Mathematical Model of Cronic Meyloid Leukemia

Mohamed HELAL, Laurent PUJO-MANJOUET, Abdelkader LAKMECHE and Mostafa ADIMY

Laboratory of Biomathematics, University of Djillali LIABES Faculty of Sciences Exactes, Department of mathematics BP. 89 Sidi Bel Abbes, Algeria

Present Challenges of Mathematics in Oncology and Biology of Cancer

7-11 December 2015, Marseille, France

Main Talk

Cronic Meyloid Leukemia

- What is stem cell
- Characteristic features
- Hematopoiesis
- The Philadelphia chromosome

・ 同 ト ・ ヨ ト ・ ヨ ト

Main Talk

Cronic Meyloid Leukemia

- What is stem cell
- Characteristic features
- Hematopoiesis
- The Philadelphia chromosome

2 Model (1)

- Steady state
- Local stability and bifurcation
- Concept of \mathcal{R}_0
- Analysis at $\mathcal{R}_0 = 1$
- Global stability

- ₹ ₹ ►

What is stem cell Characteristic features Hematopoiesis The Philadelphia chromosome

Main Talk

Cronic Meyloid Leukemia

- What is stem cell
- Characteristic features
- Hematopoiesis
- The Philadelphia chromosome

2 Model (1)

- Steady state
- Local stability and bifurcation
- Concept of \mathcal{R}_0
- Analysis at $\mathcal{R}_0 = 1$
- Global stability

What is stem cell Characteristic features Hematopoiesis The Philadelphia chromosome

What is stem cell

stem cell is

- young,
- primitive and unspecialized cell with remarkable potential to renew,
- differentiate and develop into any desired tissue or organ of the body.

What is stem cell Characteristic features Hematopoiesis The Philadelphia chromosome

What is stem cell

stem cell is

- young,
- primitive and unspecialized cell with remarkable potential to renew,
- differentiate and develop into any desired tissue or organ of the body.

In conclusion: it is young cells having infinite self renewing capacity and potential for differentiation

What is stem cell Characteristic features Hematopoiesis The Philadelphia chromosome

Main Talk

Cronic Meyloid Leukemia

- What is stem cell
- Characteristic features
- Hematopoiesis
- The Philadelphia chromosome

2 Model (1)

- Steady state
- Local stability and bifurcation
- Concept of \mathcal{R}_0
- Analysis at $\mathcal{R}_0 = 1$
- Global stability

What is stem cell Characteristic features Hematopoiesis The Philadelphia chromosome

Characteristic features

- Self renewal: Unlimited proliferative potential.
- Differentiation: Differentiate into various cell types

Totipotency,

Pluripotency,

Multipotency.

• Regeneration potential: A means of repair.

What is stem cell Characteristic features Hematopoiesis The Philadelphia chromosome

Type of stem cells

Type of stem cell	What it can be	Examples						
Totipotent cells	Each cell can develop into a new individual	Cells of embryo of 1-3 days	Endoder		v ripotent embryonic t Nesodern kte	tem cells Eccodorn in		mbryonic stem cell Induced pluripotent stem
Pluripotent cells	Each cell can form any cell type (over 200)	Cells of blastocyst 5-14 days		ļ	Nutlipotent aliens	attu)
Multipotent cells	Cells differentiate and can form a number of tissue types.	Fetal tissue, cord blood, adult cells		0				Aduit bore marrow, ski costi biood, deciduous
			Lung	Cons.	Heart Field		Neuron	4

Mohamed HELAL

Mathematical Model of Cronic Meyloid Leukemia

What is stem cell Characteristic features Hematopoiesis The Philadelphia chromosome

Main Talk

Cronic Meyloid Leukemia

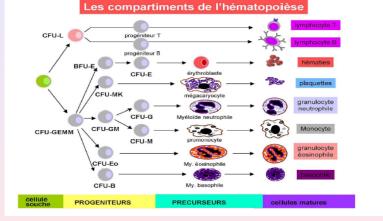
- What is stem cell
- Characteristic features

Hematopoiesis

The Philadelphia chromosome

- Steady state
- Local stability and bifurcation
- Concept of \mathcal{R}_0
- Analysis at $\mathcal{R}_0 = 1$
- Global stability

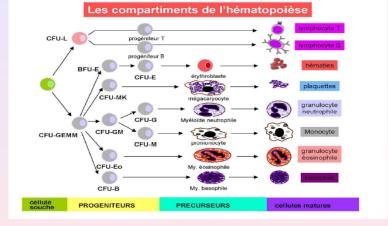
What is stem cell Characteristic features Hematopoiesis The Philadelphia chromosome



(a)

э.

What is stem cell Characteristic features Hematopoiesis The Philadelphia chromosome



 Hematopoiesis is the set of phenomena which contribute to the production of blood cells.

э

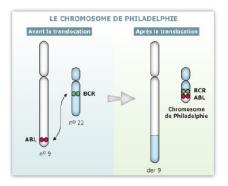
What is stem cell Characteristic features Hematopoiesis The Philadelphia chromosome

Main Talk

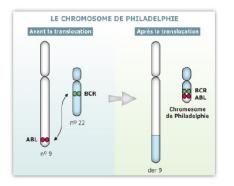
Cronic Meyloid Leukemia

- What is stem cell
- Characteristic features
- Hematopoiesis
- The Philadelphia chromosome
- - Steady state
 - Local stability and bifurcation
 - Concept of \mathcal{R}_0
 - Analysis at $\mathcal{R}_0 = 1$
 - Global stability

What is stem cell Characteristic features Hematopoiesis The Philadelphia chromosome



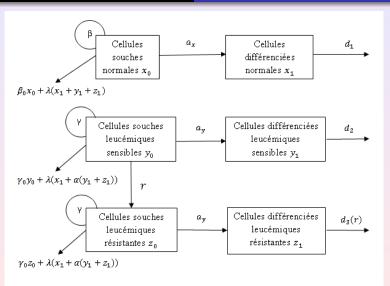
What is stem cell Characteristic features Hematopoiesis The Philadelphia chromosome



Chronic myeloid leukemia is a disease characterized by a chromosomal abnormality acquired (called Philadelphia chromosome).

(日)

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability



ъ

Model (1)

(1)
$$\begin{cases} \dot{x}_0 = (\beta - a_x - \beta_0 x_0 - \lambda(x_1 + y_1 + z_1))x_0, \\ \dot{x}_1 = a_x x_0 - d_1 x_1, \\ \dot{y}_0 = (\gamma - a_y - \gamma_0 y_0 - \lambda(x_1 + \alpha y_1 + \alpha z_1))y_0 - ry_0, \\ \dot{y}_1 = a_y y_0 - d_2 y_1, \\ \dot{z}_0 = (\gamma - a_y - \gamma_0 z_0 - \lambda(x_1 + \alpha y_1 + \alpha z_1))z_0 + ry_0, \\ \dot{z}_1 = a_y z_0 - d_3(r)z_1, \end{cases}$$

where

$$(2) a_x < a_y$$

$$(3) a_y + r < \gamma,$$

$$(4) a_x < \beta$$

$$d_3(r) \le d_2,$$

 $d_3(r) \searrow$ on r and $d_3(0) = d_2$.

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0 = 1$ Global stability

Symbols and definitions of populations

subpopulations	definitions			
<i>x</i> ₀	normal stem cells			
<i>x</i> ₁	normal differentiated cells			
уо	leukemic sensitive stem cells			
<i>y</i> 1	leukemic sensitive differentiated cells			
Z0	leukemic resistant stem cells			
<i>z</i> ₁	leukemic resistant differentiated cells			

Table: Symbols and definitions of populations.

(日)

Symbols and definitions of parameters.

parameters	definitions
β_0	death rate of the normal stem cells
γ_0	death rate of leukemic stem cells
β	division rate of normal stem cells
γ	division rate leukemic stem cells
λ	competitive parameter of the stem and progenitor cells
a_x	produce rate of the normal stem cells
a _y	produce rate of the leukemic stem cells
d_1	death rates of the normal progenitors cells
d_2	death rates of the leukemic progenitors cells
$d_3(r)$	death rates of the normal leukemic progenitors cells
r	resistant parameter
α	$0 < \alpha < 1$

Table: Symbols and definitions of parameters.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

Analysis of case r = 0: without resistant population.

(6)
$$\begin{cases} \dot{x}_0 = (\beta - a_x - \beta_0 x_0 - \lambda(x_1 + y_1))x_0, \\ \dot{x}_1 = a_x x_0 - d_1 x_1, \\ \dot{y}_0 = (\gamma - a_y - \gamma_0 y_0 - \lambda(x_1 + \alpha y_1))y_0, \\ \dot{y}_1 = a_y y_0 - d_2 y_1. \end{cases}$$

Let
$$q = \frac{\gamma - a_y}{\beta - a_x}$$
, $d_1^* = \frac{\lambda a_x}{\beta_0} \left(\frac{1 - q}{q}\right)$ and $d_2^* = \frac{\lambda a_y}{\gamma_0} (q - \alpha)$.

Denote

 $\begin{aligned} & RI: d_1 < d_1^* \text{ and } d_2 > d_2^*, \\ & RII: d_1 > d_1^* \text{ and } d_2 < d_2^*, \\ & RIII: d_1 > d_1^* \text{ and } d_2 > d_2^*, \\ & RIV: d_1 < d_1^* \text{ and } d_2 < d_2^*. \end{aligned}$

< ロ > < 同 > < 回 > < 回 > .

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

Main Talk

Cronic Meyloid Leukemia

- What is stem cell
- Characteristic features
- Hematopoiesis
- The Philadelphia chromosome

2 Model (1)

Steady state

- Local stability and bifurcation
- Concept of \mathcal{R}_0
- Analysis at $\mathcal{R}_0 = 1$
- Global stability

Steady state

local stability and bifurcation concept of \mathcal{R}_0 analysis at $\mathcal{R}_0=1$ alobal stability

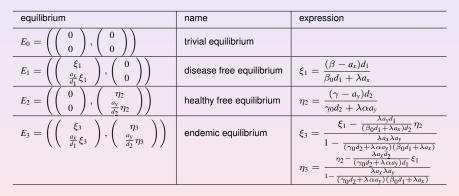


Table: Equilibrium formulation.

- コン (雪) (ヨ) (ヨ)

э.

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

Main Talk

Cronic Meyloid Leukemia

- What is stem cell
- Characteristic features
- Hematopoiesis
- The Philadelphia chromosome

2 Model (1)

- Steady state
- Local stability and bifurcation
- Concept of \mathcal{R}_0
- Analysis at $\mathcal{R}_0 = 1$
- Global stability

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0 = 1$ Global stability

Theorem

- Let $\lambda \ge 0$, and assume that the conditions (1) (5) are satisfied. Then
- E_0 is unstable.
- If q < 1 and d₁ < d₁^{*}, then E₁ is locally asymptotically stable. Else, E₁ is unstable.
- If q > α, d₂ < d₂^{*}, then E₂ is locally asymptotically stable. Else, E₂ is unstable.
- If $\alpha > \alpha^* = \frac{\lambda a_x}{\beta_0 d_1 + \lambda a_x} \frac{\gamma_0 d_2}{\lambda a_y}$, $d_1 > d_1^*$ and $d_2 > d_2^*$, then E_3 is locally asymptotically stable. Else, E_3 is unstable.

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

Case 1: $q \leq \alpha$		Case 1: $\alpha < q < 1$		Case 3: $1 \le q$		
region	stability	region	stability	region	stability	
RI	E_0 is unstable	RI	E_0 is unstable	RI disappear		
	E_1 is L.A.S.		E_1 is L.A.S.			
	E_2 is unstable		E_2 is unstable			
RII disappear		RII	E_0 is unstable	RII	E_0 is unstable	
			E_1 is unstable		E_1 is unstable	
			E ₂ is L.A.S.		E_2 is L.A.S.	
RIII	E_0 is unstable	RIII	E_0 is unstable	RIII	E_0 is unstable	
	E_1 is unstable		E_1 is unstable		E_1 is unstable	
	E_2 is unstable		E_2 is unstable		E_2 is unstable	
	E_3 is L.A.S.		E_3 is L.A.S.		E_3 is L.A.S.	
RIV disappear		RIV	E_0 is unstable	RIV disappear		
			E_1 is L.A.S.			
			E_2 is L.A.S.			

Table: Summary of the model with r = 0 and $\alpha > \alpha^*$

<ロ> <部> < E> < E> <</p>

.

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

Case 1: $q \le \alpha$		Case 1: $\alpha < q < 1$		Case 3: $1 \le q$		
region	stability	region	stability	region	stability	
RI	E_0 is unstable	RI	E_0 is unstable	RI disappear		
	E ₁ is L.A.S.		E_1 is L.A.S.			
	E_2 is unstable		E_2 is unstable			
RII disappear		RII	E_0 is unstable	RII	E_0 is unstable	
			E_1 is unstable		E_1 is unstable	
			E_2 is L.A.S.		E2 is L.A.S.	
RIII	E_0 is unstable	RIII	E_0 is unstable	RIII	E_0 is unstable	
	E_1 is unstable		E_1 is unstable		E_1 is unstable	
	E_2 is unstable		E_2 is unstable		E_2 is unstable	
			E_3 is unstable			
RIV disappear		RIV	E_0 is unstable	RIV disappear		
			E_1 is L.A.S.			
			E_2 is L.A.S.			
			E_3 is unstable			

Table: Summary of the model with r = 0 and $\alpha < \alpha^*$

<ロ> <部> < 部> < き> < き> < き</p>

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

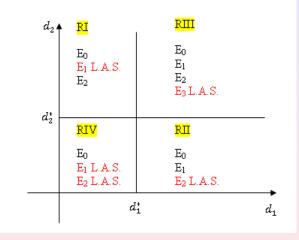


Figure: Bifurcation diagram for model when $\alpha < q < 1$.

・ロ・・(型・・目・・(目・)

Ξ.

Local stability and bifurcation Cronic Meyloid Leukemia Model (1) d_2 RПI RI E_0 E0 E₁ L.A.S. Eı E_2 E_2 E₃ L.A.S. d_1^* d_1

Figure: Bifurcation diagram for model when $q \leq \alpha$.

・ロ・・(型・・目・・(目・)

Ξ.

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

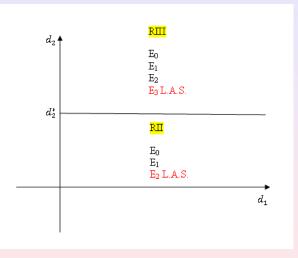


Figure: Bifurcation diagram for model when q > 1.

・ロ・・(型・・目・・(目・)

.

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0 = 1$ Global stability

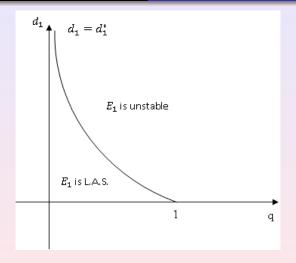


Figure: Bifurcation diagram for DFE.

<ロ> <同> <同> < 同> < 同> < 三> < 三> <

Ξ.

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

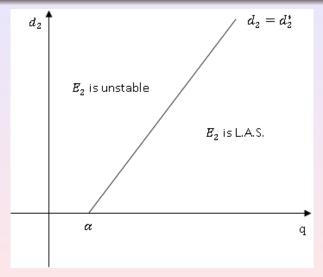


Figure: Bifurcation diagram for HFEp > < @ > < = > < = > =

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0 = 1$ Global stability

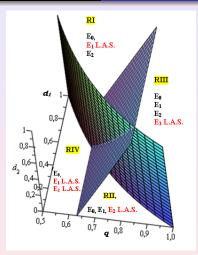


Figure: Bifurcation diagram for model.

・ロ・・ 日・ ・ 日・ ・ 日・

æ

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

Main Talk

Cronic Meyloid Leukemia

- What is stem cell
- Characteristic features
- Hematopoiesis
- The Philadelphia chromosome

2 Model (1)

- Steady state
- Local stability and bifurcation
- Concept of \mathcal{R}_0
- Analysis at $\mathcal{R}_0 = 1$
- Global stability

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

The disease free equilibrium (DFE) for this nondimensionalized general model of chronic myeloid leukemia may be used to find the basic reproduction number \mathcal{R}_0 , which indicates the average number of new infections. The basic epidemiological reproductive number is given by

(7)
$$\mathcal{R}_0 = \frac{\gamma}{\frac{(\beta - a_x)\lambda a_x}{\beta_0 d_1 + \lambda a_x} + a_y}.$$

However, this nondimensional number is not enough to characterize the dynamics of model (1)-(5).

< ロ > < 同 > < 回 > < 回 > .

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

Main Talk

Cronic Meyloid Leukemia

- What is stem cell
- Characteristic features
- Hematopoiesis
- The Philadelphia chromosome

2 Model (1)

- Steady state
- Local stability and bifurcation
- Concept of \mathcal{R}_0
- Analysis at $\mathcal{R}_0 = 1$
- Global stability

< ロ > < 同 > < 回 > < 回 > :

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

Theorem

- Let $d'_2 = \frac{\lambda a_y}{\gamma_0} \left(\frac{\lambda a_x}{\beta_0 d_1 + \lambda a_x} \alpha \right)$ and $d'_1 = \frac{\lambda a_x}{\beta_0} \left(\frac{1 \alpha}{\alpha} \right)$.
 - If d'₂ < d₂ < d^{*}₂, the unique endemic equilibrium disappears whenever *R*₀ > 1 and is close to 1.
 - If d₂ > d₂^{*} > d₂['], the unique endemic equilibrium is locally asymptotically stable whenever R₀ > 1 and is close to 1.
 - If d₂ < d'₂ and d₁ < d'₁, the unique endemic equilibrium disappears whenever R₀ > 1 and is close to 1.

<ロ> < 同> < 同> < 三> < 三> < 三> < ○<</td>

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

Main Talk

Cronic Meyloid Leukemia

- What is stem cell
- Characteristic features
- Hematopoiesis
- The Philadelphia chromosome

2 Model (1)

- Steady state
- Local stability and bifurcation
- Concept of \mathcal{R}_0
- Analysis at $\mathcal{R}_0 = 1$
- Global stability

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

Using the following Lyapunov functions V_i according the Lasalle theorem, we can show the global asymptotic stability of E_i (i = 1, 2, 3), where

$$V_{1} = \left(x_{0} - \xi_{1} - \xi_{1} \ln \frac{x_{0}}{\xi_{1}}\right) + \frac{\lambda}{2a_{x}} \left(x_{1} - \frac{a_{x}}{d_{1}}\xi_{1}\right)^{2} + y_{0} + \frac{\lambda\alpha}{2a_{y}}y_{1}^{2}.$$

$$V_{2} = x_{0} + \frac{\lambda}{2a_{x}}x_{1}^{2} + \left(y_{0} - \eta_{2} - \eta_{2} \ln \frac{y_{0}}{\eta_{2}}\right) + \frac{\lambda\alpha}{2a_{y}} \left(y_{1} - \frac{a_{y}}{d_{2}}\eta_{2}\right)^{2}.$$

$$V_{3} = \left(x_{0} - \xi_{3} - \xi_{3} \ln \frac{x_{0}}{\xi_{3}}\right) + \frac{\lambda}{2a_{x}} \left(x_{1} - \frac{a_{x}}{d_{1}}\xi_{3}\right)^{2} + \left(y_{0} - \eta_{3} - \eta_{3} \ln \frac{y_{0}}{\eta_{3}}\right) + \frac{\lambda\alpha}{2a_{y}} \left(y_{1} - \frac{a_{y}}{d_{2}}\eta_{3}\right)^{2}.$$

(a)

Ъ.

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

Global stability

Denote
$$q_1 = \frac{4\gamma_0}{\beta_0 + 4\gamma_0}$$
, $q_2 = \frac{\gamma_0 + 4\alpha^2\beta_0}{4\alpha\beta_0}$, $d_1^{\bullet} = \frac{1}{4}\frac{\lambda a_x}{\gamma_0}$ and $d_2^{\bullet} = \frac{1}{4\alpha}\frac{\lambda a_y}{\beta_0}$.

Theorem

- If $q < q_1$, $d_1^{\bullet} < d_1 \le d_1^*$ and $d_2 > d_2^{\bullet}$, then E_1 is globally asymptotically stable in $\mathbb{R}^4_+/\{0\} \times \mathbb{R}^3_+$.
- If q > q₂, d₁ > d₁[•] and d₂[•] < d₂ ≤ d₂^{*}, then E₂ is globally asymptotically stable in ℝ⁴₊/ℝ²₊ × {0} × ℝ₊.
- If $d_1 > \max(d_1^*, d_1^{\bullet})$ and $d_2 > \max(d_2^*, d_2^{\bullet})$, then E_3 is globally asymptotically stable in $\mathbb{R}^4_+ / \{0\} \times \mathbb{R}^3_+ \bigcup \mathbb{R}^2_+ \times \{0\} \times \mathbb{R}_+$.

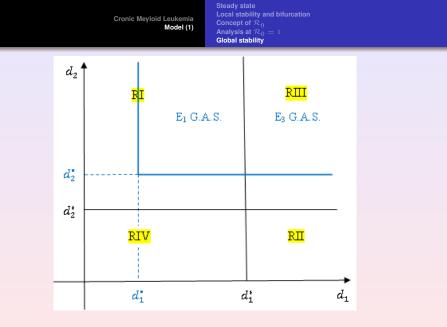


Figure: Global stability diagram for model when $q < q_1$.

< ∃→

æ

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

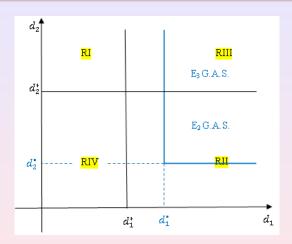


Figure: Global stability diagram for model when $q > q_2$.

Ξ.

 B. Ainseba, C. Benosman, Global dynamics of hematopoietic Stem cells and differentiated cells in a chronic myeloid leukemia model, Journal of Mathematical Biology (en ligne :DOI 10.1007/s 00285-010-0360-x).
 C. Colijn, M. C. Mackey, A mathematical model of hematopoiesis : Periodic chronic myelogenous leukemia, part I. Journal of Theoretica Biology, 237 : 117-132 (2005).

[3] M. W. N. Deininger, S.G.O Brien, J.M. Ford, B.J. Druker, Pratical management of patients with chronic myeloid leukemia receiving imatinib, Journal of Clinical Oncology, 21 : 1637-1647 (2003).

[4] D. Dingli, F. Michor, Successful therapy must eradicate cancer stem cells, stem cells, 24 : 2603-2610 (2006).

[5] F. Michor, T.P. Hughes, Y. Iwasa, S. Branford, N. Shah, C.L. Sawyers, M.A. Nowak, Dynamics of chronic myeloid leukemia. Nature 435, 1267-1270 (2005). • M. Adimy (INRIA Lyon)

- M. Adimy (INRIA Lyon)
- A. Lakmeche (U. Sidi Bel Abbes)

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

- M. Adimy (INRIA Lyon)
- A. Lakmeche (U. Sidi Bel Abbes)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• L. Pujo-Menjouet (U. Lyon 1)

Steady state Local stability and bifurcation Concept of \mathcal{R}_0 Analysis at $\mathcal{R}_0=1$ Global stability

Thank you for your attention.

<ロ> <同> <同> < 同> < 同> < 回> < □> <

Ξ.