

Modeling spontaneous metastasis following surgery and concomitant resistance: an in vivo-in silico approach

S. Benzekry

Present challenges of mathematics in oncology and biology of cancer Marseille, Septembre 2015

Metastasis (μετά = change, στάσιζ = place)

Contrast-enhanced X-ray computed tomographies of the liver with multiple metastatic tumors. Interval : 127 days.

+ some of the metastases are not visible

Iwata et al., J Theor Biol, 2000

Metastasis

- "Metastasis remains the cause of 90% of deaths from solid cancers" *Gupta and Massagué, Cell, 2006*
- Exciting biological findings amenable to dynamical/mathematical descriptions at the systemic scale in recent years:
 - Distant inhibition of angiogenesis by endogenous agents (endostatin,...) O'Reilly, Folkman et al., Cell, 1994
 - Self-seeding Norton and Massagué, Nat Med, 2006
 - Pre-metastatic niche Kaplan et al., Nature 2005
- Clinical challenges
 - What is the burden of occult micro-metastases at diagnosis?
 - What should be the extent of **post-surgery ("adjuvant") therapy**?
 - What is the **differential effect of therapies** on the primary tumor and the metastases? (AA therapies might accelerate mets? *Ebos et al., Cancer Cell, 2009*)
 - How to optimize the **scheduling and sequence** of anti-cancer agents?

Metastasis

- What is the burden of occult micro-metastases at diagnosis?
- What should be the extent of **post-surgery** ("adjuvant") therapy? ٠
- What is the **differential effect of therapies** on the primary tumor and the metastases? (AA therapies might accelerate mets? Ebos et al., Cancer Cell, 2009)
- How to optimize the **scheduling and sequence** of anti-cancer agents? ٠

Breast cancer epidemiology

- Most common invasive cancer in women (14% of new cancer cases)
- Overall 5-year survival: 89.2%
- However, about 28% will relapse within 15 years Brewster et al, J Natl Cancer Inst, 2008
- 20 year survival is (only) 44% Litiere et al., Lancet Oncol, 2012

Source: Surveillance, Epidemiology, and End Results (SEER) database, NCI

Outline

- 1. A minimally parameterized model for metastatic dynamics
 - A. Open clinical questions
 - B. Model
 - C. Confrontation to experimental and clinical data sets
 - D. Implications for assessment of the metastatic relapse risk and impact of PT size at surgery on survival
- 2. Concomitant resistance
 - A. Biological phenomenon
 - B. Data
 - C. Model

Clinical questions

• For early breast cancer (non-metastatic)

Q1: How to estimate the amount of **residual distant disease** at diagnosis in order to **personalize** the adjuvant (chemo)-therapy?

For metastatic breast cancer, no consensus on the utility of surgery.
 Ongoing clinical trials. *Thomas et al., JAMA Surg, 2 dec 2015*

Q2: What is the quantitative impact of PT resection on the time-course of the post-surgical metastatic burden?
(Q3: How to optimize the scheduling of systemic anti-cancer agents (cytotoxic therapies, bio-therapies)?)

Metastatic biology 101

Secondary growth of disseminated cancer cells (from a **primary** location)

С

Е

Metastatic process

Two phases: dissemination and colonization

Talmadge and Fidler, Cancer Res, 2010 Valastyan and Weinberg, Cell, 2011

Model scheme

Simulation

t = 40.3 days

Tumor size at diagnosis: 4.32 cm

Stochastic and discrete version of metastatic emission employed for the simulation

Outline

- 1. A minimally parameterized model for metastatic dynamics
 - A. Open clinical questions
 - B. Model
 - C. Confrontation to experimental and clinical data sets
 - D. Implications for assessment of the metastatic relapse risk and impact of PT size at surgery on survival
- 2. Concomitant resistance
 - A. Biological phenomenon
 - B. Data
 - C. Model

Ortho-surgical animal models of metastasis

- Metastasis is hard to study experimentally (intra-vital process)
- Spontaneous metastases

- Necessary to consider surgery of the primary tumor (PT) for clinical relevance
- Role of the immune system: 2 animal models (syngeneic and xenograft)

Benzekry, Ebos et al., Cancer Res, 2015

Individual fits

Benzekry, Ebos et al., Cancer Res, 2015

Statistical procedure: nonlinear mixed effects modeling

Usual fitting methods consider each time series independently

$$y_{i}^{j} = M(t_{i}^{j}, \theta^{j}) + \varepsilon_{i}^{j} \qquad \text{Individual } 1 \leq j \leq N$$

$$\underbrace{\mathsf{MLE}}_{\theta^{j}} = \min_{\theta^{j}} \sum \left(y_{i}^{j} - M(t_{i}, \theta^{j}) \right)^{2} \qquad \text{Time } t_{i}$$

 When only sparse data are available from subjects in the same population, one can fit parameters distribution all-in-once

$$y_i^j = M(t_i^j, \theta^j) + \varepsilon_i^j, \quad \theta^1, \dots, \theta^N \sim \mathcal{N}(\theta_\mu, \theta_\omega), \quad \theta_\mu \in \mathbb{R}^p, \ \theta_\omega \in \mathbb{R}^{p \times p}$$

Reduces the number of parameters from pxN to p+p2

Population fit and prediction of bioluminescence data

Fit

Prediction

- -----Median model primary tumor
- - 10th and 90th percentiles model primary tumor
- O Data metastatic burden
- Median model metastatic burden
- - 10th and 90th percentiles model metastatic burden

Benzekry, Ebos et al., Cancer Res, 2015 Hartung, Mollard et al., Cancer Res, 2014

Predicted versus experimental survival

The model survival was defined as the time to reach a given lethal burden of 4×10^9 p/s, i.e.

 $\inf\{t>0; M(t) > 4 \times 10^9\}$

Best model structure

- Mechanistic assumptions
 - Various structures tested for relationship of the PT and mets growth for optimal trade-off between goodness-of-fit and identifiability
 - Same growth between PT and mets
 - Growth model = Gomp-Exp
 - λ = in vitro proliferation rate (measured)
- Statistical assumptions
 - PT and mets fitted together (3 parameters)
 - Proportional statistical error model
 - Lognormal population distribution of the parameters
- Fast computation of the total metastatic burden using the FFT algorithm
 Hartung, 2015

 $Gomp(v) = (\alpha - \beta \ln(v)) v$ $g_{p}(v) = g(v) = \min(Gomp(v), \lambda v)$

Fits to breast cancer clinical dataset

20 year follow-up of 2648 patients

Koscielny et al., Br J Cancer, 1984

Diameter of PT (cm)	Prop. of relapse (Data)	Prop. of relapse (Model)
$1 \le D \le 2.5$	27.1	27.3
$2.5 < D \leq 3.5$	42.0	43.1
$3.5 < D \leq 4.5$	56.7	56.6
$4.5 < D \le 5.5$	66.5	65.6
$5.5 < D \le 6.5$	72.8	74.0
$6.5 < D \le 7.5$	83.8	80.1
$7.5 < D \le 8.5$	81.3	84.5

p = 0.0157 Pearson's χ^2 test for goodness-of-fit

- Assume **Gompertz growth** of PT, doubling time at 1 gram = 7 months and carrying capacity $K = 10^{12}$ cells
- Recover cancer inception time -T₁
 from PT volume at diagnosis
- Lognormal distribution of *m* and fixed populational *γ* for interindividual variability
- Probability of developing a met = probability of having one at diagnosis

$$\mathbb{P}\left(\mathsf{Mets}\right) = \mathbb{P}\left(\mu \int_{\mathbf{0}}^{T_{\mathbf{1}}} V_{\rho}(t) > 1\right)$$

Parameters: quantification of metastatic potential

Data	Growth model	Location	Par.	Unit	Estimate (CV)	95 % Cl
In vitro (Breast)	Exp.		λ	day^{-1}	0.837 (-)	(0.795 - 0.879)
Preclinical Breast	Gomp-Exp.	РТ	$V_i \\ lpha \\ eta$	$cell\ day^{-1}\ day^{-1}$	$1.00 imes 10^{6}$ (-) 1.9 (5.73) 0.0893 (21.3)	- (1.84 - 1.96) (0.0791 - 0.101)
		Met	V_0 μ	$cell^{-1} \cdot day^{-1}$	10 () $4.43 imes 10^{-11}$ (176)	$(2.70 \times 10^{-11} - 7.27 \times 10^{-11})$
		PT	$V_i \\ \alpha_p$	$p/s\ day^{-1}$	$1.63 imes 10^5$ (45.5) 0.21 (60.3)	$(9.40 imes 10^4 - 2.83 imes 10^5)$ (0.151 - 0.292)
Preclinical Kidney	Exp.	Met	$V_0 \\ lpha \\ \mu$	$p/s\ day^{-1}\ cell^{-1}\cdot day^{-1}$	10 (-) 0.0307 (201) 0.0415 (397)	- (0.0133 - 0.0707) (0.0181 - 0.0948)
Clinical Breast	Gomp.	PT	$V_i \\ lpha \\ eta \\ eta$	$cell\ day^{-1}\ day^{-1}$	1 (-) 0.013 (-) 0.000471 (-)	
		Met	V_{0} μ	$cell \\ cell^{-1} \cdot day^{-1}$	$\frac{1}{7.00 \times 10^{-12}} (1.04 \times 10^4)$	

Benzekry, Ebos et al., Cancer Res, 2015

Diagnosis personalization

Nonlinear impact of PT size at surgery on survival

Summary

- A biologically-based, minimally parameterized, mathematical model for metastatic development links pre-surgical tumor growth and post-surgical metastatic burden dynamics
- Validation against preclinical and clinical data sets
- Same growth law between PT and mets, equal probability among the PT cells of successful establishment of a distant colony and no secondary dissemination was a sufficient theory to explain the data
- Inter-animal/individual metastatic propensity can be reduced to variability of one critical (patient-specific?) parameter μ
- Nonlinear dependence of survival on primary tumor size at diagnosis suggests existence of a threshold for efficacy of surgery and provides a way to estimate its value

Comparison with the Marseille study *without surgery* (remember Niklas's talk)

- Quantitative comparison was hampered by several technical aspects (different number of cells injected, different mice strain, different bioluminescence quantification method)
- Keeping these flaws in mind, when using the **same framework** ($d(V) = \mu V^{2/3}$, different growth rates for PT and mets and a different parameterization of the Gompertz $g(v)=av\ln(b/v)$), we found:
 - A significantly larger value of a (4.91×10⁻² day⁻¹ ± 2.02×10⁻³ versus 7.9×10⁻³ day⁻¹ ± 2.5 × 10−3, median ± se), possibly indicative of post-surgery accelerated growth
 - But also a significantly smaller metastatic emission parameter $\mu = 7.24$ × $10^{-3} \pm 8.5 \times 10^{-3}$ cell^{-2/3}· day⁻¹ versus $\mu = 6.31 \times 10^{-1} \pm 4.42 \times 10^{-1}$ cell^{-2/3}· day⁻¹

2. Concomitant tumor resistance

Innía

Concomitant tumor resistance

- Inhibition of secondary growth by a primary mass
- Evidenced more than **100 years ago** *Ehrlich, 1906*
- Primary hypothesis: athrepsia (deprivation of nutrients)
- Other hypothesis: immune enhancement from the primary.
 "Concomitant immunity"
- 1980's: it happens in immune-deprived mice Gorelik,, Cancer Res 1983
- 1990's: Folkman's work on systemic inhibition of angiogenesis (SIA) O'Reilly, Folkman et al., Cell, 1994
- Others also proposed direct distant inhibition of proliferation

Post-surgery metastatic acceleration

- **Clinically** evidenced from:
 - Patients cases reports Coffey et al., Excisional surgery for cancer cure: therapy at a cost, Lancet Oncology, 2003
 - Bimodal relapse hazard (breast) Retsky et al., Surgery triggers outgrowth of latent distant disease in breast cancer: an inconvenient truth?, Cancers 2010
- Reported in numerous animal experiments since more than 100 years
 Marie and Clunet, 1910
- Could be due to the surgical trauma itself
- Experiments suggested other hypothesis, linked with metastatic dormancy
- Concomitant resistance

Figure 2. The Presence of a Primary Tumor Is Associated with an Inhibition of Neovascularization and Growth of Its Metastases

O'Reilly, Folkman et al., Angiostatin: A Novel Angiogenesis Inhibitor That Mediates te Suppression of Metastases by a Lewis Lung Carcinoma, Cell 1994

Objectives

- Are we able to give a mathematical description of the dynamics of concomitant resistance?
- Minimally parameterized, biologically and data-based mathematical model(s) of the process
- Test different biological hypotheses by confronting the (mathematical) theories to the empirical data

Experiment

- Injection s.c. of two tumors of 10⁶ LLC cells in C57/BL6 mice
- Two groups
 - Control: only one tumor
 - Group S: simultaneous
 injection of cells in two
 different sites
- Record tumor growth in time at the two sites

Bets

A mouse with two tumors

Something happens. One tumor has normal volume and the other is smaller

Control group (single tumors)

Double tumors

Statistical confirmation

- We want to test: is the couple (L_S(t), R_S(t)) statistically different from a couple of two tumors growing independently?
- Generate an artificial group of double independent tumors by randomly dividing the control group (n=20) in 2 and pairing couples of growth curves from each subgroup
- Compare the large/small tumors of group S to the large/small tumors of the virtual control group

Single-tumor growth models

Exponential V $_{0}$

$$\begin{cases} \frac{dV}{dt} = aV\\ V(t=0) = V_0 \end{cases}$$

Power law

$$\left\{ \begin{array}{l} \frac{dV}{dt} = aV^{\gamma} \\ V(t=0) = 1 \ mm^3 = 10^6 \ cells \end{array} \right. \label{eq:eq:ell}$$

Gompertz

 $\begin{cases} \frac{dV}{dt} = aV \ln\left(\frac{K}{V}\right) \\ V(t=0) = 1 \ mm^3 = 10^6 \ cells \end{cases}$

Simultaneous

Outline

- 1. A minimally parameterized model for metastatic dynamics
 - A. Open clinical questions
 - B. Model
 - C. Confrontation to experimental and clinical data sets
 - D. Implications for assessment of the metastatic relapse risk and impact of PT size at surgery on survival
- 2. Concomitant resistance
 - A. Biological phenomenon
 - B. Data
 - C. Model

Asymmetric inhibition

$$\begin{cases} \frac{dV_1}{dt} = aV_1 \ln\left(\frac{K}{V_1}\right), & V_1(t=0) = 1\\ \frac{dV_2}{dt} = aV_2 \ln\left(\frac{K}{V_2}\right) - eI(V_1, V_2), & V_2(t=0) = 1 \end{cases}$$

was able to fit the data

• Asymmetric inhibition $\begin{cases}
\frac{dV_1}{dt} = aV_1 \ln \left(\frac{K}{V_1}\right), & V_1(t=0) \\
\frac{dV_2}{dt} = aV_2 \ln \left(\frac{K}{V_2}\right) - eI(V_1, V_2), & V_2(t=0) = 1
\end{cases}$ was able to fit the data but biologically unrealistic

• Asymmetric inhibition

$$\begin{bmatrix}
\frac{dV_1}{dt} = aV_1 \ln \left(\frac{K}{V_1}\right), & V_1(t=0) & V_1(t=0) \\
\frac{dV_2}{dt} = aV_2 \ln \left(\frac{K}{V_2}\right) - eI(V_1, V_2), & V_2(t=0) = 1
\end{bmatrix}$$
was able to fit the data but biologically unrealistic

Symmetric direct inhibition

$$\begin{cases} \frac{dV_1}{dt} = aV_1 \ln\left(\frac{K}{V_1}\right) - eI_1(V_1, V_2), & V_1(t=0) = 1\\ \frac{dV_2}{dt} = aV_2 \ln\left(\frac{K}{V_2}\right) - eI_2(V_1, V_2), & V_2(t=0) = V_{0,2} \end{cases}$$

- Same growth and inhibition parameters for V_1 and V_2
- Symmetry: $I_1(V_2, V_1) = I_2(V_1, V_2)$
- Three possibilities for the shape of $I_1(V_1, V_2)$ shown here: V_1V_2 (1), V_2 (2), $(V_1+V_2)V_1$ (3)

Hypothesis for the origin of dissymmetry between V_1 and V_2

comes from the initial number of cells that « take »

Indirect (angiogenesis-related) inhibition

$$\begin{cases} \frac{dV_1}{dt} = aV_1 \ln\left(\frac{K_1}{V_1}\right), & V_1(t=0) = 1\\ \frac{dK_1}{dt} = bV_1 - dV_1^{2/3}K_1 - eI_1(V_1, V_2), & K_1(t=0) = K_0\\ \frac{dV_2}{dt} = aV_2 \ln\left(\frac{K}{V_2}\right), & V_2(t=0) = V_{0,2}\\ \frac{dK_2}{dt} = bV_2 - dV_2^{2/3}K_2 - eI_2(V_1, V_2) & K_2(t=0) = K_0 \end{cases}$$

- Based on the Hahnfeldt model Hahnfeldt et al., Cancer Res, 1999 with dynamic carrying capacity K
- Parameters d and K_0 were fixed

Competition (athrepsia hypothesis)

$$\begin{cases} \frac{dV_1}{dt} = aV_1 \ln\left(\frac{K}{V_1 + V_2}\right), & V_1(t=0) = 1\\ \frac{dV_2}{dt} = aV_2 \ln\left(\frac{K}{V_1 + V_2}\right), & V_2(t=0) = V_{0,2} \end{cases}$$

 One parameter (degree of freedom) less than the other models

Direct inhibition (2) fit

- Gives satisfactory fit
- ▶ Behavior when *e* = 0 is realistic
- Kinetic differences between V_1 and V_2 are mostly due to inhibition (and not to difference in $V_{0,2}$)

Competition model

Also gives satisfactory fit (and thus, possible explanatory hypothesis)

Models able to fit

- Criterias for rejection of a model:
 - Inaccurate visual goodness-of-fit
 - Yielding biologically unrealistic behavior when e = 0

Index	1	2	3
I_1	V_2V_1	V_2	$(V_1 + V_2)V_1$
I_2	V_1V_2	V_1	$(V_1 + V_2)V_2$
Direct Inhibition	x	ο	X
Indirect Inhibition	x	0	Х
Competition			0

Goodness-of-fit metrics

Model	SSE	AIC	RMSE	R2	$\mathbf{p} > 0.05$	#
Direct 2	0.183(0.102 - 0.388)[1]	-17.6(-31.26.08)[1]	0.428(0.324 - 0.63)[1]	0.973(0.934 - 0.991)[1]	100	4
Competition	0.241(0.102 - 0.398)[2]	-15.8(-333.96)[2]	0.492(0.326 - 0.635)[2]	0.956(0.871 - 0.99)[3]	100	3
Indirect 2	0.273(0.151 - 0.506)[3]	-10.9(-24.11.58)[3]	0.523(0.393 - 0.715)[3]	0.967(0.934 - 0.986)[2]	100	4

SSE = Sum of Squared Errors, AIC = Akaike Information Criterion, RMSE= Root Mean Squared Errors

Parameter values/identifiability

Model	Par.	\mathbf{Unit}	Median value (CV)	NSE (%)	95% CI
Direct 2	$a \\ K \\ V_{0,2} \\ e$	- - - -	$\begin{array}{c} 0.0957 \ (21.9) \\ 1.02e{+}04 \ (90.2) \\ 0.58 \ (64.4) \\ 0.048 \ (91.5) \end{array}$	$11.3 \\ 46.5 \\ 8.9 \\ 2.35$	(0.044, 0.052)
Competition	$a \\ K \\ V_{0,2}$	- - -	$\begin{array}{c} 0.0988 \ (28.8) \\ 8.52\mathrm{e}{+03} \ (82.2) \\ 0.402 \ (63.1) \end{array}$	$11.2 \\ 42.1 \\ 12.5$	_
Indirect 2	$a \\ b \\ V_{0,2} \\ e$	- - -	$\begin{array}{c} 0.206 \ (35.8) \\ 18.7 \ (32.1) \\ 0.685 \ (45.3) \\ 4.07 \ (57.8) \end{array}$	$7.81 \\ 13.2 \\ 11.8 \\ 1.36$	(3.96, 4.18)

NSE = Normalized Standard error

CV = Coefficient of Variation

Summary

- In mice bearing two tumors implanted simultaneously, tumor growth is suppressed in one of the two tumors
- New quantitative and identifiable mathematical models of tumor-tumor growth interactions were developed and able to match the data.
- Possible explanation of dissymmetry: difference in number of cells that take
- Based only on tumor growth kinetics we could not clearly discriminate between three possible theories: competition, direct or indirect (angiogenesis) inhibition
- But we could discriminate the shape of the inhibition term: $I_1(V_1, V_2) = V_2$

Perspective: integrate this model for tumor-tumor interactions into the **organism-level** for the dynamics of the metastatic population

Acknowledgements

Preclinical data of ortho-surgical animal models of metastases

John Ebos's laboratory, Roswell Park Cancer Institute, Buffalo, NY, USA

Two-tumors study

Center of Cancer and Systems Biology, Boston, MA, USA Claire Lamont, P. Hahnfeldt, L. Hlatky

Thank you for your attention!!