

Hele-Shaw models for tumor growth

Benoît Perthame

Suzerland et al , Cancer Res.,

Rotschild et al, The lancet,

Byrne-Drasdo JMB,

M. Tang, Vauchelet

(日)、

E 990

Introduction

What is a living tissue? A mechanistic view

Physicists

Benamar, Drasdo, Preziosi, Joanny-Prost-Jüllicher, E. Farge

Mathematical models

Byrne-Chaplain-Preziosi, Lowengrub et al, Friedman, Maini, MONC (Bordeaux) → Colin, Benzékry

Pressure, contact inhibition rather than carrying capacity

Organisation of the talk

- 1. Two kinds of models :
 - cell density (compressible)
 - Free boundary problem (incompressible)
- 2. The Hele-Shaw asymptotics
- 3. Nutrients/drugs
- 4. Active motion
- 5. Elastic or viscoelastic tissus

Simplest model is mechanical only :

n(x, t) = population density of tumor cells at location x, time t,

v(x, t) =cell velocity at location x and time t,

p(x, t) = pressure in the tissue,

Darcy's law for friction (with ECM) dominated flow

$$v=-\nabla p(x,t),$$

Constitutive law (compressible fluid)

$$p(x,t) \equiv \Pi(n) := n^{\gamma}, \quad \gamma > 1$$

Simplest model is mechanical only :

n(x, t) = population density of tumor cells at location x, time t,

v(x, t) =cell velocity at location x and time t,

p(x, t) = pressure in the tissue,

Darcy's law for friction (with ECM) dominated flow

 $\mathbf{v}=-\nabla p(\mathbf{x},t),$

Constitutive law (compressible fluid)

 $p(x,t) \equiv \Pi(n) := n^{\gamma}, \quad \gamma > 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

n(x, t) = population density of tumor cells 1 - n(x, t) = healthy cells

$$\begin{cases} \frac{\partial}{\partial t}n + \operatorname{div}(nv) = n \ G(p(x,t)), \\ v(x,t) = -\nabla p(x,t), \qquad p(x,t) \equiv \Pi(n) := n^{\gamma}, \quad \gamma > 1 \end{cases}$$

Contact inhibition : Byrne-Drasdo, Joanny-Prost-Jülicher... 'homeostatic pressure' *p*_M

Main property : $\frac{\partial}{\partial t}n(t) \ge -\frac{K}{t}e^{-\gamma r_G t}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

n(x, t) = population density of tumor cells 1 - n(x, t) = healthy cells

$$\begin{cases} \frac{\partial}{\partial t}n + \operatorname{div}(nv) = n \ G(p(x,t)), \\ v(x,t) = -\nabla p(x,t), \qquad p(x,t) \equiv \Pi(n) := n^{\gamma}, \quad \gamma > 1 \end{cases}$$

Contact inhibition : Byrne-Drasdo, Joanny-Prost-Jülicher... 'homeostatic pressure' *p*_M

Main property : $\frac{\partial}{\partial t}n(t) \ge -\frac{\kappa}{t}e^{-\gamma r_G t}$

Image based predictions : include

- Active cells
- Nutrients and vasculature
- Quiescent, necrotic, healthy cells

Credit for pictures : INRIA team Monc (Bordeaux)

DO NOT USE THIS FORMALISM

 $v(x,t)=-\nabla p(x,t).$

using the pressure

$$\begin{cases} -\Delta p = G(p) \quad x \in \Omega(t) \\ p = 0 \quad \text{on } \partial \Omega(t) \end{cases}$$

Surface tension is often included

$$p(x,t) = \eta \kappa(x,t), \text{ on } \partial \Omega(t)$$

Hele-Shaw free boundary problem Boundary is smooth $\kappa =$ the mean curvature

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣○

 $v(x,t)=-\nabla p(x,t).$

using the pressure

$$\begin{cases} -\Delta p = G(p) & x \in \Omega(t) \\ p = 0 & \text{on } \partial \Omega(t) \end{cases}$$

Surface tension is often included

$$p(x,t) = \eta \kappa(x,t), \text{ on } \partial \Omega(t)$$

Hele-Shaw free boundary problem Boundary is smooth $\kappa =$ the mean curvature

- 日本 - 1 日本 - 日本 - 日本

 $v(x,t)=-\nabla p(x,t).$

using the pressure

$$\begin{cases} -\Delta p = G(p) & x \in \Omega(t) \\ p = 0 & \text{on } \partial \Omega(t) \end{cases}$$

Surface tension is often included

 $p(x,t) = \eta \kappa(x,t), \text{ on } \partial \Omega(t)$

 $\kappa =$ the mean curvature

Hele-Shaw free boundary problemBoundary is smooth

How to relate these two approaches cell density and free boundary?

$$\begin{cases} \frac{\partial}{\partial t}n_{\gamma} + \operatorname{div}(n_{\gamma}v_{\gamma}) = n_{\gamma}G(p_{\gamma}(x,t)), & x \in \mathbb{R}^{d} \\ \\ v_{\gamma} = -\nabla p_{\gamma}(x,t), & p_{\gamma}(x,t) \equiv \Pi(n_{\gamma}) := n^{\gamma}, \end{cases}$$

The stiff pressure law the limit, $\gamma \rightarrow \infty$ Hele-Shaw free boundary problem

Benilan, Igbida, Gil, Quiros, Vazquez, X. Chen et al, Caffarelli, Friedman, Escher...etc

From cell densities to free boundary

JL

How to relate these two approaches cell density and free boundary?

$$\left\{ egin{array}{l} rac{\partial}{\partial t}n_{\gamma}+{
m div}ig(n_{\gamma}v_{\gamma}ig)=n_{\gamma}Gig(p_{\gamma}(x,t)ig), \qquad x\in \mathbb{R}^{d} \ \ v_{\gamma}=-
abla p_{\gamma}(x,t), \qquad p_{\gamma}(x,t)\equiv \Pi(n_{\gamma}):=n^{\gamma}, \end{array}
ight.$$

The stiff pressure law the limit, $\gamma \to \infty$ Hele-Shaw free boundary problem

Benilan, Igbida, Gil, Quiros, Vazquez, X. Chen *et al*, Caffarelli, Friedman, Escher...etc

From cell densities to free boundary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\left\{ egin{array}{l} rac{\partial}{\partial t} n_\gamma + {
m div}ig(n_\gamma v_\gammaig) = n_\gamma Gig(p_\gamma(x,t)ig), & x\in \mathbb{R}^d \ v_\gamma = -
abla p_\gamma(x,t), & p_\gamma(x,t)\equiv \Pi(n_\gamma):=n^\gamma, \end{array}
ight.$$

Theorem (Hele-Shaw limit) : As $\gamma \rightarrow \infty$

$$egin{aligned} &n_\gamma o n_\infty \leq 1, \quad p_\gamma o p_\infty \leq p_M \ &
abla p_\gamma o
abla p_\infty \quad L^2 ext{-}w \ &iggl\{ &rac{\partial}{\partial t} n_\infty - \operatorname{div}ig(n_\infty
abla p_\inftyiggr) = n_\infty Gig(p_\inftyig), \ &
onumber p_\infty = 0 \quad ext{for} \quad n_\infty(x,t) < 1. \end{aligned}$$

Theorem (complementary relation) : We also have

$$egin{aligned} & p_\infty ig[\ \Delta p_\infty + G(p_\infty) ig] = 0, \ &
abla p_\gamma o
abla p_\infty & ext{strongly in } L^2((0,T) imes \mathbb{R}^d), \end{aligned}$$

From cell densities to free boundary

The geometric form of the Hele-Shaw problem follows when

$$n^{0}(x) = \mathbb{1}_{\{\Omega^{0}\}}, \qquad \Omega^{0} = \{ p^{0} > 0 \}.$$

Then

 $n(x,t) = \mathbb{1}_{\{\Omega(t)\}}, \qquad \Omega(t) = \{ p(t) > 0 \},$

And

Weak formulation \iff Free boundary problem

Cell culture data in vitro at two different times. From N. Jagiella PhD thesis, INRIA and UPMC (2012)

The geometric form of the Hele-Shaw problem

theorem After a waiting time, the free boundary is smooth and the weak form is equivalent to the Hele-Shaw problem.

But there are transient singularities.

 \square

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Organisation of the talk

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 1. Cell density models (compressible)
- 2. Free boundary problem (incompressible)
- 3. The Hele-Shaw asymptotics
- 4. Nutrients
- 5. Active motion
- 6. Viscoelastic model

Model with nutrient

 $\begin{cases} \frac{\partial}{\partial t}n + \operatorname{div}(nv) = nG(p(x,t),\underbrace{c(x,t)}_{\text{nutrients}}),\\ v = -\nabla p, \qquad p = n^{\gamma},\\ \frac{\partial}{\partial t}c - \Delta c + \underbrace{R(n)c = c_B}_{\text{nutrients consumption/release}} \end{cases}$

Model with nutrient

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{cases} \frac{\partial}{\partial t}n + \operatorname{div}(nv) = nG(p(x,t),\underbrace{c(x,t)}_{\text{nutrients}}),\\ v = -\nabla p, \quad p = n^{\gamma},\\ \frac{\partial}{\partial t}c - \Delta c + \underbrace{R(n)c = c_B}_{\text{nutrients consumption/release}} \end{cases}$$

Theorem (Hele-Shaw limit) As $\gamma \rightarrow \infty$, we have

$$\begin{cases} \frac{\partial}{\partial t} n_{\infty} + \operatorname{div}(n_{\infty} v_{\infty}) = n_{\infty} G(p_{\infty}, c_{\infty}), & v_{\infty} = -\nabla p_{\infty}, \\ p_{\infty}(1 - n_{\infty}) = 0, & 0 \le n_{\infty} \le 1, \end{cases}$$

Open question

$$p_{\infty}ig[-\Delta p_{\infty}-Gig(p_{\infty},c_{\infty}ig)ig]=0?$$

Model with nutrient

Necrotic core, instabilities

With nutrients tumor cells can die

effect of nutrient consumption. Credit for pictures M. Tang, N. Vauchelet

Model of with nutrient

Closely related to instability in thermo-chemical reactions

$$\begin{cases} \frac{\partial}{\partial t}u - \alpha \Delta u = \frac{u^2 v}{\alpha}, & \text{temperature} \\ \frac{\partial}{\partial t}v - \Delta v = -\frac{u^2 v}{\alpha}, & \text{reactant} \end{cases}$$

Dynamical Turing instability (see M. Kowalckzyk, BP, N. Vauchelet : Transversal instability of 1D traveling wave)

Model with active movment

JIL

Hele-Shaw limit : We still have

 $p\left(\Delta p+G(p)\right)=0$

$$\begin{cases} \frac{\partial}{\partial t}n + \operatorname{div}(nv) = nG(p(x, t)), \\ -\nu\Delta v + v = -\nabla p, \quad p = n^{\gamma}, \quad \text{visco-elastic fluid} \end{cases}$$

Why tissues are under-going visco-elastic law?

▲□> ▲圖> ▲目> ▲目> 二目 - のへで

More complete models

Credit for ^xpicture A. Lorz, T. Lorenzi (Saffman-Ťaylor instability? growth is important)

・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

Sophisticated mathematical models are effectively used in biology and medicine

They lead to various mathematical questions

Asymptotic analysis arises naturally because of the many scales

Systems of PDEs (unstability)

Challenges

Variability

Adaptation

Thanks to my collaborators

- F. Quiros, J.-L. Vazquez,
- M. Tang, N. Vauchelet,
- A. Lorz, T. Lorenzi,
- D. Drasdo

Thanks to my collaborators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- F. Quiros, J.-L. Vazquez, A. Mellet,
- M. Tang, N. Vauchelet,
- A. Lorz, T. Lorenzi,
- D. Drasdo

THANK YOU