On higher Friedman's conjecture Liang Yu Joint with Yizheng Zhu Nanjing University June 20, 2016 ### Martin's theorem #### Theorem (Martin) Assume AD. Every set of Turing degrees either contains an upper cone or avoids an upper cone. #### Proof. Very simple. ## Applications of Martin's Theorem - To recursion theory. - To set theory. 3 / 17 ### Logic is about definability Logic is about definability. 4 / 17 ## Definability v.s. computability Computability implies definability. ## Definability v.s. computability Computability implies definability. The reverse also holds, in some sense. ### Some examples #### Theorem (Gödel) $A \subseteq \omega$ is Σ_1^0 if and only if it is computably enumerable. ### Theorem (Spector, Gandy) $A\subseteq\omega$ is Π^1_1 if and only if it is computably enumerable over $L_{\omega_1^{CK}}$. ### Some examples #### Theorem (Gödel) $A \subseteq \omega$ is Σ_1^0 if and only if it is computably enumerable. ### Theorem (Spector, Gandy) $A\subseteq\omega$ is Π^1_1 if and only if it is computably enumerable over $L_{\omega_1^{CK}}$. Can these results be lifted to higher levels? ### Martin-Solovay's tree #### Definition Let u be the ω -th uniformly Silver-indiscernible. A Martin-Solovay's tree $T_2 \subseteq 2^{<\omega} \times u^{\omega}$ is a tree so that for any infinite path $(x, f) \in [T]$, x is a sharp of some real y and f is a witness of the sharpness of x. # Representing Π_3^1 -set Suppose that $A \subseteq \omega$ is a Π_3^1 -set. Then there is a Σ_2^1 -set $B \subseteq \omega \times 2^\omega$ so that $n \in A \leftrightarrow \forall y(n,y) \in B$. Since B is a Σ_2^1 -set, there is a truth-table functional Φ so that $(n,y) \notin B \leftrightarrow \Phi^{y^{\sharp}}(n) = 1$. So $n \notin A$ if and only if $\exists x \exists f((x, f) \in [T_2] \land \Phi^x(n) = 1)$. In other words, $n \in A$ if and only if the tree $T_{2,n} = \{(\sigma, \tau) \mid (\sigma, \tau) \in T_2 \land \Phi^\sigma(n) = 1\}$ is well-founded. Let $\omega_1^{T_2}$ be the least ordinal $\alpha > u$ so that $L_{\alpha}[T_2]$ is admissible. Then A is an r.e. set over $L_{\omega_1^{T_2}}[T_2]$. #### Further results #### Theorem (Zhu) - $0^{\sharp,2n}$ exists. - There is a Martin-Solovay's tree T_{2n} . - $A \subseteq \omega$ is Π^1_{2n+1} if and only if it is r.e. over $L_{\omega_1^{T_{2n}}}[T_{2n}]$. ## Higher degree determinacy Given a kind of reduction \leq_Q , Q-degree determinacy says that every set of Q-degrees either contains an upper cone or avoids an upper cone. We also may restrict the sets to be nice. For example, Δ_n^1 -degrees, Q_{2n+1} -degrees. ## Time v.s. Space Classical recursion theorists think that time has the same scale as space. Higher recursion theorists don't think so. ### Friedman's conjecture #### Conjecture (H.Friedman) The Δ^1_1 -equivalence closure of every uncountable Δ^1_1 set contains an upper cone of Δ^1_1 -degrees. #### Theorem (Martin) The conjecture is true. ## Why Q-theory? Under PD, Π^1_{2n+1} -complete set is a minimal non-trivial Δ^1_{2n+1} -degree; and Gandy-basis theorem fails; and many other properties fail. Harrington, Kechris, Martin, Solovay suggested Q_{2n+1} -theory to replace Δ^1_{2n+1} -theory. ### Two open questions ### Question (Kechris, Martin, Solovay) #### Assume PD, - The Q_{2n+1} -equivalence closure of every uncountable Δ^1_{2n+1} set contains an upper cone of Δ^1_{2n+1} -degrees. - Q_{2n+1} is the largest nontrivial Π^1_{2n+1} -set which are $\leq_{\Delta^1_{2n+1}}$ -downward closed. ### A solution Theorem (Y, Zhu) Assume PD, both questions have positive answers. #### A solution Theorem (Y, Zhu) Assume PD, both questions have positive answers. Remark: Woodin also announced solutions to both questions (never written up). ### Another question The time-space trick sometimes really matters. #### Question Assume PD. Suppose that A and B are uncountable Σ^1_3 -sets, then for any real z, are there reals $x^0 \in A$ and $x^1 \in B$ so that $x^0 \oplus x^1 \geq_{\Delta^1_3} z$? ### Another question The time-space trick sometimes really matters. #### Question Assume PD. Suppose that A and B are uncountable Σ^1_3 -sets, then for any real z, are there reals $x^0 \in A$ and $x^1 \in B$ so that $x^0 \oplus x^1 \geq_{\Delta^1_3} z$? **Thanks**