Microtubule dynamic instability, implication in oncopharmacology and Modeling

Stéphane Honoré

Centre de Recherche en Oncologie Biologique et Oncopharmacologie (CRO2)

Aix-Marseille Université

PHAR-MATHO-TUBULE project

Mathematical Modeling of the pharmacological effects of microtubule-targeted drugs on **microtubule dynamic instability** and cellular processes involved in cancer progression: i.e **cell migration**

Stéphane Honoré, Florence Hubert Christophe Gomez

Svieson

alliance nationale our les sciences de la vie et de la santé

Molecular apects of Microtubule Dynamic Instability

Tubulin polymerization

MT polymerization depend on tubulin critical concentration

Microtubule dynamic instability GTP hydrolysis and GTP cap

« GTP hydrolysis and Catastrophe »

« GTP-Remnant and Rescue »

hMB11 Anti-GTP tubulin (F Perez)

MT dynamic instability in living cells

Microtubule Dynamics regulation in cells

Integration and signal transduction

Polarity

Tumor, endothelial, immune cells

TUMOR PROGRESSION

Measuring MT dynamic instability

Growth rate, length, duration

Shortening rate, length, duration

Pause duration

Transition frequencies (both time and spatial) (catastrophe, rescue)

Time spent in growing, shortening and Paused states

Overall Dynamicity

Microtubules / EBs system in Living Cells

Glioblastoma U87 cell

End-Binding proteins bind to and regulate the structural MT « stabilizing » cap

EB end tracking and dynamic instability are mechanistically linked

Detection and Tracking of EB3-GFP

Computational measurement of MT dynamics

The Microtubule Tageting Agents

Classification depending on the binding site on tubulin

Microtubule/Tubulin as an Anticancer Target

LOW and NON CYTOTOXIC CONCENTRATIONS	IC 20-30	INTERMEDIATE CYTOTOXIC CONCENTRATIONS	IC 80 or mo	HIGH and CYTOTOXIC CONCENTRATIONS	
Eribulin Colchicinoïds	cell proliferation assay			Patupilone	
Vinorelbine Vincristine	"Drug are conc	"Drug concentration references are based on the Inhibiting concentration (IC) on a 72h of		Docetaxel Carbazitaxel Epothilones	
Microtubule DESTABILIZERS Vinca Alkaloïds Vinblastine Vinflunine	C TI	LASSIFIED ACCORDING HEIR EFFECTS AT HIGH CONCENTRATIONS		Microtubule STABILIZERS Taxanes Paclitaxel	

At "high" concentrations microtubule-targeting agents (MTA) affect the microtubule polymer mass

MTA suppress MT dynamic instability at intermediate concentrations and increase it at low concentrations

INTERMEDIATE

LOW

Pasquier et al, Cancer Res 2005

Pourroy et al., Cancer Res 2006

Low and intermediate concentrations of MTA differently affect mitotic progression

transition slow down

metaphase / anaphase **transition block**

Low concentrations of MTAs inhibit cell motility

Control

Vinflunine 1 nM

Honoré et al., 2008

vinflunine inhibits EB1 accumulation at microtubule + End

Red: Tubulin-mcherry Green: EB1-GFP

Vinflunine 1 nM

INCREASED MT DYNAMICS NO VISIBLE EB1 COMETS

Patupilone inhibits EB1 accumulation at microtubule + Ends

CONTROL

1 nM Patupilone

5 nM Patupilone

10 nM Patupilone

Low concentrations of patupilone inhibit EB1 accumulation at MT + end in cells

Does the decrease of the EB stabilizing cap favor MT catastrophes in cells?

μm

Control U87 cells

Patupilone anti-migratory effect is linked to the induction of MT catastrophes in U87 Glioblastoma cells

Low nanomolar concentration paclitaxel increased MT dynamics in vitro in presence of EBs

In vitro tip tracking assay
EB3-GFP-Kymographs

	GR (um/min)	SR (um/min)	Cata fr (per min)	Rescue fr. (per min)	n
Control	3.87 ± 1.0	19.09 ± 16.0	1.72 ± 0.1	2.12 ± 0.3	62
Paclitaxel 1 nM	4.13 ± 1.4	17.87 ± 11.2	2.10 ± 0.1	3.79 ± 0.4	37
Paclitaxel 10 nM	4.89 ± 1.5	21.30 ± 15.8	2.62 ± 0.2	5.77 ± 0.6	38
Paclitaxel 100 nM	5.99 ± 1.5	28.12 ± 25.8	2.96 ± 0.1	4.57 ± 0.5	50

EBs sensitize MT to the action of MTAs and allow such peculiar increased dynamics at low concentrations

MTAs affect MT aging

Kymographs of EB3-GFP tip tracking assay

Effect of drugs differ according the presence or the absence of EB proteins

Mohan et al., 2013

EB1 a bad prognostic marker in Glioblastoma

EB1 staining in human GBM patient (n=109)

EB1 overexpression sensitize to MTAs *in vivo*

Low level of EB1 in Glioblastoma

High level of EB1 in Glioblastoma

EB1 DETYROSINATION

Pro-migratory VEGF increased EB1 comet length in endothelial cells

0 5 10 20 VEGF (ng/ml)

Rovini et al., Plosone2013

Pro migratory VEGF induced EB1 detyrosination

VEGF

Rovini et al., Plosone2013

Vinflunine abolishes VEGF effect: it induces EB1 retyrosination and decreases EB1 comet length

VEGF

VINFLUNINE

Anti-migratory effect of Vinflunine is correlated with inhibition of EB1 accumulation at MT + end and EB1(re)tyrosination

Model for anti-migratory effect of MTAs

ANTI-TUMOR ACTIVITY

Thank you for your attention!

EQUIPE 1

INSERM U911 – Team 1- MARSEILLE

D.BRAGUER V.BOURGAREL M.CARRE E.PASQUIER M-A.ESTEVE M-P.MONTERO N.ANDRE M.LEGRAND F. CORREAD S.HONORE **R**.**BERGES M.PETIT** S.ODDOUX **C.RICARD**

EQUIPE 4

D.FIGARELLA L.OUAFIK N.BAEZA O.CHINOT E.TABOURET

I2M

F. HUBERT C. GOMEZ A. BENABDALLAH R. TESSON A.BARLUKOVA D.WHITE

