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1. Introduction
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Blood cell production

Hematopoiesis is the process of formation of blood cells.
It is initiated in the bone marrow by hematopoietic stem cells (HSCs)

HSCs can
proliferate
self-renew
differentiate in multiple lineages

Proliferation: Cell cycle (growth phase). At the end of this cycle cell
division occurs.
Self-renewal: At cell division HSCs produce a daughter with the same
biological properties as the parent
Differentiation: At cell division a cell with greater maturity (progenitor) is
produced.
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Hematopoiesis and its disorders

Cancers arising from hematopoietic cells are called leukemias.
The classification of different forms of leukemias relies on the progression
of the disease (acute or chronic) as well as the type of cell affected
(myeloid, lymphoid).
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Blood cell production and Acute Myeloid Leukemia (AML)

Acute Myeloid Leukemia is characterized by an overproduction in
the bone marrow and realease in the bloodstream of immature cells
(myeloblasts).
According to OMS, the diagnosis of AML is established by
demonstrating involvement of more than 20% of the blood and/or
bone marrow by leukemic myeloblasts.
AML combines at least two molecular events: a blockade of the
differentiation and an advantage of the proliferation.
Promyelocytic leukemia : main problem is blockade of the
differentiation.
Leukemias which present a high level of FLTt-3 duplication (main
problem is proliferation)
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State of the Art: Mackey

One of the first mathematical models on hematopoiesis was proposed
by Mackey at the end of the 1970’s (ODE).

Cells in the 
resting phase 

 
N(t) 

Cells in the 
proliferating phase 

 
P(t) 

γ

β

0 τ 0 ∞+age  age  

δ{
d
dt N(t) = −(δ +β (N(t)))N(t)+2e−γτβ (N(t− τ))N(t− τ),
d
dt P(t) = −γP(t)+β (N(t))N(t)− e−γτβ (N(t− τ))N(t− τ).
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State of the Art: Adimy et al.

Adimy et al (2008) proposed a PDE based model including several com-
partments conected in series.
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Discrete-maturity model

Structured age model proposed by Adimy et al (2008)

∂ pi

∂ t
+

∂ pi

∂a
=−(γi +gi (a)) pi, 0 < a (age)< τi, t(time)> 0

∂ ri

∂ t
+

∂ ri

∂a
=−(δi +βi)ri, a > 0, t > 0,

βi depends on xi where xi(t) :=
∫

∞

0
r(t,a)da

ri(t,0) = 2(1−Ki)
∫

τi

0
gi(a)pi(t,a)da+2Ki−1

∫
τi−1

0
gi−1(a)pi−1(t,a)da

pi(t,0) =
∫

∞

0
βi(xi(t))ri(t,a)da = βi(xi(t))xi(t)

ri(0,a) a≥ 0 and pi(0,a) a ∈ [0,τi] given
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Mathematical assumptions of the model

fi(.), cell divisions (mitosis),

fi(a)≥ 0 for alla ∈ [0,τi], and
∫

τi

0
fi(a)da = 1. (1)

βi(·) are differentiable and decreasing functions

lim
y→+∞

βi(y) = 0(
βi(x) =

βi(0)
1+bxn , βi(0)> 0,b > 0,n > 0

)
.

(2)

The parameters δi, Ki, Li = 1−Ki τi and γi are positive.
We introduce the parameters:

Ci =
∫

τi

0
e−γil fi(l)dl, αi = 2LiCi−1 > 0. (3)
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Scope and Objectives

We are interested in Leukemias which present a high level of Flt-3
duplication.

AML	  
LEUKEMIA	  

Mathema.cal	  
Model	  

Iden.fica.on	  of	  
parameters	  and	  
Valida.on	  of	  the	  

model	  

Op.miza.on	  
of	  drug	  

treatments	  

Question: how to optimally combine
cytotoxic drug which acts on apoptose (γ) during phase S of the cell
cycle.
Anti-Flt3 drug (AC220) which acts on the fast self-renewal of cells.
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Scope and Objectives

We are interested in Leukemias which present a high level of Flt-3
duplication.

The first step is to obtain a mathematical model of AML with the following
characteristics:

The self renewal phenomenon is written in two parts where the fast and
slow dynamics are separated.
The phases of the cell cycle are considered (G1, S, G2 and M).
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State of the Art: Avila et al.

Li = 2σi(1−Ki) and L̃i = 2(1−σi)(1−Ki)

βi and β̃i : reintroduction functions of the form
β (0)

1+bxN (Hill function).

γ1
i , γ2

i , γ3
i and γ4

i : apoptosis rate in G1, S, G2 and M phases.
τ1

i , τ2
i , τ3

i and τ4
i : time elapsed in G1, S, G2 and M phases.
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Identification of the parameters

Experiments at St Antoine Hospital on patients’ blood: only
hyperleucocytic patients are considered ie 1 patient/month

Build experiments (the kind of parameters we want to identify are not
usually of interest for biologists) took a lot of time
Phases G2 and M cannot be separated
Only two different stages of maturity can be identified (stems cells and
mature cells)
The apoptosis rates γ1, γ2 and γ3 cannot be identified separately
Difficult to identify β

Probably a patient-dependant model
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Interconnected model of healthy cells (left) and cancer cells
(right).

+
G1 S G2M G0

L1

γ 1
1 γ 1

2 γ 1
3

τ1
1 τ1

2

δ1

β1
τ1
3

G1 S G2M G0
L1

γ 1
1 γ 1

2 γ 1
3

τ1
1 τ1

2 τ1
3

δ1

G! 0
L!1

β1

β!1

G1 S G2M G0
L2

γ 2
1 γ 2

2 γ 2
3

τ 2
1 τ 2

2

δ 2

β2
τ 2
3

G1 S G2M G0
L2

γ 2
1 γ 2

2 γ 2
3

τ1
1 τ 2

2 τ 2
3

δ 2

G! 0
L! 2

β2

β! 2

G1 S G2M G0
L3

γ 3
1 γ 3

2 γ 3
3

τ 3
1 τ 3

2

δ 3

β3
τ 3
3

Cells leave the 
bone marrow

2K1

2K2

2K3

2K1

2K2
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Mathamatical model of cancer cells.

We denote by pi(t,a), li(t,a), ni(t,a) and ri(t,a) the cancer cell populations
of the G1, S, G2M and G0 phases respectively
at the ith compartment, with age a≥ 0 at time t ≥ 0.
The dynamical behavior of the cancer cells is represented by:

∂ pi

∂ t
+

∂ pi

∂a
=−

(
γ1

i +gp
i (a)

)
pi, 0 < a < τ1

i , t > 0,
∂ li
∂ t

+
∂ li
∂a

=−
(
γ2

i +gl
i (a)

)
li, 0 < a < τ2

i , t > 0,
∂ni

∂ t
+

∂ni

∂a
=−

(
γ3

i +gn
i (a)

)
ni, 0 < a < τ3

i , t > 0,
∂ r1

∂ t
+

∂ r1

∂a
=−(δ1 +β1 (z(t)))r1, a > 0, t > 0,

∂ r2

∂ t
+

∂ r2

∂a
=−

(
δ2 +β2

(∫ +∞

0 r2 (t,a)da
))

r2, a > 0, t > 0,
∂ r̃i

∂ t
+

∂ r̃i

∂a
=−β̃i

(∫ +∞

0 r̃i (t,a)da
)

r̃i, a > 0, t > 0.

gp
i (a), gl

i(a), gn
i (a): division rates in G1, S and G2M phases.
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Mathematical model of healthy cells.

The dynamical behavior of the healthy cells is represented by:



∂ p̄ j

∂ t
+

∂ p̄ j

∂a
=−

(
γ̄1

j + ḡp̄
j (a)

)
p̄ j, 0 < a < τ̄1

j , t > 0,

∂ l̄ j

∂ t
+

∂ l̄ j

∂a
=−

(
γ̄2

j + ḡl̄
j (a)

)
l̄ j, 0 < a < τ̄2

j , t > 0,
∂ n̄ j

∂ t
+

∂ n̄ j

∂a
=−

(
γ̄3

j + ḡn̄
j (a)

)
n̄ j, 0 < a < τ̄3

j , t > 0,
∂ r̄1

∂ t
+

∂ r̄1

∂a
=−

(
δ̄1 + β̄1 (z(t))

)
r̄1, a > 0, t > 0,

∂ r̄ j

∂ t
+

∂ r̄ j

∂a
=−

(
δ̄ j + β̄ j

(∫ +∞

0 r̄ j (t,a)da(t)
))

r̄ j, a > 0, t > 0.

ḡp̄
i (a), ḡl̄

i(a), ḡn̄
i (a): division rates in G1, S and G2M phases.
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Mathematical model

At the compartments i = 1,2,

xi (t) :=
∫ +∞

0
ri (t,a)da

−→ total population of resting cells at the time t

x̃i (t) :=
∫ +∞

0
r̃i (t,a)da

−→ total population of fast-self renewing cells at the time t
At the compartments j = 1,2,3

x̄ j (t) :=
∫ +∞

0
r̄ j (t,a)da

−→ total population of resting healthy cells
The interconnection between the cancer and healthy cells occurs at their
first comparments by means of the common feedback of resting cells
z(t) := x1 (t)+ x̄1 (t), which acts on the functions β1 and β̄1.
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The interconnection between the cancer and healthy cells occurs at their
first comparments by means of the common feedback of resting cells
z(t) := x1 (t)+ x̄1 (t), which acts on the functions β1 and β̄1.
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Division rates

The division rate g is a continuous function such that
∫

τ

0 g(a)da =+∞

An important property directly related to the division rate g is that it
define a probability distribution:

f (a) = g(a)e−
∫ a

0 g(s)ds, on [0,τ)

satisfy
∫

τ

0 f (a)da = 1.
We study division rates of the form

g(a) =
m

em(τ−a)−1
, 0≤ a < τ (4)

where the integer m≥ 2. Its probability distribution is given by

f (a) =
m

emτ −1
ema, 0≤ a≤ τ.
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Distributed Delay Differential Equation Model
By using the method of characteristics we obtain the following systems of
distributed delay differential equations

ẋ1 (t) = −(δ1 +β1 (x1 (t)+ x̄1 (t)))x1 (t) +L1

(
h3

1 ∗h2
1 ∗h1

1 ∗ω1

)
(t) ,

˙̃x1 (t) = −β̃1 (x̃1 (t)) x̃1 (t)+ L̃1

(
h3

1 ∗h2
1 ∗h1

1 ∗ω1

)
(t) ,

˙̄x1 (t) = −
(
δ̄1 + β̄1 (x1 (t)+ x̄1 (t))

)
x̄1 (t)+ L̄1

(
h̄3

1 ∗ h̄2
1 ∗ h̄1

1 ∗ ω̄1

)
(t) ,

ẋ2 (t) = −(δ2 +β2 (x2 (t)))x2 (t)+L2

(
h3

2 ∗h2
2 ∗h1

2 ∗ω2

)
(t)

+2K1

(
h3

1 ∗h2
1 ∗h1

1 ∗ω1

)
(t) ,

˙̃x2 (t) = −β̃2 (x̃2 (t)) x̃2 (t)+ L̃2

(
h3

2 ∗h2
2 ∗h1

2 ∗ω2

)
(t) ,

˙̄x2 (t) = −
(
δ̄2 + β̄2 (x̄2 (t))

)
x̄2 (t)+ L̄2

(
h̄3

2 ∗ h̄2
2 ∗ h̄1

2 ∗ ω̄2

)
(t)

+2K̄1

(
h̄3

1 ∗ h̄2
1 ∗ h̄1

1 ∗ ω̄1

)
(t) ,

˙̄x3 (t) = −
(
δ̄3 + β̄3 (x̄3 (t))

)
x̄3 (t) + L̄3

(
h̄3

3 ∗ h̄2
3 ∗ h̄1

3 ∗ ω̄3

)
(t) ,

.
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3. Distributed Delay Differential Equation Model
Stability Analysis
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Simple model

ẋi(t) = −(δi +βi(xi(t)))xi(t)

+2Li

∫
τi

0
e−γa fi(a)βi(xi(t−a))xi(t−a)da

+2(1−Ki−1)
∫

τi−1

0
e−γi−1a fi−1(a)wi−1(t−a)da

ẏi(t) = −γiyi(t)+

βi(xi(t))xi(t)−
∫

τi

0
e−γa fi(a)βi(xi(t−a))xi(t−a)da

where K0 = 0
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Time-domain or frequency domain ?

Time-domain (state-space description)

Ordinary Differential Equations
ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t)
x(0) = 0

−→
L

Frequency domain (input-output description)

ŷ(s) = L (y) = L (g∗u) = G(s) û(s) = C(sI−A)−1B û(s)
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Stability in an input-output framework

Stability

sup
u∈L2,u6=0

‖Gu‖L2

‖u‖L2
= ‖G‖H∞

< ∞

H∞ = {fonctions which are analytic and bounded dans {Res > 0}}.

For finite-dimensional systems:

G is H∞-stable ⇐⇒ G has no poles in the closed right half-plane
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Delay systems

G(s) =

t(s)+
N′

∑
i=1

ti(s)e−isτ

p(s)+
N

∑
k=1

qk(s)e−ksτ

=
n(s)
d(s)

où deg p≥
≥

deg t
deg ti

i ∈ NN′

Retarded : deg p>degqk k ∈ NN Neutral : ∃k ∈ NN deg p=degqk

ẋ = x(t− τ)+u(t− τ) ẋ+ ẋ(t− τ) = u(t− τ)
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Delay systems
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Delay systems

G(s) =

t(s)+
N′

∑
i=1

ti(s)e−isτ

p(s)+
N

∑
k=1

qk(s)e−ksτ

=
n(s)
d(s)

où deg p≥
≥

deg t
deg ti

i ∈ NN′
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Delay systems

G(s) =

t(s)+
N′

∑
i=1

ti(s)e−isτ

p(s)+
N

∑
k=1

qk(s)e−ksτ

=
n(s)
d(s)

où deg p≥
≥

deg t
deg ti

i ∈ NN′

Retarded : deg p>degqk k ∈ NN Neutral : ∃k ∈ NN deg p=degqk

ẋ = x(t− τ)+u(t− τ) ẋ+ ẋ(t− τ) = u(t− τ)
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H∞-stability of retarded delay systems

For retarded delay systems:

G is H∞-stable ⇐⇒ G has no poles in the closed right half-plane

same NSC for asymptotic and exponential stability
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Equilibrium points of the simple model (healthy model)

Here we are interested by strictly positive equilibrium points

The system admits a unique strictly positive equilibrium point if and only if

β1(0)>
δ1

2(1−K)
∫

τ

0 e−γt f (t)dt−1
(5)

Moreover, the positive steady state can be computed from

βi(xe
i ) =

1
αi

(
δi−

2Ki−1Ci−1βi−1(xe
i−1)x

e
i−1

xe
i

)
(6)
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Stability results for the simple model (input-output
techniques)

Theorem

Let xe be the unique strictly positive equilibrium point and µ :=
d
dx

xβ (x)|xe .
If µ > 0, le system is locally asymptotically stable iff

2(1−K)
∫

τ

0
e−γt f (t)dt <

δ +µ

µ

If µ < 0 and δ > |µ|, the system is locally asymptotically stable iff

2(1−K)
∫

τ

0
e−γt f (t)dt <

δ −|µ|
|µ|

M0, M0 > 1
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Equilibrium points of the interconnected model
We call xe

1, x̃e
1, x̄e

1, xe
2, x̃e

2, x̄e
2 and x̄e

3 the equilibrium points of the coupled
system. The origin, xe

1 = x̃e
1 = x̄e

1 = xe
2 = x̃e

2 = x̄e
2 = x̄e

3 = 0, is an equilibrium
point.

β1 (xe
1 + x̄e

1) =−c1δ1, (7)

β̃1 (x̃e
1) =−c̃1δ1

(
xe

1
x̃e

1

)
, (8)

β̄1 (xe
1 + x̄e

1) =−
δ̄1

1− L̄1H̄1 (0)
, (9)

β2 (xe
2) =−c2

(
α1δ2−2K1H1 (0)δ1

(
xe

1
xe

2

))
, (10)

β̃2 (x̃e
2) =−c̃2 (α1δ2x2−2K1H1 (0)δ1xe

1)

(
1
x̃e

2

)
, (11)

β̄2 (x̄e
2) =

−δ̄2 +2K̄1H̄1 (0) β̄1
(
x̄e

1
)( x̄e

1
x̄e

2

)
1− L̄2H̄2 (0)

, (12)

β̄3 (x̄e
3)
−δ̄3 +2K̄2H̄2 (0) β̄2

(
x̄e

2
)( x̄e

2
x̄e

3

)
1− L̄3H̄3 (0)

,
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Equilibrium points

We are interested in non negative equilibrium points
Use properties of β functions (non negative, decreasing)

c1δ1 < β1 (0) , (13)

− δ̄1

(1− L̄1H̄1 (0))
< β̄1 (0) , (14)

1
L1 + L̃1

< H1 (0)<
1
L̃1

, (15)

1
L̄1

< H̄1 (0) , (16)

1
L2 + L̃2

< H2 (0)<
1
L̃2

, (17)

1
L̄2

< H̄2 (0) , (18)

1
L̄3

< H̄3 (0) .
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Equilibrium points

The perturbation of a healthy solution i.e. x1 (t) = 0, x̃1 (t) = 0, x̄1 (t)>
0, x2 (t) = 0, x̃2 (t) = 0, x̄2 (t)> 0 and x̄3 (t)> 0 for all t ≥ 0,may provoke
the born of cancer cells.

Necessary and sufficient conditions for the existence of a unique equi-
librium point x̄e

1 > 0, x̄e
2 > 0 and x̄e

3 > 0 when xe
1 = x̃e

1 = xe
2 = x̃e

2 = 0
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Model linearization

Consider the following perturbed trajectories: X1 (t) := x1 (t)−xe
1, X̃1 (t) := x̃1 (t)−

x̃e
1, X̄1 (t) := x̄1 (t)− x̄e

1, X2 (t) := x2 (t)− xe
2, X̃2 (t) := x̃2 (t)− x̃e

2, X̄2 (t) := x̄2 (t)− x̄e
2 and

X̄3 (t) := x̄3 (t)− x̄e
3. The linearized model is given by

Ẋ1 (t) = −(δ1 +µ1)X1 (t)− c12X̄1 (t)+L1
(
h3

1 ∗h2
1 ∗h1

1 ∗W1
)
(t) ,

˙̃X1 (t) = −µ̃1X̃1 (t)+ L̃1
(
h3

1 ∗h2
1 ∗h1

1 ∗W1
)
(t) , (19)

˙̄X1 (t) = −
(
δ̄1 + µ̄1

)
X̄1 (t)− c15X1 (t)+ L̄1

(
h̄3

1 ∗ h̄2
1 ∗ h̄1

1 ∗W̄1
)
(t) , (20)

Ẋ2 (t) = −(δ2 +µ2)X2 (t)+L2
(
h3

2 ∗h2
2 ∗h1

2 ∗W2
)
(t)

+2K1
(
h3

1 ∗h2
1 ∗h1

1 ∗W1
)
(t) , (21)

˙̃X2 (t) = −µ̃2X̃2 (t)+ L̃2
(
h3

2 ∗h2
2 ∗h1

2 ∗W2
)
(t) , (22)

˙̄X2 (t) = −
(
δ̄2 + µ̄2

)
X̄1 (t)+ L̄2

(
h̄3

2 ∗ h̄2
2 ∗ h̄1

2 ∗W̄2
)
(t)

+2K̄1
(
h̄3

1 ∗ h̄2
1 ∗ h̄1

1 ∗W̄1
)
(t) , (23)

˙̄X3 (t) = −
(
δ̄3 + µ̄3

)
X̄3 (t)+ L̄3

(
h̄3

3 ∗ h̄3
2 ∗ h̄1

3 ∗W̄3
)
(t)

+2K̄2
(
h̄3

2 ∗ h̄2
2 ∗ h̄1

2 ∗W̄2
)
(t) . (24)
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Stability Analysis

The linear system is stable if and only if 1/det(A(s)) is stable, where

Consequently, since the matrix A(s) has a block lower triangular form with
diagonal blocks A1 (s), A2 (s) and a77 (s) we have

det(A(s)) = det(A1(s))det(A2(s))a77 (s) (25)
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Stability Analysis

Theorem
Suppose that δ̄1 + µ̄1 > 0, δ1 + µ1 > 0, µ̃1 > 0, δ̄2 + µ̄2 > 0, δ2 + µ2 > 0,
µ̃2 > 0, δ̄3 + µ̄3 > 0,

H1 (0)<
δ1 +µ1

2(1−K1)(|µ1|+(1−σ1)δ1)
(26)

H̄1 (0)<
δ̄1 + µ̄1

2(1− K̄1) |µ̄1|
(27)

H2 (0)<
δ2 +µ2

2(1−K2)(|µ2|+(1−σ2)δ2)
(28)

H̄2 (0)<
δ̄2 + µ̄2

2(1− K̄2) |µ̄2|
(29)

H̄3 (0)<
δ̄3 + µ̄3

2(1− K̄3) |µ̄3|
. (30)

Then the system linearized at the equilibrium point xe
1 = 0, x̃e

1 = 0, x̄e
1 > 0,

xe
2 = 0, x̃e

2 = 0, x̄e
2 > 0 and x̄e

3 > 0 is H∞ stable. In particular, the nonlinear
system is locally asymptotically stable.
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Numerical example

Let us study a system with two compartments with δ1 = 2, δ̄1 = 7, δ2 = 1.5,
δ̄2 = 0.85, δ̄3 = 1.4, K1 = 0.1, K̄1 = 0.2, K2 = 0.1, K̄2 = 0.2, K̄3 = 0.4,
σ1 = 0.9, σ2 = 0.8, and the other parameters as indicated in the following
Table.
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Simulation results

The resulting equilibrium point is x̄e
1 = 0.5608, x̄e

2 = 3.3188, x̄e
3 = 0.1295,

xe
1 = x̃e

1 = xe
2 = x̃e

2 = 0 with the parameters µ1 = 1.5215, µ̃1 = 1, µ̄1 = 7.0159,
µ2 = 1, µ̃2 = 1, µ̄2 =−0.0511 and µ̄3 = 0.9913.
The local stability conditions are satisfied:

H1 (0) = 0.992 <
δ1 +µ1

2(1−K1)(|µ1|+(1−σ1)δ1)
= 1.136,

H̄1 (0) = 0.968 <
δ̄1 + µ̄1

2(1− K̄1) |µ̄1|
= 1.246,

H2 (0) = 0.981 <
δ2 +µ2

2(1−K2)(|µ2|+(1−σ2)δ2)
= 1.068,

H̄2 (0) = 0.922 <
δ̄2 + µ̄2

2(1− K̄2) |µ̄1|
= 9.7659,

H̄3 (0) = 0.989 <
δ̄3 + µ̄3

2(1− K̄3) |µ̄3|
= 1.028.
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Simulation results
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Simulation results

Further simulations showed that decreasing σ1 and σ2, and fixing the re-
maining parameters as in the previous example the local stability condition
is no longer satisfied. For example, when σ1 = 0.4 and σ2 = 0.5 the states
x̃1 and x̃2 are far from their equilibrium value
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Time-varying parameters

To model the action of drugs the two drugs:

−→ we need to take σ and γ depending on t.

Time-domain methods are helpful to get a first insight
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Stability results for the simple model (time-domain)

The function β is assumed to be locally Lipschitz

Trivial equilibrium point

Theorem
The system admits the origin as a globally asymptotically stable
equilibrium point if for all i

βi(0)<
δi

2(1−Ki)
∫

τ

0 e−γit f (t)dt−1
(31)

If
β1(0)>

δ1

2(1−Ki)
∫

τ

0 e−γ1t f (t)dt−1
(32)

no positive solution converges to the trivial equilibrium point
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Example 1:
Choosing fi(a) = mi

emiτi−1 emia, with mi > 0 for all i ∈ [1,n].
δ1 = 1.25, L1 = 1−K1 = 0.85, m1 = 5, τ1 = 1.2, γ1 = 0.22 and
β1(x) = 1

1+x2 . ( ⇒ δ1−α1β1(0) = 0.88 )
δ2 = 1, L2 = 1−K2 = 0.8, m2 = 7, τ2 = 1.3, γ2 = 0.33 and β2(x) = 3

1+x3 . (
⇒ δ2−α2β2(0) = 0.72 )
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Figure 1: Trajectories of the states x1 and x2.
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Stability results for the simple model (time-domain)

Let Ki(t)+Li(t) = 1 and Li(t) ∈ [Limin,Li max]⊂ (0,1)

Corollory
The conditions

βi(0)<
δi

2(1−Ki min)
∫

τ

0 e−γit f (t)dt−1
(33)

ensures that the origin of the system (with time-varying parameters) is
globally exponentially stable.
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Stability results for the simple model (time-domain)

Strictly positive equilibrium point

Theorem
The conditions

2(1−Ki)
∫

τi

0
e−γit f (t)dt <

δi +µi

|µi|
ensure that the non linear system is asymptotically (exponentially) stable

We can get an approximation of the basin of attraction
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Example 2:
δ1 = 2.1, L1 = 0.985, m1 = 1, τ1 = 2.81165, γ1 = 0.095 and β1(x) = 8

1+x3 .
⇒ (α1 = 0.63,xe

1 = 1.1226,ς1 =−26.2113) .
δ2 = 0.2, L2 = 0.95, m2 = 10, τ2 = 0.6332, γ2 = 0.085 and β2(x) = 2

1+x3 .
⇒ (α2 = 0.81,xe

2 = 2.1136,ς2 =−14.5370) .
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Example 3:
For i=1: δ1 = 0.1356, K1 = 0.05, β1(x) = 0.5

1+x2 , γ1 = 0.3, m1 = 10,
τ1 = 1.109402.
For i=2: δ2 = 0.1669, K2 = 0.07, β2(x) = 1

1+x4 , γ2 = 0.4, m2 = 10,
τ2 = 1.2.
For i=3: δ3 = 0.3559, K3 = 0.085, β3(x) = 3

1+x2 , γ3 = 0.45, m3 = 2,
τ3 = 1.36.
α1 = 0.40422, α2 = 0.19888 et α3 = 0.20422.
Xe = (0.7,0.782,1.005).
0 < δi < δi+1, 0 < Ki < Ki+1, 0 < τi < τi+1 and 0 < xe

i < xe
i+1, for all i≥ 1.

For i=1: β ∗1 = 0.2505 > 0, ς1 = 0.0892 > 0.
For i=2: β ∗2 = 0.1023 > 0, ς2 = 0.0249 > 0.
For i=3: β ∗3 = 0.3484 > 0, ς3 = 0.3395 > 0.
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4. Conclusion and future work
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Conclusions and Future work

We have proposed a multi-stage interconnected model of healthy cells
and cancer cells of AML.
Stability may be lost when fast self-renewal is high
Model the fast self-renewal phenomenon without quiescent phase.
Full analysis with time-varying parameters γ(t) and σ(t).
PK/PD models
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