

Context

Objective : destruction of tumor cells

Method : ionizing radiations

Models

Kinetic approach

 $\hookrightarrow \mathsf{numerically too \ costly}$

• Angular moment approach

- \hookrightarrow numerical challenge
- Hydrodynamic approach
 - $\hookrightarrow \mathsf{inaccurate}$

2 Moment model

3 Numerical results

Image: Image:

2 Moment model

3 Numerical results

→ 3 → 4 3

Fluence : $\psi = |v|f$ spherical coordinates $v = |v|(\epsilon)\Omega$

Fluence : $\psi = |v|f$ spherical coordinates $v = |v|(\epsilon)\Omega$

Stationnary kinetic equations¹²

$$\begin{aligned} \Omega.\nabla_{\mathsf{x}}\psi_{\gamma} &= \rho\left[G_{\gamma\to\gamma}(\psi_{\gamma}) - \sigma_{\mathcal{T},\gamma}\psi_{\gamma}\right],\\ \Omega.\nabla_{\mathsf{x}}\psi_{e} &= \rho\left[\partial_{\epsilon}(S\psi_{e}) + G_{e\to e}(\psi_{e}) + G_{\gamma\to e}(\psi_{\gamma}) - \sigma_{\mathcal{T},e}\psi_{e}\right],\\ G_{i\to j}(\psi_{i}) &= \int_{S^{2}}\int_{\epsilon}^{\infty}\sigma_{i\to j}(\epsilon',\epsilon,\Omega'.\Omega)\psi_{i}(\mathsf{x},\epsilon',\Omega')d\epsilon'd\Omega'. \end{aligned}$$

Dose : energy transfered at point x

$$D(x) = \int_{\epsilon=0}^{+\infty} S(\epsilon) \psi_e^0(x,\epsilon) d\epsilon,$$

$$\psi^0 = \int_{\Omega \in S^2} \psi(x,\Omega,\epsilon) d\Omega$$

3 Numerical results

3/23

伺 ト イヨ ト イヨ

Method of moments

Fluid/Hydrodynamic:

- Grad (1949)
- Levermore (1995)

Plasma physics:

- Mallet, Brull, Dubroca (2013)
- Guisset, Brull, D'Humière, Dubroca, Karpov, Potapenko (2015)

Semi-conductors:

• Anile, Romano (2000)

Radiative transfer:

- Minerbo (1977-1978)
- Dubroca, Feugeas (1999)

Radiotherapy:

- Duclous, Dubroca, Frank (2010)
- Olbrant, Frank (2010)

Others:

Alldredge, Hauck, Tits (2012) Hauck, Levermore, Tits (2007)

・ 同 ト ・ ヨ ト ・ ヨ

Moments

Aim : reduce computational costs Moments methods:

 $\psi(x,\epsilon,\Omega) \qquad \leftrightarrow \qquad \psi^i(x,\epsilon) \quad ext{for} \quad 0 \leq i \leq N$

$$\psi^{i}(x,\epsilon) = \int_{\Omega \in S^{2}} \underbrace{\Omega \otimes \cdots \otimes \Omega}_{i \text{ times}} \psi(x,\Omega,\epsilon) d\Omega,$$

$$\psi^{0} \rightarrow \text{density}$$
 $\psi^{1} \rightarrow \text{flux}$

$$\psi^2 \rightarrow \text{pressure}$$

...

T. Pichard

伺 ト く ヨ ト く ヨ ト

э

M_1 equations

${\it Orders} \,\, 0 \,\, {\it and} \,\, 1$

$$\gamma \quad \begin{cases} \nabla_{\mathbf{x}} \cdot \psi_{\gamma}^{1} = \rho \left[G_{\gamma \to \gamma}^{0}(\psi_{\gamma}^{0}) - \sigma_{T,\gamma}\psi_{\gamma}^{0} \right] \\ \nabla_{\mathbf{x}} \cdot \psi_{\gamma}^{2} = \rho \left[G_{\gamma \to \gamma}^{1}(\psi_{\gamma}^{1}) - \sigma_{T,\gamma}\psi_{\gamma}^{1} \right] \\ e_{-} \quad \begin{cases} \nabla_{\mathbf{x}} \cdot \psi_{e}^{1} = \rho \left[\partial_{\epsilon}(S\psi_{e}^{0}) + G_{e \to e}^{0}(\psi_{e}^{0}) + G_{\gamma \to e}^{0}(\psi_{\gamma}^{0}) - \sigma_{T,e}\psi_{e}^{0} \right] \\ \nabla_{\mathbf{x}} \cdot \psi_{e}^{2} = \rho \left[\partial_{\epsilon}(S\psi_{e}^{1}) + G_{e \to e}^{1}(\psi_{e}^{1}) + G_{\gamma \to e}^{1}(\psi_{\gamma}^{1}) - \sigma_{T,e}\psi_{e}^{1} \right] \end{cases}$$

▲御▶ ▲理▶ ▲理≯

э

M_1 equations

$Orders \ 0 \ and \ 1$

$$\gamma \quad \begin{cases} \nabla_{x} \cdot \psi_{\gamma}^{1} = \rho \left[G_{\gamma \to \gamma}^{0}(\psi_{\gamma}^{0}) - \sigma_{T,\gamma}\psi_{\gamma}^{0} \right] \\ \nabla_{x} \cdot \psi_{\gamma}^{2} = \rho \left[G_{\gamma \to \gamma}^{1}(\psi_{\gamma}^{1}) - \sigma_{T,\gamma}\psi_{\gamma}^{1} \right] \end{cases} \\ e_{-} \quad \begin{cases} \nabla_{x} \cdot \psi_{e}^{1} = \rho \left[\partial_{\epsilon}(S\psi_{e}^{0}) + G_{e \to e}^{0}(\psi_{e}^{0}) + G_{\gamma \to e}^{0}(\psi_{\gamma}^{0}) - \sigma_{T,e}\psi_{e}^{0} \right] \\ \nabla_{x} \cdot \psi_{e}^{2} = \rho \left[\partial_{\epsilon}(S\psi_{e}^{1}) + G_{e \to e}^{1}(\psi_{e}^{1}) + G_{\gamma \to e}^{1}(\psi_{\gamma}^{1}) - \sigma_{T,e}\psi_{e}^{1} \right] \end{cases}$$

 $\hookrightarrow \mathsf{requires} \ \mathsf{a} \ \mathsf{closure}$

$$\psi_{\gamma}^2 = f_{\gamma}(\psi_{\gamma}^0, \psi_{\gamma}^1), \quad \psi_e^2 = f_e(\psi_e^0, \psi_e^1)$$

▶ < □ ▶ < □</p>

Moments

<ロ> <部> < 部> < き> < き> < き</p>

æ

M_1 closure

Moments		\rightarrow	ansatz
(ψ^0,ψ^1)	\rightarrow	ψ_{M}	$\eta_1(\Omega)$

Ansatz ψ_{M_1} in

$$\mathcal{C}_1 = \left\{\psi \ge 0, \quad \int_{S^2} \psi d\Omega = \psi^0, \quad \int_{S^2} \Omega \psi d\Omega = \psi^1 \right\}
eq \emptyset,$$

Ansatz ψ_{M_1} in

$$\mathcal{C}_1 \hspace{0.2cm} = \hspace{0.2cm} \left\{ \psi \geq 0, \hspace{0.2cm} \int_{\mathcal{S}^2} \psi d\Omega = \psi^0, \hspace{0.2cm} \int_{\mathcal{S}^2} \Omega \psi d\Omega = \psi^1
ight\}
eq \emptyset,$$

Ansatz ψ_{M_1} in

$$\mathcal{C}_1 \hspace{0.1 in} = \hspace{0.1 in} \left\{ \psi \geq 0, \hspace{0.1 in} \int_{\mathcal{S}^2} \psi d\Omega = \psi^0, \hspace{0.1 in} \int_{\mathcal{S}^2} \Omega \psi d\Omega = \psi^1 \right\} \neq \emptyset,$$

Choice of the ansatz³⁴

 $\psi_{M_1} = \underset{\psi \in \mathcal{C}_1}{\operatorname{argmin}}(\mathcal{H}(\psi)) \quad \Rightarrow \quad \psi_{M_1} = \exp{(S + V.\Omega)},$

T. Pichard

³Minerbo, QSRT, 1977 ⁴Levermore, J. Stat. Phys., 1995

The M_1 and M_2 models for dose computation in radiotherapy

(人間) ト く ヨ ト く ヨ ト

M_1 closure:

$$\psi_{M_1} = \exp\left(\mathbf{S} + \mathbf{V}.\Omega\right) \quad \rightarrow \quad \psi^2 \approx \int_{\mathbf{S}^2} \Omega \otimes \Omega \psi_{M_1} d\Omega.$$

Numerical costs:

- \hookrightarrow minimization problem
- \hookrightarrow numerical quadrature

- ∢ ≣ ▶

M_1 closure:

$$\psi_{M_1} = \exp\left(\mathbf{S} + \mathbf{V} \cdot \Omega\right) \quad \rightarrow \quad \psi^2 \approx \int_{\mathbf{S}^2} \Omega \otimes \Omega \psi_{M_1} d\Omega.$$

Numerical costs:

- $\hookrightarrow \mathsf{minimization} \ \mathsf{problem}$
- \hookrightarrow numerical quadrature

Alternative computation:

$$\psi^{2} = \psi^{0} \left(\frac{1-\chi}{2} Id + \frac{3\chi - 1}{2} \frac{\psi^{1} \otimes \psi^{1}}{||\psi^{1}||_{2}^{2}} \right),$$

where χ depends only on $\frac{||\psi^1||_2}{\psi^0}$

æ

M_2 model

Remark:

$$tr(\Omega\otimes\Omega) = ||\Omega||_2^2 = 1 \quad \Rightarrow \quad tr(\psi^2) = \psi^0$$

M_2 model

Remark:

$$tr(\Omega\otimes\Omega) = ||\Omega||_2^2 = 1 \quad \Rightarrow \quad tr(\psi^2) = \psi^0$$

$Orders \ 1 \ and \ 2$

$$\begin{split} \gamma & \left\{ \begin{array}{l} \nabla_{\mathbf{x}} \cdot \psi_{\gamma}^{2} &= \rho \left[G_{\gamma \to \gamma}^{1}(\psi_{\gamma}^{1}) - \sigma_{\mathcal{T},\gamma}\psi_{\gamma}^{1} \right] \\ \nabla_{\mathbf{x}} \cdot \psi_{\gamma}^{3} &= \rho \left[G_{\gamma \to \gamma}^{2}(\psi_{\gamma}^{2}) - \sigma_{\mathcal{T},\gamma}\psi_{\gamma}^{2} \right] \\ e_{-} & \left\{ \begin{array}{l} \nabla_{\mathbf{x}} \cdot \psi_{e}^{2} &= \rho \left[\partial_{\epsilon}(S\psi_{e}^{1}) + G_{e \to e}^{1}(\psi_{e}^{1}) + G_{\gamma \to e}^{1}(\psi_{\gamma}^{1}) - \sigma_{\mathcal{T},e}\psi_{e}^{1} \right] \\ \nabla_{\mathbf{x}} \cdot \psi_{e}^{3} &= \rho \left[\partial_{\epsilon}(S\psi_{e}^{2}) + G_{e \to e}^{2}(\psi_{e}^{2}) + G_{\gamma \to e}^{2}(\psi_{\gamma}^{2}) - \sigma_{\mathcal{T},e}\psi_{e}^{2} \right] \\ \end{split} \right.$$

 $\hookrightarrow \mathsf{requires} \ \mathsf{a} \ \mathsf{closure}$

$$\psi_{\gamma}^3 = g_{\gamma}(\psi_{\gamma}^1,\psi_{\gamma}^2), \quad \psi_e^3 = g_e(\psi_e^1,\psi_e^2)$$

T. Pichard

同 ト イ ヨ ト イ ヨ ト

$\overline{M_2}$ closure

$$(\psi^1,\psi^2) \rightarrow \psi_{M_2}(\Omega) \rightarrow \psi^3 \approx \int_{S^2} \Omega \otimes \Omega \otimes \Omega \psi_{M_2}(\Omega) d\Omega$$

Ansatz ψ_{M_2} in

$$\mathcal{C}_2 = \left\{ \psi \ge 0, \quad \int_{S^2} \Omega \psi d\Omega = \psi^1, \quad \int_{S^2} \Omega \otimes \Omega \psi d\Omega = \psi^2 \right\} \neq \emptyset,$$

Choice of the ansatz⁴⁵

 $\psi_{M_2} = \underset{\psi \in \mathcal{C}_2}{\operatorname{argmin}}(\mathcal{H}(\psi)) \quad \Rightarrow \quad \psi_{M_2} = \exp\left(V.\Omega + M: \Omega \otimes \Omega\right),$

⁴Minerbo, QSRT, 1977 ⁵Levermore, J. Stat. Phys., 1995

- ₹ 🖬 🕨

э

M_2 closure

M_2 closure:

$$\psi_{M_2} = \exp\left(\mathbf{V}.\Omega + \mathbf{M}: \Omega \otimes \Omega\right) \quad \rightarrow \quad \psi^3 \approx \int_{S^2} \Omega \otimes \Omega \otimes \Omega \psi_{M_2} d\Omega.$$

Numerical cost:

- \hookrightarrow minimization problem
- \hookrightarrow numerical quadrature

⁶P., Alldredge, Brull, Dubroca, Frank, submitted < □ > < ∂ > < ≣ > < ≡ >

M_2 closure:

$$\psi_{M_2} = \exp\left(\mathbf{V}.\Omega + \mathbf{M}: \Omega \otimes \Omega\right) \quad \rightarrow \quad \psi^3 \approx \int_{S^2} \Omega \otimes \Omega \otimes \Omega \psi_{M_2} d\Omega.$$

Numerical cost:

- \hookrightarrow minimization problem
- \hookrightarrow numerical quadrature

Alternative: approximation⁶

 \hookrightarrow Idea: Hierarchy of approximated closure

⁶P., Alldredge, Brull, Dubroca, Frank, submitted < 🗆 > < 🗃 > < 🖹 > < 🗎

M_2 closure:

$$\psi_{M_2} = \exp\left(\mathbf{V}.\Omega + \mathbf{M}: \Omega \otimes \Omega\right) \quad \rightarrow \quad \psi^3 \approx \int_{S^2} \Omega \otimes \Omega \otimes \Omega \psi_{M_2} d\Omega.$$

Numerical cost:

- \hookrightarrow minimization problem
- \hookrightarrow numerical quadrature

Alternative: approximation⁶

 \hookrightarrow Idea: Hierarchy of approximated closure $\hookrightarrow \psi^3$ approximated in special cases

$$\psi_{M_2} = \exp(S + V.\Omega)$$

⁶P., Alldredge, Brull, Dubroca, Frank, submitted < □ > < @ > < ≧ > < ≧ >

M_2 closure:

$$\psi_{M_2} = \exp\left(\mathbf{V}.\Omega + \mathbf{M}: \Omega \otimes \Omega\right) \quad \rightarrow \quad \psi^3 \approx \int_{S^2} \Omega \otimes \Omega \otimes \Omega \psi_{M_2} d\Omega.$$

Numerical cost:

- \hookrightarrow minimization problem
- \hookrightarrow numerical quadrature

Alternative: approximation⁶

 \hookrightarrow Idea: Hierarchy of approximated closure $\hookrightarrow \psi^3$ approximated in special cases

$$\psi_{M_2} = \exp(S + V \cdot \Omega + \alpha (V \cdot \Omega)^2)$$

⁶P., Alldredge, Brull, Dubroca, Frank, submitted < □ > < @ > < ≧ > < ≧ >

M_2 closure:

$$\psi_{M_2} = \exp\left(\mathbf{V}.\Omega + \mathbf{M}: \Omega \otimes \Omega\right) \quad \rightarrow \quad \psi^3 \approx \int_{S^2} \Omega \otimes \Omega \otimes \Omega \psi_{M_2} d\Omega.$$

Numerical cost:

- \hookrightarrow minimization problem
- \hookrightarrow numerical quadrature

Alternative: approximation⁶

 \hookrightarrow Idea: Hierarchy of approximated closure $\hookrightarrow \psi^3$ approximated in special of

$$ightarrow \psi^{f s}$$
 approximated in special cases

$$\psi_{M_2} = \exp(V.\Omega + M : \Omega \otimes \Omega)$$

⁶P., Alldredge, Brull, Dubroca, Frank, submitted < □ > < ♂ > < ≡ >

2 Moment model

3 Numerical results

/□ ▶ < 글 ▶ < 글

Numerical approach: kinetic

Kinetic equations:

$$\begin{split} \Omega.\nabla_{\mathbf{x}}\psi_{\gamma} &= \rho\left[G_{\gamma\to\gamma}(\psi_{\gamma}) - \sigma_{\mathcal{T},\gamma}\psi_{\gamma}\right],\\ \Omega.\nabla_{\mathbf{x}}\psi_{e} &= \rho\left[\partial_{\epsilon}(S\psi_{e}) + G_{e\to e}(\psi_{e}) + G_{\gamma\to e}(\psi_{\gamma}) - \sigma_{\mathcal{T},e}\psi_{e}\right],\\ G_{i\to j}(\psi_{i}) &= \int_{S^{2}}\int_{\epsilon}^{\infty}\sigma_{i\to j}(\epsilon',\epsilon,\Omega'.\Omega)\psi_{i}(\mathbf{x},\epsilon',\Omega')d\epsilon'd\Omega'. \end{split}$$

solving backward : from ϵ_{max} to 0 Method for kinetic equations :

- $\hookrightarrow \mathsf{Upwind} \text{ schemes in } 1\mathsf{D}$
- $\hookrightarrow \mathsf{Monte-Carlo} \text{ in } \mathsf{2D}$

Numerical approach

M_1 equations

$$\begin{split} \gamma & \left\{ \begin{array}{l} \nabla_{\mathbf{x}} \cdot \psi_{\gamma}^{1} &= \rho \left[G_{\gamma \to \gamma}^{0}(\psi_{\gamma}^{0}) - \sigma_{\mathcal{T},\gamma}\psi_{\gamma}^{0} \right] \\ \nabla_{\mathbf{x}} \cdot \psi_{\gamma}^{2} &= \rho \left[G_{\gamma \to \gamma}^{1}(\psi_{\gamma}^{1}) - \sigma_{\mathcal{T},\gamma}\psi_{\gamma}^{1} \right] \\ e_{-} & \left\{ \begin{array}{l} \nabla_{\mathbf{x}} \cdot \psi_{e}^{1} &= \rho \left[\partial_{\epsilon}(S\psi_{e}^{0}) + G_{e \to e}^{0}(\psi_{e}^{0}) + G_{\gamma \to e}^{0}(\psi_{\gamma}^{0}) - \sigma_{\mathcal{T},e}\psi_{e}^{0} \right] \\ \nabla_{\mathbf{x}} \cdot \psi_{e}^{2} &= \rho \left[\partial_{\epsilon}(S\psi_{e}^{1}) + G_{e \to e}^{1}(\psi_{e}^{1}) + G_{\gamma \to e}^{1}(\psi_{\gamma}^{1}) - \sigma_{\mathcal{T},e}\psi_{e}^{1} \right] \end{array} \right. \end{split}$$

solving backward : from ϵ_{max} to 0 Method for moment equations :

 \hookrightarrow Numerical scheme⁵⁶ based on relaxation method⁷⁸

⁵P., Alldredge, Brull, Dubroca, Frank, submitted
 ⁶P., Aregba-Driollet, Brull, Dubroca, Frank, to appear in CiCP
 ⁷Natalini, J. Eqt. Dif., 1998
 ⁸Aregba-Driollet, Natalini, SIAM J. Numer. Anal., 2000 (Intersection)

T. Pichard

The M_1 and M_2 models for dose computation in radiotherapy

Numerical approach

M_2 equations

$$\begin{split} \gamma & \left\{ \begin{array}{l} \nabla_{\mathbf{x}} \cdot \psi_{\gamma}^{2} &= \rho \left[G_{\gamma \to \gamma}^{1}(\psi_{\gamma}^{1}) - \sigma_{\mathcal{T},\gamma}\psi_{\gamma}^{1} \right] \\ \nabla_{\mathbf{x}} \cdot \psi_{\gamma}^{3} &= \rho \left[G_{\gamma \to \gamma}^{2}(\psi_{\gamma}^{2}) - \sigma_{\mathcal{T},\gamma}\psi_{\gamma}^{2} \right] \\ e_{-} & \left\{ \begin{array}{l} \nabla_{\mathbf{x}} \cdot \psi_{e}^{2} &= \rho \left[\partial_{\epsilon}(S\psi_{e}^{1}) + G_{e \to e}^{1}(\psi_{e}^{1}) + G_{\gamma \to e}^{1}(\psi_{\gamma}^{1}) - \sigma_{\mathcal{T},e}\psi_{e}^{1} \right] \\ \nabla_{\mathbf{x}} \cdot \psi_{e}^{3} &= \rho \left[\partial_{\epsilon}(S\psi_{e}^{2}) + G_{e \to e}^{2}(\psi_{e}^{2}) + G_{\gamma \to e}^{2}(\psi_{\gamma}^{2}) - \sigma_{\mathcal{T},e}\psi_{e}^{2} \right] \end{array} \right. \end{split}$$

solving backward : from ϵ_{max} to 0 Method for moment equations :

 \hookrightarrow Numerical scheme⁵⁶ based on relaxation method⁷⁸

⁵P., Alldredge, Brull, Dubroca, Frank, submitted
 ⁶P., Aregba-Driollet, Brull, Dubroca, Frank, to appear in CiCP
 ⁷Natalini, J. Eqt. Dif., 1998
 ⁸Aregba-Driollet, Natalini, SIAM J. Numer. Anal., 2000 (Intersection)

T. Pichard

The M_1 and M_2 models for dose computation in radiotherapy

1D test case : single electron beam

1D medium : 6cm \rightarrow 600 cells Initial condition :

 $\psi_{\gamma}(x,\Omega,11MeV) = 0, \quad \psi_{e}(x,\Omega,11MeV) = 0,$

Boundary condition :

T. Pichard

伺 ト く ヨ ト く ヨ ト

1D test case : single electron beam

T. Pichard

The M_1 and M_2 models for dose computation in radiotherapy

2D test case : single photon beam

2D medium : 40cm \times 8cm \rightarrow 400 \times 80 cells Initial condition :

 $\psi_{\gamma}(x,\Omega,1.1MeV)=0, \quad \psi_{e}(x,\Omega,1.1MeV)=0,$

Boundary condition :

2D test case : single photon beam

2D test case : double electron beam

2D medium : 6cm \times 6cm \rightarrow 600 \times 600 cells Initial condition :

 $\psi_{\gamma}(x,\Omega,11MeV) = 0, \quad \psi_{e}(x,\Omega,11MeV) = 0,$

Boundary condition :

伺 ト く ヨ ト く ヨ ト

2D test case : double electron beam

Figure : Dose with PENELOPE (Monte-Carlo, left), M_1 (middle), M_2 (right) solvers

Monte-Carlo : 14 h; M_1 : 5 min; M_2 : 14 min

2D test case : single electron beam in a chest

2D medium : 21.8cm \times 37.5cm \rightarrow 218 \times 375 cells Initial condition :

$$\psi_{\gamma}(x,\Omega,11MeV) = 0, \quad \psi_{e}(x,\Omega,11MeV) = 0,$$

Boundary condition :

/⊒ > < ∃ >

2D test case : single electron beam in a chest

Figure : Isodose curves with PENELOPE (Monte-Carlo, left), M_1 (middle), M_2 (right) solvers

Monte-Carlo : 14 h; M_1 : 4 min; M_2 : 15 min M_2 : M_2

Conclusion and perspectives

Conclusion:

- Kinetic model : Numerically difficult
- Moments : Fast and good behavior
 - $\hookrightarrow M_1$ model : faster but miss some effects
 - $\hookrightarrow M_2$ model : capture more physical phenomena

Conclusion and perspectives

Conclusion:

- Kinetic model : Numerically difficult
- Moments : Fast and good behavior
 - $\hookrightarrow M_1$ model : faster but miss some effects
 - \hookrightarrow M_2 model : capture more physical phenomena

Perspectives:

- Numerical scheme:
 - $\hookrightarrow \mathsf{higher} \; \mathsf{order} \; \mathsf{method}$
 - $\hookrightarrow \mathsf{convergence} \ \mathsf{speed}$
 - $\hookrightarrow \mathsf{numerical}\ \mathsf{diffusion}$
- More physics:
 - $\hookrightarrow \mathsf{pair}\ \mathsf{production}$
 - $\hookrightarrow \mathsf{photoelectric}\ \mathsf{effects}$

- Moment problem

 → caracterizing realizability

 → construct other closures
- Optimization

Thanks for your attention