Mathematical models of clonal selection and therapy resistance in acute leukemias

Anna Marciniak-Czochra

Institute of Applied Mathematics, BIOQUANT and Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University

Interdisciplinary collaboration

- Collaborative Research Center (SFB) "Maintenance and Differentiation of Stem Cells in Development and Disease"
- Collaboration with Anthony Ho and Natalia Baran (Department of Medicine V, Heidelberg Univ.)
- Multicompartment models of hematopoiesis and leukemia: with Thomas Stiehl (IWR/IAM, Heidelberg Univ.)
- Models of fitness selection: with Piotr Gwiazda (University of Warsaw)

Hematopoiesis

Hematopoiesis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hematopoiesis and Leukemia

Clonal evolution (AML and ALL)

Recent Experimental Findings

- Deep sequencing techniques allow to study the clonality and clonal evolution patterns in leukemias (Ding et al, Nature 2012 and Anderson et al Nature 2011)
- Primary manifestation as well as relapses involve only few clones
- 2 major evolution patterns have been defined:
 - 1. Repeating clones
 - 2. Related but different subclones.

Questions - Why do we observe what we observe?

- (Q1) Question 1: How do properties of clones at the primary manifestation differ from those at the relapse?
 - $\Rightarrow\,$ Mutation analysis does not allow to conclude directly how cell properties change.

Questions - Why do we observe what we observe?

- (Q1) Question 1: How do properties of clones at the primary manifestation differ from those at the relapse?
 - $\Rightarrow\,$ Mutation analysis does not allow to conclude directly how cell properties change.

- (Q2) Question 2: Why is the number of sub-clones at the diagnosis and at the relapse relatively small?
 - ⇒ What do we expect if the sensitivity of the methods is increased?

Questions - Why do we observe what we observe?

- (Q1) Question 1: How do properties of clones at the primary manifestation differ from those at the relapse?
 - $\Rightarrow\,$ Mutation analysis does not allow to conclude directly how cell properties change.

- (Q2) Question 2: Why is the number of sub-clones at the diagnosis and at the relapse relatively small?
 - ⇒ What do we expect if the sensitivity of the methods is increased?
- (Q3) Question 3: What could be clinical implications of the sequencing studies? Can the course tell us anything about properties of the leukemic cells?

Model of leukemia

Model ingredients

- Transitions between different differentiation stages
- Regulation of the self-renewal vs. differentiation process

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Competition between healthy and cancer cell lines
- Mutations?
- Clonal heterogeneity of cancer

Model of the healthy cell line

Patients data

- Stress conditions (chemotherapy)
- Bone marrow transplantation (CD34+ cells)
- Blood regeneration

Model - Hematopoiesis

Key parameters

- Proliferation rates p_i
- Fractions of self-renewal a_i
- Death rates d_i

Cell differentiation model

$$\begin{aligned} \frac{du_1}{dt} &= (2a_1 - 1)p_1u_1, \\ \frac{du_i}{dt} &= (2a_i - 1)p_iu_i + 2(1 - a_{i-1})p_{i-1}u_{i-1}, \\ \frac{du_n}{dt} &= 2(1 - a_{n-1})p_{n-1}u_{n-1} - d_nu_n. \end{aligned}$$

M-C, Stiehl, Jäger, Ho, Wagner, SC Dev 18, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Structured population model: continuous structure

$$\partial_t u(x,t) + \partial_x [g(x,v(t))u(x,t)] = p(x)u(x,t)$$

Doumic, M-C, Perthame, Zubelli, SIAM J.Appl.Math., 2011

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Model of the feedback

Feedback

Dynamics of signalling molecules (cytokines)

$$\frac{dS(t)}{dt} = \alpha - \mu S(t) - \beta u_n(t)S(t)$$

Quasi steady state approximation (Tikhonov Theorem)

$$s(t)=rac{1}{1+ku_n(t)}\in [0,1],$$
 where $s(t):=rac{\mu}{lpha}S(t)$ and $k:=rac{eta}{\mu}.$

Assumptions on cytokines

Regulation modes

- All regulated cell properties depend linearly on the cytokine concentration
- 1 Regulation of proliferation: $p_i(s(t)) := p_i s(t) = \frac{p_{i,max}}{1+ku_n(t)}$
- 2 Regulation of self renewal versus differentiation $a_i(s(t)) := a_i s(t) = \frac{a_{i,max}}{1+ku_n(t)}$

Application to hematopoietic reconstitution

 Regulation of self-renewal fractions is the most effective mechanism of hematopoietic reconstitution

Model validation: Comparison to patients data

• Individual patients

Large patient groups

э.

Stiehl, Ho, M-C, Bone Marrow Transplantation 49, 2014

Dynamics of the model

- Trivial steady state unstable (unless it is the only equilibrium)
- Unique positive steady state: $(\bar{u}_1, ..., \bar{u}_n)$ globally stable ?
 - Global stability for the 2-compartment model

$$\begin{split} \mathcal{L}(u_1(t), u_2(t)) &:= \frac{1}{p_1 G(\bar{u}_2)} \mathcal{L}_{21}(t, u_1(t), u_2(t)) + \frac{1}{d_2} \mathcal{L}_{22}(t, u_1(t), u_2(t)) \\ \text{with } G(\xi) &= 2(1 - a_1/(1 + ku_2)) \text{ and} \\ \mathcal{L}_{21}(t, u_1, u_2) &:= \frac{u_1}{\bar{u}_1} - 1 - \ln \frac{u_1}{\bar{u}_1}, \\ \mathcal{L}_{22}(t, u_1, u_2) &:= \frac{u_2}{\bar{u}_2} - 1 - \frac{1}{\bar{u}_2} \int_{\bar{u}_2}^{u_2} \frac{G(\bar{u}_2)}{G(\xi)} d\xi. \end{split}$$

 Hopf bifuraction and oscillations in the 3-compartment model and in the structured population model.

Stiehl and Marciniak-Czochra, Math. Comp. Models., 2010 Nakata, Getto, M-C and Alarcon, J. Biol. Dynamics, 2012 Getto, M-C, Nakata and dM Vivanco, Math. Biosciences, 2013 로 프 오직은

Model of leukemia development

Model of leukemia

- Cells compete for spatial (bone marrow niches) or environmental resources (cytokines).
- Leukemic cells have better fitness (larger self-renewal and/or larger proliferation...)

Stiehl and Marciniak-Czochra, Math. Mod. Nat. Phenomena, 2012

Development of leukemia

- We start in hematopoietic equilibrium with a small number of leukemic stem cells (LSC)
- We measure how long it takes until mature hematopoietic cell counts are reduced by a certain percentage.
- Theorem: Larger self-renewal of LSC always leads to development of leukemia.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Impact of LSC Properties

Time needed for reduction of mature blood cells by 20%

self-renewal

э

(日)、

Impact of LSC and non-LSC Properties

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Dynamics does not depend on non-LSC properties.

Estimation of LSC properties using patients data

Estimated LSC properties and prognosis

Estimated cell properties correlate with patient survival.

Stiehl, Baran, Ho, M-C, Cancer Research 2015

▲□> ▲圖> ▲目> ▲目> 二目 - のへで

Development of resistance

LSC properties change between multiple relapses

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Development of resistance

LSC properties change between multiple relapses

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Models of heterogenous (multiclonal) AML

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Multiclonality

Observation:

- · Leukemic cell mass consists of multiple clones
- Size of different clones varies over time

Clonal dynamics

(日)、

э

• Clones differ w.r.t. self-renewal and proliferation

Clonal dynamics

- Clones differ w.r.t. self-renewal and proliferation
- (Q1) How do properties of clones at diagnosis differ from those at relapse?

(日)、

э

ヨト ヨ

- Clones of 50 "virtual Patients"
- Only clones contributing at least 1% to total cell mass are depicted

- Clones of 50 "virtual Patients"
- Only clones contributing at least 1% to total cell mass are depicted

SQC.

Clonal selection as a dynamical process

(Q1) What are cell properties at diagnosis and relapse?

Answer:

- Diagnosis: high proliferation + high self-renewal
- **Relapse:** low proliferation + high self-renewal
- Low proliferation causes **resistance** to therapy, high self-renewal guarantees **expansion**.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Selection explains different cell properties
- No mutations are required!

Clonal selection as a dynamical process

(Q1) What are cell properties at diagnosis and relapse?

Answer:

- Diagnosis: high proliferation + high self-renewal
- **Relapse:** low proliferation + high self-renewal
- Low proliferation causes **resistance** to therapy, high self-renewal guarantees **expansion**.
- Selection explains different cell properties
- No mutations are required!

(Q2) What is the number of clones at diagnosis and relapse?

- Answer: The number of large clones at diagnosis and relapse is relatively small.
 - The **nonlinear and nonlocal feedback** underlying the competition limits the number of large clones.

Results are conserved for different feedback mechanisms and independent on the number of clones

Structured population model of clonal evolution

Model structured by a self-renewal potential

• Let u(x, t) be a clone characterized by an internal parameter:

- $x \in \{x_1, ..., x_N\}$ (a discrete structure)
- $x \in \overline{\Omega}$ (a continuous structure)

$$\begin{aligned} \frac{\partial}{\partial t}u(t,x) &= \left(\frac{2a(x)}{1+K\rho_2(t)}-1\right)p(x)u(t,x),\\ \frac{\partial}{\partial t}v(t,x) &= 2\left(1-\frac{a(x)}{1+K\rho_2(t)}\right)p(x)v(t,x)-dv(t,x),\end{aligned}$$

where $\rho_2(t) = \int_{\Omega} v(t, x) dx$

• Assumptions: p(x) = p, d and K are positive constants

•
$$a \in C(\overline{\Omega})$$
 with $\frac{1}{2} < a < 1$

Simulations of a single clone selection

Simulations of multiple clones selection

Main result: Clonal selection

Theorem

(i) Both u₁ and u₂ converge to measures with support contained in the set

$$\Omega_{a} = \arg \max_{x \in \overline{\Omega}} a(x) = \left\{ \bar{x} \in \overline{\Omega} \, \middle| \, a(\bar{x}) = \max_{x \in \overline{\Omega}} a(x) \right\}$$

as t tends to infinity.

- (ii) If Ω_a consists of a single point x̄, then the solution converges to a stationary measure (Dirac measure multiplied by a positive constant) concentrated in x̄.
- (iii) If Ω_a is a set with positive measure, then the solution converges to a discontinuous bounded function.

Busse, Gwiazda, M-C. J. Math. Biol., 2015

Dynamics of the clones with heteoregenity in (a, p)

• Dynamically changing maximal growth rate: $\max\{\left(\frac{2a(x)}{1+k\rho_2(t)}-1\right)p(x)\}$, but the fitness corresponds to max a(x)

Application to therapy and cancer relapse

Cellular Properties at Relapse

- (Sub-)clones already present at diagnosis but not contributing to cell mass can survive therapy and trigger relapse
- Chemotherapy selects for slowly proliferating cells with high self-renewal

Stiehl, Baran, Ho, M-C, JRS Interface 11, 2014

To think of:

• How to reduce self-renewal (enhance asymmetric cell divisions)?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Iterated Therapy

- Identical treatment of primary manifestation and relapse may be insufficient
- Different relapses may be triggered by the same clones
- High self-renewal and low proliferation leads to a high resistance to chemotherapy

(日)、

э

Change of clonal size

Data from Anderson et al Nature 2011

Fitting to patient data

The model can be fitted to patient data:

Genetic Data

	Diagnosis t=0		Control t=150	Relapse t=200
Clone 1 (FLT3-ITD, 39 bp)	present		0	→ 0
Clone 2 (FLT3-ITD, 42 bp)	0	/	present	present
Clone 3 (FLT3-ITD, 63 bp)	0	-	0	present

What is the mechanism of selection?

Two regulatory mechanisms

Model 1: Competition for surviving factors

Model 2: Competition for space

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- The selection takes place in both models.
- How to distinguish between the mechanisms?

System dynamics for both models

- We fit Models 1 and 2 to the patients data (bone marrow data + time between treatment and relapse)
- In most cases both models are compatible with observed dynamics

Model discrimination

• Fast increase of leukemic cell counts is compatible only with Model 2.

straight line: Model 1, dotted line: Model 2

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Application: Cytokine administration

Observation

- Leukemic cells of some patients are stimulated by cytokines.
- Leukemic cells of other patients are not sensitive to cytokines.
- Cytokine administration is a standard procedure to reduce complications of chemotherapy or to increase hematopoiesis.

Comparison of Model 2 and a (modified) Model 1

- Cytokine stimulation by setting *s* = 1 for the duration of external cytokine administration.
- Increased death rates due to marrow overcrowding (above a certain threshold).
 - → This modification does not change model dynamics in absence of artificial cytokine stimulation, since due to the intrinsic feedback the marrow never becomes overcrowded.

・ロト・日本・モート モー うへで

Fit to data: Special case

- Cytokine treatment may stimulate cancer growth (Duval et al 2014).
- Patient with 2 relapses
- Comparable situation after the first and the second chemotherapy
- Cytokine administration only after the second chemotherapy
- Cytokine administration leads to a rapid expansion of leukemic cells

Data from Duval et al.

Circles: leukemic cells in blood (I_2) , blue line: Fit with Model 1.

• Data not compatible with Model 2.

Impact of cytokine treatment: Model 1

- C > -

-C > -

$$a_{1}^{2} > a_{1}, \qquad a_{1}^{2} > a_{1}, \\ (2a_{1} - 1)p_{1} > (2a_{1}^{c} - 1)p_{1}^{c} \qquad (2a_{1} - 1)p_{1}^{c} < (2a_{1}^{c} - 1)p_{1}^{c} \\ a_{1}^{2} - a_{1}^$$

• In Model 1 cytokine stimulation can be either harmful or helpful, depending on leukemic cell properties

Impact of cytokine treatment: Model 2

$$(2a_1-1)p_1 < (2a_1^c-1)p_1^c$$

$$(2a_1-1)p_1 > (2a_1^c-1)p_1^c$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• In Model 2 cytokine stimulation is always helpful

What do we learn from the models?

- Blast expansion under cytokine administration is only compatible with Model 1
- Observed differences between patients can be explained by different sensitivity of leukemic cells to cytokines.
- Fast relapses are only compatible with Model 2
- Cytokine administration may have detrimental effects, therefore, it can be helpful to identify patients with cytokine sensitive leukemic cells.
- The models may help to distinguish in a given patient which mechanism (cytokine sensitive vs insensitive blast expansion) is more relevant.

Conclusions

- Mathematical model provides a possible explanation of the clonal selection observed in experimental data.
- Clonal selection may be a dynamic property reducing the number of relevantly contributing leukemic clones.
- Therapy may lead to a selection of more aggressive clones.
- LSC properties can be estimated using mathematical modelling:
 - Estimated cell properties differ between different individuals.
 - Estimated cell properties differ between different relapses in the same individual.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Estimated cell properties correlate with patient survival.

Thank you!

Sketch of the proof. Boundedness of masses

Equations for the total mass

$$\begin{aligned} \frac{d}{dt}\rho_1(t) &= \int_{\Omega} \left(\frac{2a(x)}{1+K\rho_2(t)}-1\right)\rho u_1(t,x)\mathrm{d}x, \\ \frac{d}{dt}\rho_2(t) &= 2\int_{\Omega} \left(1-\frac{a(x)}{1+K\rho_2(t)}\right)\rho u_1(t,x)\mathrm{d}x - d\int_{\Omega} u_2(t,x)\mathrm{d}x. \end{aligned}$$

• Estimates using
$$\bar{a} = \max_{x \in \overline{\Omega}} a(x)$$
 and $\underline{a} = \min_{x \in \overline{\Omega}} a(x)$.

Lemma

Both ρ_1 and ρ_2 are uniformly bounded and strictly positive.

- We need an estimate $ho_1(t) \leq M_1
 ho_2(t)$
- It results from uniform boundedness of $U(t,x) = \frac{u_1(t,x)}{u_2(t,x)}$

Sketch of the proof. Positivity of masses

Lemma

There exists a constant $M_2 > 0$ and $0 < \gamma < 1$ such that $\rho_2(t) \le M_2 \rho_1^{\gamma}(t)$ for all $t \ge 0$.

 $\frac{d}{dt}\frac{\rho_2(t)}{\rho_1^{\gamma}(t)} \leq 2pM_2^{1-\gamma} + \frac{\rho_2(t)}{\rho_1^{\gamma}(t)}(\gamma p - d).$

- Taking $\gamma p d < 0$ leads to the desired estimate
- The equation for masses yields positivity of ho_1

$$rac{d}{dt}
ho_1(t)\geq \left(rac{2a}{1+{\it KM_4}
ho_1(t)^\gamma}-1
ight)
ho
ho_1(t),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sketch of the proof. Exponential extinction of solutions in $x \notin \Omega_a$

Lemma

Let $x_1, x_2 \in \Omega$ such that $a(x_1) - a(x_2) < 0$. Then,

$$\frac{u_1(t,x_1)}{u_1(t,x_2)} \leq \frac{u_1^0(x_1)}{u_1^0(x_2)} e^{p\frac{2(a(x_1)-a(x_2))}{1+KM_3}t} \xrightarrow{t\to\infty} 0.$$

- The Lemma implies that the solution decays exponentially to zero in all points x except those with maximal value of a(x).
- Strict positivity of masses excludes extinction of the solution
- Together with boundedness of mass, it leads to the conclusion that the model solutions converge to Dirac measures localised in points corresponding to the maximum of function *a*.

Theorem

It holds $(\rho_1(t), \rho_2(t)) \rightarrow (\bar{\rho}_1, \bar{\rho}_2)$, as $t \rightarrow \infty$, where $(\bar{\rho}_1, \bar{\rho}_2)$ are stationary solutions of the corresponding ordinary differential equations model with the maximal value of the self-renewal parameter

$$0 = \left(\frac{2\bar{a}}{1+K\bar{\rho}_2}-1\right)p\bar{\rho}_1,$$

$$0 = 2\left(1-\frac{\bar{a}}{1+K\bar{\rho}_2}\right)p\bar{\rho}_1-d\bar{\rho}_2$$

• Proof is based on the Lyapunov function for the discrete model

Getto, M-C, Nakata and dM Vivanco, Math. Biosci., 2013

Sketch of the proof. Comparison result

Our system can be rewritten as

$$\begin{aligned} \frac{d}{dt}\rho_1 &= \left(\frac{2\bar{a}}{1+K\rho_2}-1\right)p\rho_1 + \frac{2p}{1+K\rho_2}\int_{\Omega}\left(a(x)-\bar{a}\right)u_1\mathrm{d}x,\\ \frac{d}{dt}\rho_2 &= 2\left(1-\frac{\bar{a}}{1+K\rho_2}\right)p\rho_1 + \frac{2p}{1+K\rho_2}\int_{\Omega}\left(\bar{a}-a(x)\right)u_1\mathrm{d}x - d\rho_2.\end{aligned}$$

Lemma

Let u be a solution of $\frac{du}{dt} = F(u)$ with a globally stable stationary solution \bar{u} and let V(u) be a Lyapunov function for this equation with compact level sets and the minimum δ achieved at the stationary solution \bar{u} . If \tilde{u} is a solution of $\frac{d\tilde{u}}{dt} = F(\tilde{u}) + f$, where $f \in L^1(\mathbb{R}^+)$, then $\tilde{u} \to \bar{u}$ for $t \to \infty$.

•
$$\int_{\Omega} (a(x) - \bar{a}) u_1(t, x) dx \xrightarrow{t \to \infty} 0$$
, since
 $\int_{\Omega} (a(x) - \bar{a}) u_1 dx = \int_{\Omega_a} (a(x) - \bar{a}) u_1 dx + \int_{\Omega \setminus \Omega_a} (a(x) - \bar{a}) u_1 dx.$

Convergence result in flat metric

• For $\mu, \nu \in \mathcal{M}^+(\mathbb{R}^+)$ the flat metric ho is defined by

$$ho_{\mathcal{F}}(\mu, \nu) \hspace{0.1 in} := \hspace{0.1 in} \sup \hspace{0.1 in} \left\{ \int_{\mathbb{R}^{+}} \hspace{0.1 in} \psi \hspace{0.1 in} d(\mu - \nu) \hspace{0.1 in} \Big| \hspace{0.1 in} \|\psi\|_{W^{1,\infty}} \leq 1
ight\}.$$

 To estimate the distance between a solution u(t, x) and the stationary measure cδ_{x̄}, we use the following inequality for the distance of two measures μ₁ and μ₂

$$\rho_F(\mu_1,\mu_2) \leq \min\{\rho_1,\rho_2\}W_1(\frac{\mu_1}{\rho_1},\frac{\mu_2}{\rho_2}) + |\rho_1-\rho_2|,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where W_1 is the Wasserstein metric

Convergence results from the exponential estimates and convergence of masses.

Model calibration

Available data

- Initial conditions
- Proliferation rates in a steady state
- Steady state population sizes
- Clearance of leukocytes from blood stream

Cell Type	number of transplanted cells per kg body weight
prim HSC ¹	$pprox 3 \cdot 10^3$
LTC-IC	$pprox 36 \cdot 10^3$
CFU-GM	$pprox 155 \cdot 10^3$
CFU-G	$pprox 54 \cdot 10^4$
Myeloblast	0
Promyelocyte	0
Myelocyte	0
Mature neutrophil	0

Initial conditions

Parameter sets

Parameter	Value	Parameter	Value	Parameter	Value	Parameter	Value
a1	0.5	a _{1,max}	0.77	<i>p</i> ₁	$2.15 \cdot 10^{-3} \frac{1}{day}$	$p_{1,max}$	$7.6 \cdot 10^{-3} \frac{1}{day}$
a2	0.4993	a _{2,max}	0.7689	<i>p</i> ₂	$11.21 \cdot 10^{-3} \frac{1}{day}$	P2, max	$39.6 \cdot 10^{-3} \frac{1}{day}$
a3	0.4779	a _{3,max}	0.7359	<i>p</i> ₃	$5.66 \cdot 10^{-2} \frac{1}{day}$	<i>p</i> 3, <i>max</i>	0.2 1/day
a ₄	0.4986	a _{4, max}	0.7678	<i>p</i> 4	0.1586 <u>1</u> day	P4, max	$0.56 \frac{1}{day}$
a5	0.1	a _{5,max}	0.154	<i>P</i> 5	0.32 1/day	P _{5,max}	0.32 1/day
a ₆	0.0714	a _{6,max}	0.11	<i>P</i> 6	$0.7 \frac{1}{day}$	P 6, <i>max</i>	$0.7 \frac{1}{day}$
a ₇	0.3929	a _{7,max}	0.605	P 7	$1\frac{1}{day}$	P7, max	$1\frac{1}{day}$

Parameter	Value	Parameter	Value	Parameter	Value	Parameter	Value
a1	0.5	a _{1,max}	0.77	<i>p</i> 1	$2.15 \cdot 10^{-3} \frac{1}{day}$	P1, max	$7.6 \cdot 10^{-3} \frac{1}{day}$
a2	0.4994	a _{2,max}	0.769	<i>p</i> ₂	$11.21 \cdot 10^{-3} \frac{1}{day}$	P2, max	$39.6 \cdot 10^{-3} \frac{1}{day}$
a ₃	0.4743	a _{3,max}	0.7304	<i>p</i> 3	$5.66 \cdot 10^{-2} \frac{1}{day}$	P3, max	0.2 1/day
a4	0.4982	a4,max	0.7673	<i>p</i> ₄	0.1586 1/day	P4, max	$0.56 \frac{1}{day}$
a5	0.4286	a _{5,max}	0.66	P 5	0.32 <u>1</u> day	P 5, <i>max</i>	0.32 <u>1</u> day
a ₆	0.0714	a _{6,max}	0.11	<i>P</i> 6	0.7 1/day	P6, max	$0.7 \frac{1}{day}$
a ₇	0.0357	a _{7,max}	0.055	<i>P</i> 7	$1\frac{1}{day}$	P 7, max	$1\frac{1}{day}$

Is this reasonable?

- low self-renewal of non-LSC \Rightarrow small intermediate population but high percentage differentiates to blast stages
- high self-renewal of non-LSC \Rightarrow large intermediate population but low percentage differentiates to blast stages.