: S = S(R)
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Dunkl harmonic oscillator (contd.)

@ Generalized Hermite polynomials: the sequence of
orthonormal polynomials py for the measure e‘sx2]x|2" ax
on R with positive leading coefficients.

@ ~ generalized Hermite functions: ¢, = pre—5°/2.
@ Schwartz space: S = S(R)
o LZ:=L3R,|x*7dx), (,)os Illlo-
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Dunkl harmonic oscillator (contd.)

@ Generalized Hermite polynomials: the sequence of
orthonormal polynomials py for the measure e‘sx2]x|2" ax
on R with positive leading coefficients.

@ ~ generalized Hermite functions: ¢, = pre—5°/2.
@ Schwartz space: S = S(R)

o L2 :=L*R,[x[*dx), (,)o Il

0 S = Sey D Souds chr =2 & Lc2r,odd'

o,ev
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Dunkl harmonic oscillator (contd.)

Generalized Hermite polynomials: the sequence of
orthonormal polynomials py for the measure e‘sx2]x|2" ax
on R with positive leading coefficients.

~ generalized Hermite functions: ¢, = pkefsxz/z.
Schwartz space: S = S(R)

[2:= 2R, xP7ax), (Do || o
S=S8yPSous, L2=12_,0 Lc2r,odd'

o,ev

Lg,T = L¢27,ev & Lg,odd! ( dors Mo
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Dunkl harmonic oscillator (contd.)

@ If o > —1/2, then:
e J, with D(J) = S, is essentially self-adjoint in L2.
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Dunkl harmonic oscillator (contd.)

@ If o > —1/2, then:
e J, with D(J) = S, is essentially self-adjoint in L2.

o Spectrumof J: { cigenvalues — (2k+1+20)s
eigenfunctions ¢
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Witten’s perturbation

Perturbations of the Dunkl harmonic oscillator
Proofs . ;
Analysis around the rel-critical points

Dunkl harmonic oscillator (contd.)

@ If o > —1/2, then:
e J, with D(J) = S, is essentially self-adjoint in L2.

o Spectrumof J: { cigenvalues — (2k+1+20)s
eigenfunctions ¢

o D®(J) =S.
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Dunkl harmonic oscillator (contd.)

@ If o > —1/2, then:
e J, with D(J) = S, is essentially self-adjoint in L2.

o Spectrumof J: { cigenvalues — (2k+1+20)s
eigenfunctions ¢

o D=(J)=S.
e J= Jev ¥ Jodd-
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Dunkl harmonic oscillator (contd.)

@ If o > —1/2, then:
e J, with D(J) = S, is essentially self-adjoint in L2.

o Spectrumof J: { cigenvalues — (2k+1+20)s
eigenfunctions ¢

e D*(J)=S.
e J= Jev ¥ Jodd-
@ 7 > —3/2 ~» J; ,qq satisfies the above properties.
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs ) . ;
Analysis around the rel-critical points

Perturbations of the Dunkl harmonic oscillator

Let O<u<1, £€>0, o>u—1/2.
Then 3 a positive self-adjoint operator U in L2 such that:

(i) Sisacoreofd'/?, and, V¢, € S,

U'2o,UN2p), = (o, ) e + EXITYD, |X]7U0D)s -

(i) U has a discrete spectrum: X\¢. 3D = D(o,u) > 0, and,
Ve >0,3C = C(e¢,0,u) > 0 so that, ¥ k,

(2k+1+420)s+EDsY(k+1)7Y < M
< (2k+1+420)(s+ &es”) +£CsY .
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator
Analysis around the rel-critical points

Perturbations of the Dunkl harmonic oscillator (contd.)

Proofs

Theorem (up to reform)

Let O<u<1, £€>0, neR,

o>u—1/2, 7>u-3/2, 0>-1/2.

A is assumed depending on several cases.
Then 3 a positive self-adjoint operatorV in LEJ such that:

(i) Sisacoreof V'/2, and, forall $,1 € S,
V20, VV20) 5 o = (Joir, V) or + E(XIT10, X7 )0,
+n <<X_1¢odda wev>0 + <¢evy X_1wodd>9> .

(i) U has a discrete spectrum satisfying estimates similar to
the above ones.
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Perturbations of the Dunkl harmonic oscillator (contd.)

eU=U forU=J+¢x|724, D(U)?
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs ;
Analysis around the rel-critical points

Perturbations of the Dunkl harmonic oscillator (contd.)

D(U)?

< <
I
cl
g
<
I
«
_|_
T
B3
0
.S

_ Ua,ev 77|X|2(970)X71
- n’X‘Z(e—T)X—1 Ur,odd

[ U alxPOx
n|x |2 =")x U odd ’

0 =60—1/2>-3/2, D(V)?
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Perturbations of the Dunkl harmonic oscillator (contd.)

D(U)?

< <
I
cl
g
<
I
«
_|_
T
B3
0
.c

B ( Uy.ev 77|X|2(9")X1>
U’X\Z(O_T)X_1 Ur odd

prg ( UU;CV 77|)(|2(6,_0’)X)
n|x |2 =")x U odd ’

0=60-1/2>-3/2, D(V)?
@ Proof: perturbation theory of linear operators (Kato’s book).
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs ) ; ;
Analysis around the rel-critical points

Induced operators on R*

Restriction to even/odd functions
restriction to R™
conjugation by powers of x
induced operators on R
selfadjoint extensions assuming
~ { a core of (selfadjoint extension)'/2
discrete spectrum
eigenvalue estimates of the above type
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Induced operators on R* (contd.)

Induced operators on R™:

Py = H—201X1CZ'( + CngZ ,

2

(_)O:H—201;l(x‘1 +cx© (¢, €R),
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Induced operators on R* (contd.)

Induced operators on R™:

Py = H—201X1CZ'( + CngZ ,

2

(_)O:H—201;l(x‘1 +cx© (¢, €R),

P=Py+ex20, Q=Qy+&x2 (0<u<1),
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Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs . ;
Analysis around the rel-critical points

Induced operators on R* (contd.)

Induced operators on R™:

Py = H—201X1CZ'( + CngZ ,

2

(_)O:H—201;l(x‘1 +cx© (¢, €R),

P=Py+ex20, Q=Qy+&x2 (0<u<1),

P nX2(9_01)_a_b_1
W= <,,7X2(9—d1)—a—b—1 Q >
P nXZ(G’—c1)—a—b+1
= <nX2(6’—d1)—a—b+1 Q ) :
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Local model

o f=1%(n3—p2) on
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f . " .
Proofs Analysis around the rel-critical points

Local model

o f=3(p2 —p2) on

@ Kiinneth formula ~ f = £3p2 on M = N x R* in ¢(L).
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Local model

o f=13(5—p%) on
@ Kiinneth formula ~ f = £3p2 on M = N x R* in ¢(L).
@ h=dmN, n=dmM=n+1.
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f . " .
Proofs Analysis around the rel-critical points

Local model

o f=3(p% —p%) on
R™ 5 R™= x [[ie), (Ni x RT) x [Tje), (N; x RY).
@ Kiinneth formula ~ f = £3p2 on M = N x R* in ¢(L).
@ h=dmN, n=dmM=n+1.
@ g : general adapted metric on N.
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f . " .
Proofs Analysis around the rel-critical points

Local model

o f=3(p% —p%) on
R™ 5 R™= x [[ie), (Ni x RT) x [Tje), (N; x RY).
@ Kiinneth formula ~ f = £3p2 on M = N x R* in ¢(L).
@ n=dmN, n=dmM=n+1.
@ g : general adapted metric on N.
@ g=p?gaodp® onM, u>0.
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f . " .
Proofs Analysis around the rel-critical points

Local model

f=3%(p% —p%) on

R™ 5 R™= x [[ie), (Ni x RT) x [Tje), (N; x RY).
Kunneth formula ~ f = £5p% on M = N x R in ¢(L).
n=dmN, n=dmM=n+1.

g : general adapted metric on N.

g=p2gddp? onM, u>D0.

d,6,AonN, d,és Aon M.
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f . " .
Proofs Analysis around the rel-critical points

Local model

f=3%(p% —p%) on

R™ 5 R™= x [[ie), (Ni x RT) x [Tje), (N; x RY).
Kunneth formula ~ f = £5p% on M = N x R in ¢(L).
n=dmN, n=dmM=n+1.

g : general adapted metric on N.

=g ®ddp? onM, u>0.

d,6,AonN, d,és Aon M.

f=+1p2~ d5, o5, A5 on M.

®© 6 6 6 6 o
«Q
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Induction hypothesis

@ Assume the 1st main thm holds with smaller depth.
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f . " .
Proofs Analysis around the rel-critical points

Induction hypothesis

@ Assume the 1st main thm holds with smaller depth.

@ ~~ spectral descomposition of the operator Anmin/max iN
L2Q"(N) given by forms:

~ € ker Zmin/max N Qr(N) )

« G |m amjnjmax m QF(N) 9 /8 G Im Smin/max m Qr_1(N) 9
dB=pa, da=pB, p>0.

J.A. Alvarez Lépez & M. Calaza & C. Franco Witten’s perturbation on strata with general adapted metrics



Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs Analysis around the rel-critical points

Simple complexes defined by d<

dsr
0 —— C(RT)y —— C(RT)dpAy —— 0,

+

d
C(RT) B ——— C*(RT)a + CP(RT)dp A B

+
ds,r

CP(RY)dp A 0,
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Proofs Analysis around the rel-critical points

Simple complexes defined by dF (contd.)

They are isomorphic to the following simple elliptic complexes:

0 C(RT) —4 CP(RT) 0,

d=g —rp ' tsp, w=(n—2r-1u/2,

0 CF(RY) —2 CE(RY) @ CR(RY) —2s CR(RT) -0,

a
a = <dg’;) , diy=(di1 di2),

di 1 Zd%—"ép_1 +sp, dipg=—pup
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Proofs Analysis around the rel-critical points

Simple complex of length one

@ Laplacian in L2(R*):

No=0dd=H+k(k—1)p2Fs(1+2k),
Ay =ds=H+k(k+1)p2+s(1-2k).
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Proofs Analysis around the rel-critical points

Simple complex of length one

@ Laplacian in L2(R*):

No=0dd=H+k(k—1)p2Fs(1+2k),
Ay =ds=H+k(k+1)p2+s(1-2k).

@ - Py + constant.
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f . " .
Proofs Analysis around the rel-critical points

Simple complex of length one

@ Laplacian in L2(R*):
No=0dd=H+k(k—1)p2Fs(1+2k),
Ay =ds=H+k(k+1)p2+s(1-2k).

@ ~ Py + constant.

@ - self-adjoint operators defined of Ag and Aq in L2(R™),
and description of their spectra.
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Simple complex of length one (contd.)

o Condition | Smooth core

Aj K K > —% Sev,+

A | 1-k|r<3 P25 Sodd +

Table: Self-adjoint operators defined by Ag

T Condition | Smooth core
B34 K K>3 Sodd,+
By | 11—k | kK< % P26 Sey +

Table: Self-adjoint operators defined by Ag
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Simple complex of length one (contd.)

AF 0 the 1stone
1 +, O(s) the other ones
A7 +, O(s)
0 the 1stone
A; K= %
+, O(s) the other ones
k< |+, 0(s)
Ay +, O(s)

Table: Eigenvalues of A;
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f . " .
Proofs Analysis around the rel-critical points

Simple complex of length one (contd.)

Bf +, O(s)
k> —% |+, O(s)
B ; | 0 the 1stone
61 R = —5
+, O(s) the other ones
By +, O()
_ 0 the 1stone
B,

+, O(s) the other ones

Table: Eigenvalues of B;
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Simple complex of length one (contd.)

AS,max,O As,min,O As,max,1 As,min,1
K> % A4 B
‘H‘ < % Aj Ao By Bs
K< Az B>

Table: Description of Ag max/min
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Proofs Analysis around the rel-critical points

Simple complex of length two

Laplacians in L2(R*) and L2(R™; C?):

Do=H+(r+u)(s+u—1)p2+uPp 2 Fs(1+2(k+ 1)),
DNp=H+k(k+1)p 24 120724 + 5(1 — 2k) ,

As = Ay 4 —2pup=t1
T\ —2uup AN ’

Ay =H+k(k— 1)P_2 "‘sz_zu Fs(1+2x),
Dig=H+(r+U)(r+u+1)p 2+ p2p 2 £ 5(1 - 2(k + 1)) .
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Simple complex of length two (contd.)

@ Caseu=1:
o Ago=FPy+const, Agp, = Qy+ const.,
and A 4 can be diagonalized obtaining terms of the same
type in the diagonal.
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Proofs Analysis around the rel-critical points

Simple complex of length two (contd.)

@ Caseu=1:
o Ago=Py+const, Agp= Qy+ const,
and A 4 can be diagonalized obtaining terms of the same
type in the diagonal.
e ~ self-adjoint extensions of these operators in L2(R*) with
discrete spectrum, and description of their eigenvalues.
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Proofs Analysis around the rel-critical points

Simple complex of length two (contd.)

@ Caseu=1:
o Ago=Py+const, Agp= Qy+ const,
and A 4 can be diagonalized obtaining terms of the same
type in the diagonal.
e ~ self-adjoint extensions of these operators in L2(R*) with
discrete spectrum, and description of their eigenvalues.

@ Caseu < 1:

@ ~ Ago=P+const., Ag»=Q+ const.,
and Ag 1 = W + const. diag. matrix.
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Proofs Analysis around the rel-critical points

Simple complex of length two (contd.)

@ Caseu=1:
o Ago=Py+const, Agp= Qy+ const,
and A 4 can be diagonalized obtaining terms of the same
type in the diagonal.
e ~ self-adjoint extensions of these operators in L2(R*) with
discrete spectrum, and description of their eigenvalues.

@ Caseu< 1:
@ ~ Ago=P+const., Ag»=Q+ const.,
and Ag 1 = W + const. diag. matrix.
e ~ self-adjoint extensions of this operator in L2(R*, C?) with
discrete spectrum, and estimates of their eigenvalues.
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Simple complex of length two (contd.)

o Condition Core of 73,-1 /2
P K+ U K > —% Sev.+
,P2 1 —K—U R < % — 2U piznizusodd’_;'_

Table: Self-adjoint operators defined by As

T Condition | Core of Q} /2
Q‘I K K> U— % Sodd,Jr
Q| 1-r|Kr< % —u p_zﬁsev&

Table: Self-adjoint operators defined by A »
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Proofs Analysis around the rel-critical points

Simple complex of length two (contd.)

o T 0 Condition

Wi 1 K K+ U K
Woo |1—k|-1—-k—-U|-Kk—-U

W 1 1—k K+ U

N =

Table: Self-adjoint operators defined by Ag
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Proofs Analysis around the rel-critical points

Simple complex of length two (contd.)

Core of W,-t j/ 2
Wi i Sev,+ D Sodd,+
Wao | p=2 Sedd @ p~ 272Uy 4
W 1 P25 Sodd,+ D Sodd,+

Table: Self-adjoint operators defined by A (contd.)
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Proofs Analysis around the rel-critical points

Simple complex of length two (contd.)

W,',j -+, O(S)

Table: Eigenvalues of P;, Q; and W ;
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Simple complex of length two (contd.)

As,max,O As,min,o
K > —% P K> % —u P
K< % —u P>
Kk < —% —u Po

Table: Description of Ag max/min,0
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Simple complex of length two (contd.)

As,maX,Z AS,min,Z
1 1
K> —3 Q1 K2y Q1
1
K < ) 0)
K< 3-—uU Q5

Table: Description of Ag max/min,2

Lépez & M. Calaza & C. Franco

Witten’s perturbati n strata with general adapted metrics



Witten’s perturbation

Perturbations of the Dunkl harmonic oscillator
Proofs . " .
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Simple complex of length two (contd.)

As,max,1 AS,min,1
Wi 1 Wi 1
W 1 W 1
Wa o Wa o

Table: Description of Ag max/min, 1

strata with general adapted metrics
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Proofs Analysis around the rel-critical points

Simple complex of length two (contd.)

@ One more trick: in this simple complex of length two,

ker(As,maX/min,O 2] As,max/mir1,2) =0 = ker AS,max/min,1 =0.
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f . " .
Proofs Analysis around the rel-critical points

Simple complex of length two (contd.)

@ One more trick: in this simple complex of length two,
ker(As,maX/min,O S As,max/mir1,2) =0 = ker AS,max/min,1 =0.

@ ~ In this case, As7max/min70 2] As,max/min72 and Amax/min,1
have the same eigenvalues, with the same multiplicity.
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Proofs Analysis around the rel-critical points

Simple complex of length two (contd.)

@ One more trick: in this simple complex of length two,
ker(As,maX/min,O S As,max/mir1,2) =0 = ker AS,max/min,1 =0.

@ ~ In this case, As7max/min70 2] As,max/min72 and Amax/min,1
have the same eigenvalues, with the same multiplicity.

@ - larger of k where the spectrum of Ag ax/min iS
known.

J.A. Alvarez Lépez & M. Calaza & C. Franco Witten’s perturbation on strata with general adapted metrics



Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

f . " .
Proofs Analysis around the rel-critical points

Simple complex of length two (contd.)

@ One more trick: in this simple complex of length two,
ker(As,maX/min,O S As,max/mir1,2) =0 = ker AS,max/min,1 =0.

@ ~ In this case, As7max/min70 2] As,max/min72 and Amax/min,1
have the same eigenvalues, with the same multiplicity.

@ ~ larger of k where the spectrum of Ag max/min IS
known.

@ ~~ the adapted metric must be
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Spectrum of Ag min/max ON OUr local model

@ Assume the adapted metric is
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Proofs Analysis around the rel-critical points

Spectrum of Ag min/max ON OUr local model

@ Assume the adapted metric is
@ On our local model:

s minfmax = @ min/max i.b.c. of the simple complexes ,
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Proofs Analysis around the rel-critical points

Spectrum of Ag min/max ON OUr local model

@ Assume the adapted metric is
@ On our local model:

s minfmax = @ min/max i.b.c. of the simple complexes ,

As minmax Nas a discrete spectrum,
~ ¢ description of ker A min/max.
the positive eigenvalues are of order O(s).
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Proofs Analysis around the rel-critical points

Globalization and Witten’s arguments

@ ~ 1st main thm for Aninmax after globalization because
As,min/malx - Amin/max is bounded.

J.A. Alvarez Lépez & M. Calaza & C. Franco Witten’s perturbation on strata with general adapted metrics



Witten’s perturbation
Perturbations of the Dunkl harmonic oscillator

Proofs Analysis around the rel-critical points

Globalization and Witten’s arguments

@ ~ 1st main thm for Aninmax after globalization because
As,min/malx - Amin/max is bounded.

@ ~» 2nd main thm adapting the arguments of the Witten’s
approach to Morse inequalities.
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Proofs

Thank you very much!

eneral adapted metrics
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