Mathematical Model Combining Oncolytic Viral Therapy and Immunotherapy

Ilyssa A. Summer Applied Mathematics for the Life and Social Sciences

> Arizona State University isummer@asu.edu

December 10, 2015

Present Challenges of Mathematics in Oncology and Biology of Cancer: Modelling and Mathematical Analysis

CIRM Marseille, France

#### Introduction

Conventional Cancer Treatments Oncolytic Virotherapy

#### Background Models

Viral Dynamic Models Viral Models with Immune Response

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Model

Data Parameter Fits Simulations

Future Work

# Recent News

#### Cancer

#### 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

52,928 181

# Recent News

#### Cancer

# A 'huge milestone': approval of cancerhunting virus signals new treatment era

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Shares Comments

52,928 181

# Cancer-fighting viruses win approval

US regulators clear a viral melanoma therapy, paving the way for a promising field with a chequered past. Heidi Ledford 28 October 2015

# Recent News

#### Cancer

# A 'huge milestone': approval of cancerhunting virus signals new treatment era

Shares Comments

52,928 181

# Cancer-fighting viruses win approval

US regulators clear a viral melanoma therapy, paving the way for a promising field with a chequered past. Heidi Ledford 28 October 2015

TRANSGENE (ENX:TNG) And SillaJen Announce Revised Agreement For Pexa-Vec Oncolytic Viral Therapy And Provide Update On Clinical Development 11/12/2015 12:3:04 PM

STRASBOURG, France--(BUSINESS WIRE)-Regulatory News: Transgene SA (Paris:TNG) (Euronext: TNG) and SillaJen, Inc. today announced that they have signed an amended agreement for the development and commercialization of oncolytic viral therapy Pexa-Vec to streamline the conduct of clinical trials and to reflect important areas of interest for each company. Key changes to the agreement are outlined below.

Cancer is a complex collection of diseases involving unregulated cell growth. Common treatments include:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Cancer is a complex collection of diseases involving unregulated cell growth. Common treatments include:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Surgery

Cancer is a complex collection of diseases involving unregulated cell growth. Common treatments include:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Surgery
- Radiation therapy

Cancer is a complex collection of diseases involving unregulated cell growth. Common treatments include:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Surgery
- Radiation therapy
- Chemotherapy

Cancer is a complex collection of diseases involving unregulated cell growth. Common treatments include:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Surgery
- Radiation therapy
- Chemotherapy
- Immunotherapy

Cancer is a complex collection of diseases involving unregulated cell growth. Common treatments include:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Surgery
- Radiation therapy
- Chemotherapy
- Immunotherapy
- Targeted Therapy

"Anti-cancer" Oncolytic virus is type of Virotherapy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Viral gene therapy

"Anti-cancer" Oncolytic virus is type of Virotherapy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Viral gene therapy
- Viral Immunotherapy

"Anti-cancer" Oncolytic virus is type of Virotherapy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Viral gene therapy
- Viral Immunotherapy
- Virus that selectively infect and kill cancer cells

- "Anti-cancer" Oncolytic virus is type of Virotherapy
  - Viral gene therapy
  - Viral Immunotherapy
- Virus that selectively infect and kill cancer cells



▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >







A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

# Milestones in Oncolytic Virotherapy



Russell et al, 2012

# Milestones in Oncolytic Virotherapy



◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● の Q ()~

# Clinically tested Oncolytic Viruses

- adenovirus
- reovirus
- measles
- herpes simplex (HSV)

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

poxvirus

Question: How sensitive is tumor reduction to combination intermittent oncolytic viral therapy and immunotherapy?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# **Basic Viral Model**

$$\frac{dx}{dt} = \lambda - dx - \beta xv$$
(1)
$$\frac{dy}{dt} = \beta xv - ay$$

$$\frac{dv}{dt} = \kappa y - \delta v$$

#### nowak1996population



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Basic Viral Immune Models

# Self-regulating CTL response nowak2000virus

$$\frac{dx}{dt} = \lambda - dx - \beta xv$$

$$\frac{dy}{dt} = \beta xv - ay - pyz$$

$$\frac{dv}{dt} = ky - \delta v$$

$$\frac{dz}{dt} = c - bz$$
(2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$R_0 = rac{eta \gamma k}{(a-a^1) d \delta}; \qquad a^1 = rac{c 
ho}{b}$$

# Constructing the model...



#### huang2010therapeutic

э





#### Review Dendritic Cells in Oncolytic Virus-Based Anti-Cancer Therapy

Youra Kim <sup>1</sup>, Derek R. Clements <sup>1</sup>, Andra M. Sterea <sup>2</sup>, Hyun Woo Jang <sup>3</sup>, Shashi A. Gujar <sup>3,4,\*</sup> and Patrick W. K. Lee <sup>1,3,\*</sup>

Received: 9 September 2015; Accepted: 27 November 2015; Published: 9 December 2015 Academic Editors: E. Antonio Chiocca and Martine L.M. Lamfers



 Gene-based treatment: Enhanced anti-tumor effect via co-expression of IL-12 and 4-1BBL mediated by Oncolytic Adenovirus (Ad)

(日)、

э



- Gene-based treatment: Enhanced anti-tumor effect via co-expression of IL-12 and 4-1BBL mediated by Oncolytic Adenovirus (Ad)
- (6-8) Mice/group



- Gene-based treatment: Enhanced anti-tumor effect via co-expression of IL-12 and 4-1BBL mediated by Oncolytic Adenovirus (Ad)
- (6-8) Mice/group
- Subjects: contained B16-F10 subcutaneous murine melanoma



- Gene-based treatment: Enhanced anti-tumor effect via co-expression of IL-12 and 4-1BBL mediated by Oncolytic Adenovirus (Ad)
- (6-8) Mice/group
- Subjects: contained B16-F10 subcutaneous murine melanoma
- Administration : Intratumorally

# Model Combining Oncolytic Viral Therapy and Immunotherapy

$$\frac{dU}{dt} = rU - \beta \frac{UV}{N} - (\lambda_u + \kappa I) \frac{UT}{N}$$

$$\frac{dI}{dt} = \beta \frac{UV}{N} - \delta_I I - (\lambda_i + \kappa I) \frac{IT}{N}$$

$$\frac{dV}{dt} = u_v(t) + \alpha \delta_I I - \delta_v v$$

$$\frac{dT}{dt} = \rho D - \delta_t T$$

$$\frac{dD}{dt} = \mu_u U + \mu_I I - \delta_d D + u_d(t)$$
(3)

- D denotes Immunotherapy via Dendrites cells; subset of Antigen Presenting Cells (APC's)
- Two types of intermittent treatment;  $u_v(t), u_d(t)$
- Enhance immune stimulation; κI

# Parameter Fits

| Parameter   | Description                         | PBS     | DC      | <b>Ad-</b> △ <b>B7</b> /4-   | <b>Ad-</b> △ <b>B7/4-</b>    |
|-------------|-------------------------------------|---------|---------|------------------------------|------------------------------|
|             |                                     |         |         | 1BBL                         | 1BBL+DC                      |
| r           | Uninfected tumor cell growth rate   | 0.34484 | 0.34484 | 0.34484                      | 0.34484                      |
| $\lambda_U$ | T cell contact rate, uninfected     | -       | 0.17206 | 0.17206                      | 0.17206                      |
| $\lambda_I$ | T cell contact rate, infected       | -       | 0.17206 | 0.17206                      | 0.17206                      |
| $\mu_U$     | dendrite activation from uninfected | -       | 0.15113 | 0.15113                      | 0.15113                      |
|             | cells                               |         |         |                              |                              |
| $\mu_I$     | dendrite activation from infected   | -       | -       | $\mu_U * 1.1$                | $\mu_U * 1.1$                |
|             | cells                               |         |         |                              |                              |
| β           | Viral infectious rate               | -       | -       | 0.0053884                    | 0.0058385                    |
| κ           | T cell killing rate                 | -       | -       | $8.5 \times 10^{-7}$         | $8.5	imes10^{-7}$            |
| $\delta_T$  | T cell decay rate                   | -       | 0.35    | 0.35                         | 0.35                         |
| $\delta_D$  | Dendritic cell death rate           | -       | 0.35    | 0.35                         | 0.35                         |
| ρ           | T cell activation rate by dendritic | -       | 1       | 1                            | 1                            |
|             | cells                               |         |         |                              |                              |
| $u_{0D}$    | Dendritic concentration             | -       | 106     | -                            | $10^{6}$                     |
| $u_{0V}$    | Adenovirus concentration            | -       | -       | <b>2.5 x</b> 10 <sup>9</sup> | <b>2.5 x</b> 10 <sup>9</sup> |
| α           | adenovirus burst size               | -       | -       | 3500                         | 3500                         |
| $\delta_I$  | Infected lysis                      | -       | -       | 1                            | 1                            |
| $\delta_V$  | Viral decay rate                    | -       | -       | 2.3                          | 2.3                          |

Table: Parameter estimates for Model (8)

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

# Fit Simulation



▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

# **Clinical Trial Regimes**

| Cancer | O-Virus | Drug Name | Company | Phase | $\mathbf{R.O.A}_V^1$ | Quantity <sub>V</sub> | Schedule | Immune-Combo | Cite |
|--------|---------|-----------|---------|-------|----------------------|-----------------------|----------|--------------|------|
| /Stage |         |           |         | Trial | $\mathbf{R.O.A}_I^2$ | (pfu/ml)              |          |              |      |

<□ > < @ > < E > < E > E のQ @

# **Clinical Trial Regimes**

| Cancer                                                   | O-Virus                | Drug Name             | Company                      | Phase   | $\mathbf{R.O.A}_V^1$                                  | Quantity <sub>V</sub>                                                                                                                                                                                                                                                                                           | Schedule                                                                                                                                                                               | Immune-Combo                                                      | Cite                        |
|----------------------------------------------------------|------------------------|-----------------------|------------------------------|---------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------|
| /Stage                                                   |                        |                       |                              | Trial   | $\mathbf{R.O.A}_I^2$                                  | (pfu/ml)                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                        |                                                                   |                             |
| Melanoma<br>IIIB-IV                                      | HSV-1                  | T-VEC                 | AMGen                        | ш       | I-LES <sup>3</sup><br>Sub-C <sub>I</sub> <sup>4</sup> | $10^{6}$<br>$10^{8}$<br>$10^{8}$                                                                                                                                                                                                                                                                                | $\begin{array}{l} \text{D1-WK1;}\\ \text{D2-WK4;}\\ \text{DN+/2WKS;}\\ \leq 24 \text{ wks;} \leq 48\\ \text{wks(1 yr/ D1)}\\ \leq 72 \text{ wks (18mos}\\ \text{from D1)} \end{array}$ | No.Option(OR)<br>GM-CSF<br>125µg/m <sup>2</sup><br>14 Days(daily) | (Andtbacka et<br>al., 2015) |
| Varied:NSCLO<br>Col,Mel,Thy,<br>Pan,Ova,Gas,<br>Lei, Mes | C,Vaccinia<br>Poxvirus | JX-594<br>(Pexa-Vec)  | Jennerex                     | I       | I-VEN                                                 | $\begin{array}{cccc} 1 \times 10^5, 1 \times \\ 10^6, & 3 \times \\ 10^6, 1 \times 10^7, \\ 1.5 \times 10^7, \\ 3 \times & 10^7 \\ * (pfu/kg) \end{array}$                                                                                                                                                      | Singe infusion                                                                                                                                                                         | Express: GM-<br>CSF, β-gal                                        | (Breitbach et<br>al., 2011) |
| Ova, Mes                                                 | Adenovirus             | Ad5-D24-<br>GMCSF     |                              | I (min) | I-VEN<br>I-CAV                                        | $\begin{array}{c} \textbf{D1; 8 \times 10^9.} \\ \textbf{Doses escalate} \\ \textbf{to: 1 \times 10^{10},} \\ \textbf{3.6 \times 10^{10},} \\ \textbf{1 \times 10^{11},} \\ \textbf{2 \times 10^{11},} \\ \textbf{2 \times 10^{11},} \\ \textbf{3 \times 10^{11},and} \\ \textbf{4 \times 10^{11}} \end{array}$ | Single infusion                                                                                                                                                                        | GM-CSF                                                            | (Cerullo et al.,<br>2010)   |
| Liver Can-<br>cer                                        | Vaccinia<br>Poxvirus   | Pexa-Vec <sup>5</sup> | Jennerex                     | п       | I-VEN                                                 | Low 10 <sup>8</sup> ;<br>High 10 <sup>9</sup>                                                                                                                                                                                                                                                                   | Infused low and<br>high dose on D1,<br>D15 & D29                                                                                                                                       | No. Inserted GM-CSF and $\beta$ Gal                               | (Heo et al.,<br>2013)       |
| Gastrointestin<br>Carcinoma                              | alAdenovirus           | Onyx-015              | Onyx<br>Pharma-<br>ceuticals | п       | HAI                                                   | $2 \times 10^{12}$                                                                                                                                                                                                                                                                                              | D1,D8 .<br>Chemother-<br>apy administered<br>on D22                                                                                                                                    | -                                                                 | (Reid et al.,<br>2002)      |

Table 3: NSCLC, non small cell lung cancer; Col, Colorectal; Mel=Melanoma; Thy, Thyroid; Pan, Pancreatic; Ova, Ovarian; Gas, Gastric; Lei, Leiomyosarcoma; Mes, Mesothelioma. HAI, Hepatic Artery Infusion

| Patie<br>code           | nt Dose<br>(VP)      | Primary<br>Tumor |
|-------------------------|----------------------|------------------|
| C3                      | 8 × 10 <sup>9</sup>  | Jejunum cancer   |
| M3                      | 1 × 10 <sup>10</sup> | HCC              |
| 012                     | $3.6 \times 10^{10}$ | Ovarian cancer   |
| 014                     | 1 × 10 <sup>11</sup> | Ovarian cancer   |
| G15                     | 1 × 10 <sup>11</sup> | Gastric cancer   |
| K18                     | 2 × 10 <sup>11</sup> | NSCLC            |
| T19                     | 2 × 10 <sup>11</sup> | Thyroid cancer   |
| U89                     | 2 × 10 <sup>11</sup> | Renal cancer     |
| S100                    | 2 × 10 <sup>11</sup> | Leiomyosarcoma   |
| S108                    | 2 × 10 <sup>11</sup> | Synovial sarcoma |
| M50                     | $2.5 \times 10^{11}$ | Mesothelioma     |
| R8                      | 3 × 10 <sup>11</sup> | Breast cancer    |
| M32                     | 3 × 10 <sup>11</sup> | Mesothelioma     |
| X49                     | 3 × 10 <sup>11</sup> | Cervical cancer  |
| 152                     | 3 × 10 <sup>11</sup> | Melanoma         |
| 178                     | 3 × 10 <sup>11</sup> | Choroidal        |
|                         |                      | melanoma         |
| C58                     | 4 × 10 <sup>11</sup> | Colon cancer     |
| R73                     | 4 × 10 <sup>11</sup> | Breast cancer    |
| <b>O88</b>              | 4 × 10 <sup>11</sup> | Ovarian cancer   |
| <b>O9</b> <sup>II</sup> | 2 × 10 <sup>11</sup> | Ovarian cancer   |

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

# Parameter Fits for Viral Immunotherapy

| Parameter   | Description                         | Mock  | Ad5D24          | Ad5D24+GMCSF         |
|-------------|-------------------------------------|-------|-----------------|----------------------|
| r           | Uninfected tumor cell growth rate   | 0.131 | 0.43            | 0.18                 |
| $\lambda_U$ | T cell contact rate, uninfected     | -     | 1.07            | 0.7                  |
| $\lambda_I$ | T cell contact rate, infected       | -     | 0.27            | 0.4                  |
| β           | Viral infectious rate               | -     | $10^{-7}$       | $1.08 	imes 10^{-5}$ |
| $\mu_U$     | dendrite activation from unin-      | -     | 0.59            | 1                    |
|             | fected cells                        |       |                 |                      |
| $\mu_I$     | dendrite activation from infected   | -     | 1               | $1.1 	imes \mu_U$    |
|             | cells                               |       |                 |                      |
| κ           | T cell killing rate                 | -     | 0               | $7 \times 10^{-5}$   |
| $\delta_T$  | T cell decay rate                   | -     | 0.35            | 0.35                 |
| $\delta_D$  | Dendritic cell death rate           | -     | 0.35            | 0.35                 |
| ρ           | T cell activation rate by dendritic | -     | 1               | 1                    |
|             | cells                               |       |                 |                      |
| $u_{0D}$    | Dendritic concentration             | -     | 0               | 0                    |
| $u_{0V}$    | Adenovirus concentration            | -     | 10 <sup>9</sup> | $10^{9}$             |
| α           | adenovirus burst size               | -     | 3500            | 3500                 |
| $\delta_I$  | Infected lysis                      | -     | 1               | 1                    |
| $\delta_V$  | Viral decay rate                    | -     | 2.3             | 2.3                  |

<□ > < @ > < E > < E > E のQ @

### Parameter Fits for Viral Immunotherapy



Figure: Parameter fits to adenovirus data cerullo2010oncolytic



# Viral Immunotherapy



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

# Viral Immunotherapy



SAC

# Oncolytic Viral Immunostimulation



▲□▶▲□▶▲□▶▲□▶ □ のQ@

# Oncolytic Viral Immunostimulation



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Viral and Dendritic Combination



# Model Conclusions

- Increased immuno-stimulation leads to decreased tumor size; prolonged longevity
- Better viral efficacy leads to decrease in tumor size
- The initial size changes of the tumor can depend on dendrite activation rates
- Keeping dense dosage time reduces relapse
- Dense dosage time initially will reduced tumor load; then dose as needed

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Future Work

- Immune abundance through numerical analysis
- Match with MTD (Maximum Tolerated Dose)

(ロ)、(型)、(E)、(E)、 E) の(の)

Match with human data

"The day may come when the availability of anticancer treatments will include not only chemicals, immune cells, and monoclonal antibodies, but also biologicals such as oncolytic viruses"

### lawler2015oncolytic

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

# Acknowledgments

### **Organizing Committee**

- Nicolas André
   Dominique Barbolosi
- Assia Benabdallah
   Florence Hubert

### **Scientific Committee**

- Fabrice Barlesi Jean Clairambault Emmanuel Grenier
- Stéphane Honoré
   Ursula Ledzwicz

Emmanuel Grenier Christophe Meille

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Angela Peace, Ph.D Texas Tech



▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

# Questions



### Merci Beaucoup!

・ロト ・個ト ・モト ・モト

- 2