An integrated computational approach for the design of patient-specific virtual tumours

Angélique Stéphanou

Laboratoire TIMC-IMAG / DyCTiM

Important progress has been made in cancer therapy over the past 10 years

- a wider range of therapeutic options
- more specific molecules that reduce side effects
- more individualized therapies

Important progress has been made in cancer therapy over the past 10 years

- a wider range of therapeutic options
- more specific molecules that reduce side effects
- more individualized therapies

However, tumour development becomes more complex with therapies

- resistance to treatment
- selection of the most aggressive phenotypes

Important progress has been made in cancer therapy over the past 10 years

- a wider range of therapeutic options
- more specific molecules that reduce side effects
- more individualized therapies

However, tumour development becomes more complex with therapies

- resistance to treatment
- selection of the most aggressive phenotypes

The new objectives

- rationalize the use of the therapies
- combine the therapies to enhance the effects
- adapt the therapies with the evolution of the tumour and patient states

Why the need for a virtual tumour ?

Development of a solid tumour

Avascular growth Vascular growth

hypoxia induces VEGF release

VEGF induces angiogenesis

A. Stéphanou (TIMC-IMAG)

Development of a solid tumour

hypoxia induces VEGF release

Cells escape from the tumour mass

Biological background

Experimental models

The computational model

Normal vs tumoral vascular network

Normal network

- organized network
- impermeable vessels
- pericytes coverage (red)

Tumour network

- disorganized (abnormal, dense and tortuous)
- permeable vessels
- no pericytes coverage (red)

Experimental models

The computational model

Simulations results

Therapeutic modes under consideration

Vascular disrupting agents

target = vessels

Cytotoxic molecules

target = tumour cells

Therapeutic coupling

Computer-assisted therapeutic strategy

The experimental model (1)

in vivo observations with a dorsal chamber

A tumour spheroid is grafted on the inner surface of the skin

Observations

- growth/regression of the tumour
- tumour cell invasion
- vascular adaptation (dilation and angiogenesis)

image Ecrins Therapeutics

Vascular adaptation

Day 1

Implantation of the tumour spheroid

Day 4 to day 7

Vessels dilation and haemorrhage induced by the growth factors (VEGF)

Day 11 to day 15

Contraction of the vessels and angiogenesis

angiogenesis

Vascular adaptation

Evolution of the cumulated length of the vessels in each range of vessels radii [0,10], [10,20] ... [140,150] μm

The computational model

Simulations results

The experimental model (2)

in vivo observation through the mouse pinna

The computational model

Simulations results

The experimental model (2)

in vivo observation through the mouse pinna

The two therapeutic modes :

Cytotoxic molecules (target the tumour cells)

The computational model

Simulations results

The experimental model (2)

in vivo observation through the mouse pinna

The computational model

Simulations results

The experimental model (2)

in vivo observation through the mouse pinna

A cell-centred hybrid multiscale model

Angiogenesis modelling

Tumour vascularization develops through the extracellular matrix (f) in response to growth factors (V) produced by the tumour cells in hypoxia because of cell overcrowding.

$$n_{i,j}^{t+1} = P_0 n_{i,j}^t + P_1 n_{i+1,j}^t + P_2 n_{i,j-1}^t + P_3 n_{i,j+1}^t + P_4 n_{i,j-1}^t$$

Anderson and Chaplain, Bull. Math. Biol., 1998

A. Stéphanou (TIMC-IMAG)

Simulation of angiogenesis

Stéphanou et al., Math Comp Mod, 2005

Simulation of angiogenesis

Stéphanou et al., Math Mod Nat Phenom, 2015

The computational model

Simulation of angiogenesis

Simulation of angiogenesis

Stéphanou et al., Math Comp Mod, 2006

The computational model

Simulation of angiogenesis

A. Stéphanou (TIMC-IMAG)

Simulation of angiogenesis

Pons-Salort et al., Math Mod Nat Phenom, 2012

Diffusive species

Proteases

Matrix degrading enzyme (m)

$$\frac{\partial m}{\partial t} = D_m \nabla^2 m + \alpha_m \frac{n_{i,j}}{n_{i,j}} - \nu_m m$$

Endothelial cell

$$\frac{\partial p}{\partial t} = D_p \nabla^2 p + \alpha_p \frac{P_{i,j}}{P_{i,j}} - \nu_p p$$

Proliferative cell

Growth factors (V)

$$\frac{\partial V}{\partial t} = D_V \nabla^2 V + \alpha_V Q_{i,j} - \nu_V V - \lambda_V W_{i,j} \min(V, V_{max})$$
Quiescent cell Vessels "weight"

Oxygen (0)

$$\frac{\partial O}{\partial t} = D_O \nabla^2 O + \gamma_v W_{i,j} (O_v - O) - \frac{k_{i,j} O}{Vessels "weight"} kn, kp, kq$$

A. Stéphanou (TIMC-IMAG)

Modelling tumour growth

Modelling tumour growth

Rules for cell division

Model validation with experimental model (1)

- Comparison of simulated and observed kinetics of tumour development
- Comparison of virtual and histological tumour slices
- Adjustment of parameters and validation of hypotheses

Model validation with experimental model (1)

- Comparison of simulated and observed kinetics of tumour development
- Comparison of virtual and histological tumour slices
- Adjustment of parameters and validation of hypotheses

Model validation with experimental model (1)

- Comparison of simulated and observed kinetics of tumour development
- Comparison of virtual and histological tumour slices
- Adjustment of parameters and validation of hypotheses

Parameters adjusted

- Durations of cell cycle phases and level of variability
- Oxygen thresholds for transition to quiescence (hypoxia) and for cell death
- Oxygen consumption rates for each cell type
- Vessels permeability to oxygen
- Diffusion, production/consumption rates of vascular proteases

Biological background

Experimental models

The computational model

Simulations results

Initialization of the tumour with experimental model (2)

Experimental models

The computational model

Initialization of the vasculature with experimental model (2)

Simulations results

Real vs virtual tumour

Simulations results

Real vs virtual tumour

Day 14 Day 28 Day 3 Day 7 500µm

Angiogenesis

A. Stéphanou (TIMC-IMAG)

Simulations results

Real vs virtual tumour

Day 28 Day 3 Day 7 Day 14 500µm

Angiogenesis + VEGF diffusion

A. Stéphanou (TIMC-IMAG)

Simulations results

Real vs virtual tumour

Day 28 Day 3 Day 7 Day 14 500µm um

Oxygen diffusion

A. Stéphanou (TIMC-IMAG)

Simulations results

Tumour growth : texture and size

Tumour growth : texture and size

The computational model

Simulations results

Tumour development in one week (case 1)

Simulations results

Tumour development in one week (case 2)

Simulations results

Tumour development in one week (case 3)

Tumour development (other cases)

The angiogenic bottleneck

Slower growing tumours have a *higher angiogenic potential* since they possess a higher proportion of hypoxic cells and reciprocally.

The angiogenic bottleneck

Proliferative vs quiescent cells

Simulations results

Therapies

Vascular disrupting agents

target = vessels

Cytotoxic molecules

target = tumour cells

Simulation of growth without treatment

Simulation of cytotoxic effects

Without treatment

30 days

The protocol is defined by :

- The choice of the molecule (target phase)
- The dose administered
- The duration of administration
- The frequency of administration

Simulation of cytotoxic effects

Dose variation

Experimental models

The computational model

Simulation of cytotoxic effects

30 days (after 15 days of treatment) dose = $10C_0$, frequency = 3 days

Experimental models

The computational model

Simulation of cytotoxic effects

Simulation of Vascular Disrupting Agents (VDA)

ContextBiological backgroundExperimental modelsThe computational modelSimulations results

Therapeutics coupling

The next step ...

	Phase 1	Phase 2
Experimental	Sub-cutaneous implantation of U87-GFP tumours cells in matrigel	Intra-cerebral implantation of C6 or 9L tumour cells
moder	Nude mice (immuno-deficient)	Wistar rat
Virtual model	2D isotropic tissue	3D anisotropic brain tissue
Control	Intravital two-photon microscopy, immuno-histology	MRI, immuno-histology
Action	Cytotoxics and VDA	Cytotoxics, VDA and radiotherapy

Partners

Techniques for biomedical engineering and complexity Cell & tissue dynamics and functional microscopy

Nicolas Glade, Arnaud Chauvière (computational modelling) Marie-Paule Montmasson, Malika Hamel (experimental cell models, histology) Arnold Fertin, Yves Usson (image analysis)

Clinatec Biomedical research centre

Flavien Caraguel, Boudewijn van der Sanden (in vivo models, intavital imaging)

Grenoble Institute of Neurosciences

Emmanuel Barbier, Benjamin Lemasson (brain tumour models, MRI) François Estève (brain tumours, radiotherapy)

Grenoble Images, Speech Signal and Control

Mazen Alamir, Mirko Fiacchini (control theory and optimization)

Ecrins Therapeutics

Andrei Popov, Aurélie Juhem (development of antivascular molecules)

Abstract

The design of a patient-specific virtual tumour is an important step towards personalized medicine since the virtual tumour can be used to define the most adapted and efficient treatment protocol. However this requires to capture the description of many key events of tumour development, including angiogenesis, matrix remodelling, hypoxia, cell heterogeneity that will all influence the tumour growth kinetics and degree of tumour invasiveness. To that end, an integrated hybrid and multiscale approach has been developed based on data acquired on a preclinical mouse model as a proof of concept. Fluorescence imaging is exploited to build case-specific virtual tumours and to validate their spatiotemporal evolution. The validity of the model will be discussed as well as its potential to identify the best therapeutic strategy for each individual tumour case.