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Abstract  

Oncology drugs are only effective in a small proportion of cancer patients. To make 

things worse, our current ability to identify these responsive patients before treatment 

is still very limited. Thus, there is a pressing need to discover response markers for 

marketed and research oncology drugs in order to improve patient survival, reduce 

healthcare costs and enhance success rates in clinical trials. Screening these drugs 

against a large panel of cancer cell lines has been recently employed to discover new 

genomic markers of in vitro drug response. However, while the identification of these 

markers among several thousands of candidate drug-gene associations is error-prone, 

an appraisal of the effectiveness of such detection task is currently lacking.  

Here we propose a new approach that directly measures the discrimination power of a 

drug-gene association by posing each of these associations as a binary classification 

problem. The application of this methodology has led to the identification of 232 new 

genomic markers distributed across 81% of the analysed drugs, including 8 drugs 

without previously known markers, which were missed by the methodology initially 

applied to the Genomics of Drug Sensitivity in Cancer (GDSC) dataset. 

Introduction 

Cancer is a leading cause of morbidity and mortality in industrialised nations, with 

failed treatment being often life-threatening. While a wide range of drugs are now 

available to treat cancer patients, in practice only about 25% of them respond to these 

drugs
1
. To make things worse, our current ability to identify responsive patients 

before treatment is still very limited
2
. This situation has a negative impact on patient 

survival (the tumour keeps growing until an effective drug is administered), 
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healthcare costs (very expensive drugs are ineffective, and thus wasted, on 75% of 

cancer patients
1,3

) and the success rates of oncology clinical trials (10% fall in Phase 

II studies, with the number of phase III terminations doubling in recent years
4
). 

Therefore, there is a pressing need to understand and predict this aspect of human 

variation to make therapy safer and more effective by determining which drugs will 

be more appropriate for any given patient. 

The analysis of tumour and germline DNA has been investigated as a way to 

personalise cancer therapies for quite some time
5
. However, the recent and 

comprehensive flood of new data from much cheaper and faster Next Generation 

Sequencing (NGS) technologies along with the maturity of more established 

molecular profiling technologies represents an unprecedented opportunity to study the 

molecular basis of drug response. These data have shown that drug targets often 

present genomic alterations across patient tumours
6
. At the molecular level, these 

somatic mutations affect the abundance and function of gene products driving tumour 

growth and hence may influence disease outcome and/or response to therapy
7
. 

Therefore, there is opportunity for genetic information to aid the selection of effective 

therapy by relating the molecular profile of tumours to their observed sensitivity to 

drugs. Research on the identification of drug-gene associations that can be used as 

predictive biomarkers of drug response is carried out on human cancer tumour-

derived cell lines
8–10

. Cell lines allow relatively quick and cheap experiments that are 

generally not feasible on more accurate disease models
11

. Here the molecular profile 

of the untreated cell line is determined and a phenotypic readout is made to assess the 

intrinsic cell sensitivity or resistance to the tested drug. In addition to biomarker 

discovery
8–10

, these data sets have also been used to enable pharmacogenomic 
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modelling
12–14

, pharmacotranscriptomic modelling
15,16

, QSAR modelling
17,18

, drug 

repositioning
18,19

 and molecular target identification
19–21

, among other applications. 

Our study focuses on the Genomics of Drug Sensitivity in Cancer (GDSC) data 

analysed by Garnett et al.
9
 and publicly released after additional curation

22
. The 

released data set comprises 638 human tumour cell lines, representing a broad 

spectrum of common and rare cancer types. One benefit of looking at a large number 

of cell lines is that the pool of data becomes larger, which is beneficial for biomarker 

discovery. These authors profiled each cell line for various genetic abnormalities, 

including point mutations, gene amplifications, gene deletions, microsatellite 

instability, frequently occurring DNA rearrangements and changes in gene expression. 

Thereafter, the sensitivity of 130 drugs against these cell lines was measured with a 

cell viability assay in vitro (cell sensitivity to a drug was summarised by the half-

maximal inhibitory concentration or IC50 of the drug-cell pair). A p-value was 

calculated for 8637 drug-gene associations using a MANOVA test (PMANOVA), with 

396 of those associations being above a FDR=20% Benjamini-Hochberg
23

 adjusted 

threshold and thus deemed significant (full details in the Methods section). Overall, it 

was found that only few drugs had strong genomic markers, with no actionable 

mutations being identified for 14 drugs. 
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Figure 1 | Released GDSC data. (A) Garnett et al. analysed a slightly different dataset than the one 

that was later released. In the released dataset, a panel of 130 drugs was tested against 638 cancer cell 

lines, leading to 47748 IC50 values (57.6% of all possible drug-cell pairs). For each cell line, 68 cancer 

genes were sequenced and their mutational status determined, plus three translocations and a 

microsatellite instability status. (B) A dataset Dij can be compiled for each drug-gene combination 

comprising the ni cell responses to the i
th

 drug (in our case, each response as the logarithm base 10 of 

IC50 in µM units), with xj
(k) 

being a binary variable indicating whether the j
th

 gene is mutated or not in 

the k
th

 cell line. Next, a p-value was calculated for each drug-gene pair using the MANOVA test. Those 

pairs with p-values below an adjusted threshold of 0.00840749 were considered statistically significant 

(396 of the 8637 drug-gene associations).  

However, a statistically significant drug-gene association is not necessarily a useful 

genomic marker of in vitro drug response. Indeed, significant p-values are merely 

intended to highlight potential discoveries among thousands of possibilities, but their 

practical importance still have to be evaluated for the problem at hand
24–26

. In this 

context, the latter means assessing how well the gene mutation discriminates between 

sensitive and resistant cells to a given drug, which is only approximated by its p-

value. A related consideration is that the p-value comes from a selected statistical test, 

which in practice is more or less appropriate to carry out this detection task
24

. 
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Consequently, a p-value may lead to two types of errors at the inter-association level, 

a false discovery (type I error or false positive) or a missed discovery (type II error or 

false negative). The latter can be evaluated by directly measuring the discrimination 

offered by a drug-gene association and comparing it to its corresponding p-value. 

Here, it is worth noting that a false negative can have very negative consequences 

(e.g. missing a genomic marker able to identify tumours sensitive to a drug for which 

no marker have been found yet). Thus, research intended to identify more appropriate 

statistical procedures for biomarker discovery on comprehensive pharmacogenomic 

resources such as GDSC is crucial to make the most out of these valuable data. 

Here we propose a methodology that directly measures the discrimination power of a 

drug-gene association by posing each of these associations as a binary classification 

problem. This change of perspective is enabled by the definition of a meaningful 

criterion to determine the sensitivity threshold for each association. Furthermore, we 

adopted a suitable statistical test to evaluate how likely was the corresponding 

classification of cells to arise by chance, which determines the set of markers with 

statistically significant discriminative power. Lastly, we applied this methodology to 

identify genomic markers from GDSC data and compare the results against those 

arising from the MANOVA test
9
.  

Results 

Direct measurement of discriminative power  

Response biomarkers aim at discriminating between sensitive and resistant tumours to 

a given drug. Consequently, direct measurement of such discriminative power 

requires the definition of an IC50 threshold above/below which tumours are considered 

to be resistant/sensitive to the drug, which effectively poses biomarker evaluation as a 
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binary classification problem. The latter will permit to employ a number of common 

performance metrics that are better suited to estimate and assess the prospective 

performance of these biomarkers. The first issue that needs to be address is how to 

define the IC50 threshold. A fixed threshold for all drugs, e.g. 1µM, is not useful as 

drugs often have a very different distribution of IC50 measurements across cell lines. 

Instead, for each drug-gene association, we characterise each group of cells, i.e. those 

with the mutated gene and those with the wild-type (WT) gene, by its median IC50 and 

define the threshold as the mean of both medians (e.g. the dotted red line of the scatter 

plot in Figure 2A). In this way, the size of each group and their outliers do not distort 

the position of this decision boundary, which is equidistant to both classes and leads 

to an intuitive notion of class membership as distance from the threshold. 

Once the IC50 threshold is calculated, the mutation-based prediction of drug response 

of a cell line can be categorised as a true positive (TP), true negative (TN), false 

positive (FP) or false negative (FN). From this contingency table at the intra-

association level, the discrimination offered by a drug-gene association can be 

summarised by its Matthews Correlation Coefficient (MCC)
27

. Because the definition 

of a positive instance depends on whether the somatic mutation is sensitising or 

resistant (see the Methods section), MCC can only take values from 0 (gene mutation 

have absolutely no discriminative power) to 1 (gene mutation perfectly predicts 

whether cell lines are sensitive or resistant to the drug). Furthermore, since cells are 

now partitioned into four non-overlapping categories with respect to their response to 

a drug, the χ
2
 test can be computed from this 2x2 contingency table to identify those 

drug-gene associations with statistically significant discriminative power (the χ
2
 

statistic measures how far is the contingency table obtained by the classification 

method from the values that would be expected by chance). The process is sketched in 
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Figure 2 and leads to an alternative set of p-values from the χ
2
 test (Pχ2). To establish 

which associations are significant according to the χ
2
 test, we also calculated for this 

case the FDR=20% Benjamini-Hochberg adjusted threshold (0.00940155). Overall, 

403 statistically significant drug-gene associations were found using the χ
2
 test from 

the same set of 8637 associations that were downloaded (i.e. seven significant 

associations more than with the MANOVA test). Importantly, only 171 associations 

are deemed statistically significant by both tests. These discrepancies will be 

investigated in the next section to unveil false and missed biomarkers. 

 

Figure 2 | Measuring the discriminative power of a genomic marker with MCC and the χ
2
 test. 

(A) Scatter plot showing the logIC50 of n=284 cell lines tested with the marketed drug Dasatinib. The 

left boxplot shows BCR_ABL positive cell lines, whereas the boxplot on the right shows cell lines 

without this mutation (the median of each group appears as a black horizontal line within the boxplot). 

The red dotted line is the IC50 threshold, which is defined as the mean of both medians. (B) 

Contingency table showing the number of cell lines in each of the four non-overlapping categories (TP, 

FN, FP, TN), where positives are cell lines below the threshold in the case of a sensitising mutation 

(above the threshold if the mutation induces resistance). MCC and χ
2
 are functions of these metrics and 

summarise binary classification performance, as further described in the Methods section. BCR_ABL 

is a very strong marker of Dasatinib sensitivity as shown in the scatter plot and highlighted by both 

statistical tests (PMANOVA=1.4∙10
-10

, Pχ2=6.4∙10
-28

), offering unusually high discrimination between 

sensitive and resistant cell lines (MCC=0.65).  
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A last aspect to discuss about the proposed methodology is the duality of MCC and χ
2
. 

In statistics, MCC is known as the φ coefficient, which was introduced
28

 by Yule in 

1912 and later rediscovered
27

 by Matthews in 1975 as the MCC (interestingly, despite 

being more recent, the MCC has become a much more popular metric for binary 

classification than the φ coefficient
29–34

). As χ
2
= n∙φ

2
 holds

28
, so does χ

2
=n∙MCC

2
 

with n being the number of tested cell lines for the considered drug and thus MCC 

will be highly correlated with Pχ2. Figure 3A presents the number of drug-gene 

associations for each number of tested cell lines, from which it is observed that each 

drug has only been tested on a subset n of the 638 cell lines (i.e. gene associations for 

a given drug will be all evaluated on the same number of cell lines n). Two distinctive 

groups of drugs emerge: those tested on around 300 cell lines (red bars) and those 

tested around 450 cell lines (black bars). Figure 3B shows that MCC and -logPχ2 are 

highly correlated even across different n (for associations with the same n, a perfect 

Pearson and Spearman correlation is obtained as expected – data not shown). Given 

the observed distribution of n values, all markers with an MCC of about 0.15 or more 

are too discriminative to have arisen by chance. This connexion is useful in that MCC 

is widely used
29–34

 but without establishing its statistical significance for the tackled 

problem instance.   
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Figure 3 | MCC vs. -logPχ2 across all the 8637 drug-gene associations from GDSC. (A) Number of 

drug-gene associations for each number of tested cell lines (n). Two distinctive groups of drugs 

emerge: those tested on around 300 cell lines (red bars) and those tested around 450 cell lines (black 

bars). (B) MCC versus -logPχ2 across the drug-gene associations (same colour code). The Spearman 

and Pearson correlations between both metrics are 0.99 and 0.82, respectively. The plot shows that all 

markers with an MCC of around 0.15 or more are too discriminative to have arisen by chance (above 

an MCC of 0.12 if we restrict to the markers evaluated with more data shown as black crosses). 

False-positive and false-negative markers 

We have shown that the introduction of a meaningful threshold for sensitivity permits 

the direct measurement of the discriminative power of a drug-gene association using 

the MCC along with its significance using Pχ2. We analyse next those associations 

with the largest discrepancies between the p-values from both statistical tests against 

the ground truth provided by their scatter plots. First, we identified the association 

with the largest difference between PMANOVA and Pχ2 among those not significant by 

the χ
2
 test, which should therefore be an error of the MANOVA test (a false positive). 

Indeed, the left scatter plot in Figure 4 evidences that this drug-gene association 

(GW441756-FLT3) discriminates poorly between cell lines despite a very low 
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PMANOVA~10
-10

. In contrast, a high Pχ2~10
-1

 is obtained which means that the χ
2
 test 

correctly rejected this false positive of the MANOVA test.  

 

Figure 4 | False-positive marker correctly rejected by the χ
2
 test. (left) The scatter plot for the drug-

gene association (GW441756-FLT3) with the largest -logPMANOVA among those not significant 

according to the χ
2
 test. Hence, mutated-FLT3 is a marker of sensitivity to the experimental drug 

GW441756 according to the MANOVA test, but not according to the χ
2
 test. However, this marker 

offers practically no discriminative power as indicated by a MCC of just 0.05 and evidenced by the 

scatter plot. Therefore, the χ
2
 test correctly rejected this false positive of the MANOVA test. (right) 

Conversely, to assess whether the χ
2
 test could also lead to strong false positives, we searched for the 

drug-gene association with largest -logPχ2 among those with a similar -logPMANOVA to that of 

GW441756-FLT3, which is Dasatinib-BCR_ABL. Whereas the p-value for Dasatinib-BCR_ABL is of 

the same magnitude as that for GW441756-FLT3 using the MANOVA test (PMANOVA~10
-10

), the p-

values for the same associations using the χ
2
 test differ is almost 27 orders of magnitude. Thus, unlike 

the MANOVA test, the χ
2
 test correctly detects the very high difference in discriminative power offered 

by these two drug-gene associations. Indeed, the BCR_ABL translocation is a highly discriminative 

marker of Dasatinib sensitivity (MCC=0.65), as also evidenced by the scatter plot.  

Conversely, to assess whether the χ
2
 test also leads to strong false positives, we 

searched for the drug-gene association with smallest Pχ2 among those with a similar 

PMANOVA to that of GW441756-FLT3, which is Dasatinib-BCR_ABL (Figure 4 right). 

If this association was a false positive of the χ
2
 test, the scatter plot would offer poor 
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discrimination between BCR_ABL positive and WT cell lines. However, the opposite 

is observed, as the BCR_ABL translocation is a highly discriminative marker of 

Dasatinib sensitivity (MCC=0.65). Note that, whereas the p-value for Dasatinib-

BCR_ABL is of the same magnitude as that for GW441756-FLT3 using the 

MANOVA test (PMANOVA~10
-10

), the p-values for the same associations using the χ
2
 

test differ is almost 27 orders of magnitude. Thus, unlike the MANOVA test, the χ
2
 

test correctly detects the very high difference in discriminative power offered by these 

two drug-gene associations. 

The next experiment consists in searching for the largest discrepancy in the opposite 

direction. First, we identified the association with the largest difference between 

PMANOVA and Pχ2, this time among those not significant by the MANOVA test. Thus, 

this is expected to be an error of the MANOVA test (a false negative). The left scatter 

plot in Figure 5 evidences that this drug-gene association (Dasatinib-CDKN2a.p14) is 

actually a false negative of the MANOVA test, as it offers good discrimination 

between mutant and WT cell lines despite a high PMANOVA~10
-1

. In contrast, a low 

Pχ2~10
-9

 is obtained which means that the χ
2
 test correctly detected this false negative 

of the MANOVA test. Conversely, to assess whether the χ
2
 test could also lead to 

strong false negatives, we searched for the drug-gene association with smallest 

PMANOVA among those with a similar Pχ2 to that of Dasatinib-CDKN2a.p14, which is 

SB590885-BRAF (Figure 5 right). Whereas the p-values for Dasatinib-CDKN2a.p14 

and SB590885-BRAF differ 27 orders of magnitude using the MANOVA test, the p-

values for the same associations have similar p-values using the χ
2
 test (Pχ2~10

-9
). 

Thus, unlike the MANOVA test, the χ
2
 test correctly detected that both markers have 

similar discriminative power as also highlighted by the MCC (SB590885-BRAF has a 

MCC of 0.29 for 0.35 of Dasatinib-CDKN2a.p14). 
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Figure 5 | False-negative marker correctly detected by the χ
2
 test. (left) The scatter plot for the 

drug-gene association (Dasatinib-CDKN2a.p14) with the largest -logPχ2 among those not significant 

according to the MANOVA test. Hence, mutated-CDKN2a.p14 is a marker of sensitivity to the 

marketed drug Dasatinib according to the χ
2
 test, but not according to the MANOVA test. However, 

this marker is highly discriminative as proven by a MCC of 0.35 and evidenced by the scatter plot. 

Therefore, the χ
2
 test correctly detected this false negative of the MANOVA test. (right) Conversely, to 

assess whether the χ
2
 test could also lead to strong false negatives, we searched for the drug-gene 

association with largest -logPMANOVA among those with a similar -logPχ2 to that of Dasatinib-

CDKN2a.p14, which is SB590885-BRAF. Whereas the p-values for Dasatinib-CDKN2a.p14 and 

SB590885-BRAF differ 27 orders of magnitude using the MANOVA test, the p-values for the same 

associations have similar p-values using the χ
2
 test (Pχ2~10

-9
). Thus, unlike the MANOVA test, the χ

2
 

test correctly detected that both markers have similar discriminative power (SB590885-BRAF has a 

MCC of 0.29 for 0.35 of Dasatinib-CDKN2a.p14).  

218 new markers found for 97 of the 116 drugs with previously known markers 

Having established that the χ
2
 test is able to identify the false negatives of the 

MANOVA test in theory and practice, the rest of the study will focus on unearthing 

these missed discoveries. Indeed, these new genomic markers constitute additional 

knowledge that can be extracted from existing data, i.e. without requiring any further 

experiment. In the data released by the GDSC, the 396 genomic markers from the 
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MANOVA test were distributed among 116 drugs, leaving the remaining 14 drugs 

without any maker. In this subsection, we analyse these 116 drugs with the χ
2
 test, 

whereas the next subsection will deal with the 14 drugs currently without markers.  

The χ
2
 test found a total of 218 new makers for 97 drugs from these 116 drugs (S1 

File). Figure 6 shows two examples. The scatter plot at the top left presents the 

EWS_FLI1 translocation as a new marker of sensitivity to Mitomycin C, which was 

missed by the MANOVA test. This marker offers substantially more discrimination 

than some of the previously known Mitomycin C markers suggested by the 

MANOVA test, which are actually false positives (e.g. the scatter plot for the MET 

gene mutation on the right). The second example is shown at the bottom of Figure 6. 

The EWS_FLI1 translocation is also a new response marker for the drug BMS-

754807, which was again missed by the MANOVA test. This marker offers 

substantially more discrimination than some of the previously known BMS-754807 

markers suggested by the MANOVA test, which are false positives as well (e.g. the 

scatter plot for the PTEN gene mutation on the right). Furthermore, in 45 of these 116 

drugs, the new marker offers better discrimination than the best previously known 

marker for the drug (S2 File).   
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Figure 6 | Examples of new genomic markers for drugs with previously known markers. (top) On 

the left, the EWS_FLI1 translocation is found to be the most discriminative biomarker for the approved 

drug Mitomycin C (MCC=0.26, Pχ2=1.5∙10
-6

), which was missed by the MANOVA test 

(PMANOVA=9.1∙10
-3

). The latter contrasts with MANOVA-significant association with MET gene 

mutation (PMANOVA=4.5∙10
-3

), which is barely discriminative (MCC=0.04) and thus rejected by the χ
2
 

test (Pχ2=0.4). (bottom) On the left, the EWS_FLI1 translocation is found to be the most discriminative 

biomarker for the development drug BMS-754807 (MCC=0.19, Pχ2=4.1∙10
-4

), which was also missed 

by the MANOVA test (PMANOVA=0.011). The latter contrasts with MANOVA-significant association 
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with PTEN gene mutation (PMANOVA=3.7∙10
-3

), which offers practically no discrimination (MCC=0.01) 

and thus strongly rejected by the χ
2
 test (Pχ2=0.86). For both drugs, the two plots on the left show two 

false negatives of the MANOVA test, whereas the two plots on the right illustrates two false positives 

of the same statistical test.  

14 new markers found for 8 of the 14 drugs without previously known markers 

New genomic markers are particularly valuable in those drugs for which no marker is 

known yet. By applying the χ
2
 test to the same dataset, we have identified 14 new 

markers for the 8 drugs for which the MANOVA test did not find any marker (S3 

File). Figure 7 shows two of these markers. On the right, the mutational status of the 

SMAD4 gene is the most discriminative biomarker for the development drug BI-

2536. On the left, the EWS_FLI1 translocation is found to sensitise cell lines to 

Gemcitabine.  

 

Figure 7 | Examples of new genomic markers for drugs without previously known markers. (left) 

The EWS_FLI1 translocation is found to be the most discriminative biomarker for the approved drug 

Gemcitabine (MCC=0.16, Pχ2=4.2∙10
-3

), which was missed by the MANOVA test (PMANOVA=0.059). 

(right) The SMAD4 gene mutation is found to be the most discriminative biomarker for the 

development drug BI-2536 (MCC=0.2, Pχ2=7.1∙10
-4

), which was also missed by the MANOVA test 

(PMANOVA=0.028).  
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Discussion 

The assessment of MANOVA-significant drug-gene associations against the ground 

truth shown in scatter plots has been revealing. For instance, it is now evident that 

selecting PTEN-mutated tumour cells do not result in a substantially different 

response to BMS-754807, as the distribution of IC50s across PTEN-mutated cell lines 

is essentially the same as that for cell lines with WT PTEN (Figure 6 bottom right). 

Thus, mutated PTEN is not useful as a predictive biomarker of response to BMS-

754807 despite its statistically significant p-value from the MANOVA test. 

To improve the search of genomic markers of drug response, we have proposed a new 

approach that directly measures the discrimination power of a drug-gene association 

by posing each of these associations as a binary classification problem. Here 

discrimination is measured with χ
2
 statistic and its significance with Pχ2, which has 

resulted in a better alignment of the statistical and biological significance of a drug-

gene association. Furthermore, we have shown that, since MCC is linked to χ
2
, the 

significance of an MCC value can also be calculated with the χ
2
 test. This is useful in 

that MCC is widely used but without establishing its statistical significance for the 

problem at hand.  

Next,  the χ
2
 test has been applied to the identification of genomic markers from 

GDSC data and these markers compared to those arising from the MANOVA test
9
. 

The largest discrepancies arising from both sets of p-values have been discussed in 

detail. Figures 4 and 5 provide examples of false positives and false negatives of the 

MANOVA test, which illustrates the theoretical adequacy of the χ
2
 test for this task in 

practice. In addition, we have carried out a systematic comparison across 8637 drug-

gene associations for which a p-value from the MANOVA test had been calculated in 
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the GDSC study
9
. The MANOVA test highlighted 396 of these associations as 

statistically significant, for 403 from the χ
2
 test looking at the same data. However, 

only 171 associations were deemed statistically significant by both tests. Having 

established the χ
2 

statistic as a direct measure of discrimination both in theory and 

practice, it follows that the 225 associations that are only significant by the 

MANOVA test are false positives at the inter-association level. From a translational 

perspective, these false discoveries can potentially lead to wasting resources on 

follow-up experiments on more accurate disease models, although one can always 

visualise the corresponding scatter plot prior to decision-making (Figure 4 left).  

On the other hand, there are 232 associations that were only detected by the χ
2
 test and 

hence are false negatives of the MANOVA test. These missed discoveries are easy to 

miss as it is not possible to visualise thousands of rejected markers, which highlights 

the value of the proposed approach. 218 of these new 232 drug response markers were 

found in 97 of the 116 drugs with known markers (see examples in Figure 6), which 

represent markers that could have a higher translational potential than those already 

known for a drug. The remaining 14 markers were for 8 of the 14 drugs without 

previously known markers (see examples in Figure 7), which are hence particularly 

valuable. Overall, we have identified new genomic markers for 105 of the 130 drugs 

(81%). In 53 of these 105 drugs, the genomic marker was more discriminative than 

the best among the previously known for the drug. 

Predictive biomarkers are increasingly important tools in drug development and 

clinical research
45,46

. During the development of methods for cancer diagnosis and 

treatment, a vast amount of cancer genomics data is now being generated
47

 and thus 

there is an urgent need for their accurate analysis
48

. Therefore, this study is important 

in a number of ways. First, these new genomic markers of in vitro drug response 
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represent testable hypothesis that can now be evaluated on more relevant disease 

models to humans. Second, they may also constitute further evidence supporting 

newly proposed oncology targets
44

. Third, beyond the exploitation of these results, the 

widespread application of this methodology should lead to the discovery of new 

predictive biomarkers on existing data as it has been the case with the GDSC. Indeed, 

this new approach has been demonstrated on a large-scale drug screening against 

human cancer cell lines, but it can also be applied to other biomarker discovery 

problems such as those adopting more accurate disease models (e.g. primary 

tumours
35,36

, patient-derived xenografts
37

 or patients
38,39

), those employing other 

molecular profiling data (e.g. secretome proteomics
40

, epigenomics
41

 or single-cell 

genomics
42

) or those involving drug combinations
43

. Looking more broadly, the 

methodology can also be applied to large-scale drug screening against human or non-

human molecularly-profiled pathogen cultures, such as those in antibacterial or 

agricultural research. 

Methods  

GDSC data 

From the Genomics of Drug Sensitivity in Cancer (GDSC) ftp server
22

, we 

downloaded the following data files: gdsc_manova_input_w1.csv and 

gdsc_manova_output_w1.csv.  

In gdsc_manova_input_w1.csv, there are 130 unique drugs as camptothecin was 

tested twice, drug ids 195 and 1003, and thus we only kept the instance that was more 

broadly tested (i.e. drug ID 1003 on 430 cell lines). Thus, effectively a panel of 130 

drugs was tested against 638 cancer cell lines, leading to 47748 IC50 values (57.6% of 

all possible drug-cell pairs). Downloaded “IC50” values are more precisely the natural 
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logarithm of IC50 in µM units (i.e. negative values represent drug responses more 

potent than 1µM). We converted each of these values into their logarithm base 10 in 

µM units, which we denote as logIC50 (e.g. logIC50=1 corresponds to IC50=10µM), as 

in this way differences between two drug response values are directly given as orders 

of magnitude in the molar scale.  

gdsc_manova_input_w1.csv also contains genetic mutation data for 68 cancer genes, 

which were selected as the most frequently mutated cancer genes
9
, characterising each 

of the 638 cell lines. For each gene-cell pair, a „x::y‟ description was provided by the 

GDSC, where „x‟ identifies a coding variant and „y‟ indicates copy number 

information from SNP6.0 data. As in Garnett et al.
9
, a gene for which a mutation is 

not detected is considered to be wild-type (wt). A gene mutation is annotated if: a) a 

protein sequence variant is detected (x ≠{wt,na}) or b) a deletion/amplication is 

detected. The latter corresponds to a copy number (cn) variation different from the wt 

value of y=0<cn<8. Furthermore, three translocations were considered (BCR_ABL, 

MLL_AFF1 and EWS_FLI1). For each of these gene fusions, cell lines are identified 

as fusion not-detected or the identified fusion is given (i.e. wt or mutated with respect 

to the gene fusion, respectively). The microsatellite instability (msi) status of each cell 

line was also determined. Full details can be found in the original publication
9
. 

Statistically significant drug-gene associations with the MANOVA test 

gdsc_manova_output_w1.csv contains 8701 drug-gene associations with p-values. As 

we are considering all those involving the 130 unique drugs (i.e. removing the 

camptothecin duplicate), we are left with 8637 drug-gene associations with p-values 

of which 396 were above a FDR=20% Benjamini-Hochberg adjusted threshold 

(0.00840749) and thus deemed significant according to this test. Each statistically 
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significant drug-gene association was considered to be a genomic marker of in vitro 

drug response
9
. 

Measuring the discriminative power of a genomic marker with MCC 

Let the data for the association between the i
th

 drug and the j
th

 gene be 

    {(         
   

   
   

)}
   

    

 

and the sets of mutated and wt cell lines with respect to the j
th

 gene, MTj and WTj, be 

    {      
   

  }                     {      
   

  } 

Then, the logIC50 threshold is defined as the mean of the median responses from each 

set (see subsection “Direct measurement of discriminative power”): 

            (      ({         
   

}
      

)        ({         
   

}
      

)) 

Now if the median response of the MTj set is lower (i.e. more sensitive to the drug) 

than that of the WTj set in the considered drug-gene association, then cell lines with 

logIC50 values lower than the threshold (by this definition, cell lines sensitive to the 

drug) are positives and those with logIC50 vales higher or equal than the threshold (i.e. 

cell lines resistant to the drug) are negatives. Conversely, if the median of the WTj set 

is the lowest, then the positives are resistant cell lines and the negatives are sensitive 

cell lines. These cases correspond to candidate genomic markers of drug sensitivity 

and resistance, respectively.  

At this point, the set of all the cell lines tested with a given drug can be partitioned 

into four categories as defined in Figure 2: true positive (TP), true negative (TN), 

false positive (FP) or false negative (FN). From this contingency table, the 
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discrimination offered by a drug-gene association can be summarised by the 

Matthews Correlation Coefficient (MCC)
27

  

    
           

√                               
 

By the above definition of positives and negatives, MCC can only take values from 0 

(gene mutation have absolutely no discriminative power) to 1 (gene mutation 

perfectly predicts whether cell lines are sensitive or resistant to the drug). Also, note 

that both the definition of the logIC50 threshold and the existence of mutated and wt 

cell lines in every association guarantees a non-zero value of the denominator in the 

MCC formula and thus MCC is always defined in this study. 

Statistically significant drug-gene associations with the χ
2
 test 

For each of the 8637 drug-gene associations, the χ
2
 test was computed from the 2x2 

contingency table
49

 to identify those drug-gene associations with statistically 

significant discriminative power. The formula to compute the χ
2
 statistic is  

   ∑ ∑
          

   

 

   

 

   

 

where Olm are the four categories in the table (TP,TN,FN,FP) and Elm are the 

corresponding expected values under the null hypothesis that this partition has arisen 

by chance. Thus, expected values are calculated with 
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For instance, the expected value of TP, E(TP), is the number of predicted positives 

(PP) times the probability of a cell being a positive given as the proportion of 

observed positives (OP) in the n tested cells.   

This χ
2
 statistic follows a χ

2
 distribution with one degree of freedom and thus each p-

value was computed with the R package pchisq from its corresponding χ
2
 value,   

   as  

            
        

The process is sketched in Figure 2 and leads to an alternative set of p-values from the 

χ
2
 test (Pχ2). To establish which associations are significant according to the χ

2
 test, we 

also calculated for this case the FDR=20% Benjamini-Hochberg adjusted threshold 

(0.00940155), that is  

                   

To facilitate reproducibility and the use of this methodology to analyse other 

pharmacogenomics data sets, the R script to calculate MCC, χ
2
 and Pχ2 from 

gdsc_manova_input_w1.csv is available on request. 
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