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Some classes of subshifts

Definitions. Let A be a finite alphabet. Let d be a positive integer. In this
talk, usually d = 2 and sometimes d = 1.

A subshift is a subset X ⊆ AZd

which is obtained by forbidding some set
of local patterns.

A local pattern is an element of AD where D is any finite subset of Zd

If F is a set of local patterns,

{x ∈ AZd

: for all p ∈ F , p does not appear in x} is a subshift.

A subshift is called a shift of finite type if it can be obtained by
forbidding a finite set of local patterns.

A subshift X on an alphabet A is called sofic if there is a shift of finite
type Y on an alphabet B, and a map f : B → A, such that X = f(Y )
(abusing some notation here)

A subshift is effectively closed if it can be obtained by forbidding a c.e.
set of local patterns; or equivalently, a computable set.
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SFT examples

A a finite alphabet
d = 1, 2

Subshift
X ⊆ AZd

all
elements that omit
forbidden patterns

SFT finitely many
forbidden patterns

Sofic X = f(Y )

SFT Y ⊆ BZd

f : B → A.

Effectively
closed c.e. set of
forbidden
patterns.

Forbid
�
�

and
�
�

, get the subshift of

configurations with constant columns.

Given a fixed Turing machine with states qi,
forbid all 2× 3 patterns that could never appear
in that machine’s space-time diagram.

qt 1 qt 0
∆

qt b

∆
qs 1 qs b qs b

Forbid this jumping head.

∆
q0 b

Anchor symbol.

Result: any configuration that contains the anchor
symbol contains the space-time diagram of the
TM on empty input.
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Sofic Examples

A a finite alphabet
d = 1, 2

Subshift
X ⊆ AZd

all
elements that omit
forbidden patterns

SFT finitely many
forbidden patterns

Sofic X = f(Y )

SFT Y ⊆ BZd

f : B → A.

Effectively
closed c.e. set of
forbidden
patterns.

Any SFT. (A = B,X = Y ).

Subshift of two-colorable configurations

Forbid due to 5-cycle

This subshift is not an SFT.
Reason: large cycles.

However, the shift of two-colored
configurations is an SFT.
Letting f be the map that
forgets the colors gives the
two-colorable configurations. Consistent

pattern.
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Sofic Examples

A a finite alphabet
d = 1, 2

Subshift
X ⊆ AZd

all
elements that omit
forbidden patterns

SFT finitely many
forbidden patterns

Sofic X = f(Y )

SFT Y ⊆ BZd

f : B → A.

Effectively
closed c.e. set of
forbidden
patterns.

The subshift whose elements consist of
non-overlapping black squares on a white
background.

Consistent with sea of squares, do not forbid.

This subshift is not an SFT.
Reason: large rectangles.

Why sofic?
Expand the alphabet to provide
witness of square-ness:
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Relation SFT ⊆ sofic ⊆ effectively closed

A a finite alphabet
d = 1, 2

Subshift
X ⊆ AZd

all
elements that omit
forbidden patterns

SFT finitely many
forbidden patterns

Sofic X = f(Y )

SFT Y ⊆ BZd

f : B → A.

Effectively
closed c.e. set of
forbidden
patterns.

Every SFT is sofic. (A = B, X = Y ).

Every sofic shift is effectively closed. Algorithm:
given Y and f , and given a pattern p in alphabet
A, forbid p if and only for all q ∈ f−1(p), q is
forbidden in Y .

These implications are strict.

Motivating question

What properties of a c.e. set of forbidden
words can guarantee that the resulting effectively

closed shift is sofic?
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Further examples

Sofic shifts

Various substitution-rule shifts

Even connected components shift

Odd connected components shift (Cassaigne, unpublished)

Stacked 1D sofic shifts

Any effectively closed shift whose configurations have constant columns
(Durand-Romashchenko-Shen 2012, Aubrun-Sablik 2013)

Effective S-adic systems (Aubrun-Sablik 2014)

Effectively closed, non-sofic shifts

2D Shift-complex shift (Rumyantsev-Ushakov 2006)

Stacked 1D effectively closed shifts without a synchronizing word (Pavlov
2013)
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Results

Definitions:

For any set S ⊆ N, let the S-square shift be the Z2-shift on the alphabet
{black, white} whose configurations consist of seas of non-overlapping
black squares on a white background, where the size of each square is in S.

Let the distinct-square shift consist of the configurations in which no
finite size of square is repeated.

A Z2-shift is α-sparse if there is a constant C such that the shift forbids
every N ×N pattern with more than CNα black symbols.

Theorem (W):
The following shifts are sofic:

The S-square shift for any Π0
1 set S.

Any effectively closed subshift of the distinct-square shift.

Any effectively closed α-sparse shift for α < 1.

Linda Brown Westrick Victoria University of WellingtonSeas of squares with sizes from a Π0
1 set

June 20, 2016 CIRM, Marseille 9 /
27



Outline

Subshifts

Self-similar Turing machine tilings (DRS 2012)

Seas of squares

Linda Brown Westrick Victoria University of WellingtonSeas of squares with sizes from a Π0
1 set

June 20, 2016 CIRM, Marseille 10 /
27



Forcing Turing computations in SFT configurations

A tileset is a finite set of squares (tiles) with colored edges
Two tiles can go next to eachother if they agree on the edge they share.

The tiling problem: given a tileset, can you tile the plane?
Observe: the set of such infinite tilings is a subshift.

Recall our SFT example:

qt 1 qt 0
∆

qt b

∆
qs 1 qs b qs b

Forbid this jumping head.

∆
q0 b

Anchor symbol.

Wang (1962) produced an essentially similar tileset.
There is a tiling with anchor tile iff the TM run forever.
Problem: how to force the anchor tile to appear?
Berger (1966) Finite computations of increasing size.

Linda Brown Westrick Victoria University of WellingtonSeas of squares with sizes from a Π0
1 set

June 20, 2016 CIRM, Marseille 11 /
27



Durand, Romashchenko & Shen (2012)

DRS define a tileset:

Tiles organize themselves into N ×N
regions.

Each region has a space-time diagram on
the inside, but viewed from the outside,
the region is a tile, or “macrotile”.

The macrotiles behave just like the
original small tiles, but with larger N .

This behavior is enforced by the
computation happening in the tile.

Accept the “data” of what colors are
being displayed at the edge of the region
as input. Analyze the input to see if the
edges make a good macrotile. Kill the
computation if not.

Also do whatever computation was
originally interesting.

(i, j) (i+ 1, j)

(i, j)

(i, j + 1)

Image source: DRS 2012
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Parent Tile, Child Tile

Consider a parent “macrotile” made from an N ×N array of child tiles.

Child side colors contain:

2 logN bits to communicate a location (i, j)

Finite number of bits associated to a universal Turing
Machine computation.

Finite number of bits corresponding to a wire.

The child tile’s computation verifies:

Coordinates increment appropriately?

If (i, j) is in the computation region, are TM bits
coherent?

If (i, j) is in a wire location, are wire bits coherent?

If (i, j) is at the nth bit of the program tape for the
universal TM, is the nth bit of this program written
on the tape?

(i, j) (i+ 1, j)

(i, j)

(i, j + 1)

TM

Parent TM

Linda Brown Westrick Victoria University of WellingtonSeas of squares with sizes from a Π0
1 set

June 20, 2016 CIRM, Marseille 13 /
27



Universal TM simulation and the Recursion theorem

Assuming N0 < N1 < . . . is the sequence of sizes of macrotiles at level i,
Input size: O(logNi).

Algorithm: Polynomial time, as written before application of the recursion
theorem.

Universal TM simulation: polytime overhead

Recursion theorem: polytime overhead

Runtime of resulting program: poly(logNi).

Available time: Ni−1/2

For appropriate choice of the sequence 〈Nj〉, we have poly(logNi) << Ni−1/2,
so no computation runs out of room.
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Effectively closed shifts with constant columns

Theorem (Durand-Romashchenko-Shen 2012): Any effectively closed
shift whose elements have constant columns is sofic.
(this result independently obtained by Aubrun-Sablik 2013)

Idea: Given an configuration with constant columns, superimpose TM tiles to

“read” the common row

make what has been read available at all levels

simultaneously, enumerate forbidden Z-patterns

kill the element if a pattern it contains is enumerated.

Issue: How can a higher-level macrotile learn about what is written on the
pixel level, since it can’t interact with that level directly?

Solution: pass info up from child to parent

Children who are sitting on the parent tape “read” it

Whisper to other siblings about what is there

If the parent tape does not contain a thing which a child wants the parent
to know, the child kills the tiling.
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S-square shift: plan and obstacles

Plan: Given a sea of squares (unrestricted sizes), superimpose TM tiles to

“read” and record the sizes of squares that appear inside them

propagate this information to their parents

simultaneously, enumerate forbidden sizes

kill the element if one of the collected sizes is enumerated

Obstacles:

A forbidden-size square can appear once and disqualify the whole sea, so
each tile must record every single size inside itself.

The parent’s parameter tape becomes too large for children to copy it, yet
each child must make sure the parent received its records.

The input to each computation region is large relative to the region; the
algorithm must run in less than quadratic time to fit inside.
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Recording all the sizes

A macrotile at level k has ∼ Nk−1 tape size and a pixel width of
Lk = Nk−1 . . . N1N0.

Maximum number of distinct sizes of square that can fit in an L× L region?

Bound by x21 + · · ·+ x2m < L2. To maximise m, let xi = i.

Result: m is bounded by ∼ L2/3.

To record all sizes from a macrotile at level k, ∼ L2/3
k bits are needed.

For that to fit on the tape, we need: (N0N1 . . . Nk−1)2/3 << Nk−1.

Triple exponential Nk = 22
2k

is fast enough. Double exponential is too slow.

Note: Unavoidably, N
2/3
k−1 << L

2/3
k . Therefore, the algorithm that is run using

this input must be polynomial with exponent strictly less than 3/2, or it will
overrun the computation region.

Conclusion: asymptotics of holding and processing info are ok.
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Communicating with the parent

Lk =
∏k−1
i=k0

Ni.

In DRS, all bits of the parent’s parameter tape are passed among all children.
Impossible here:

Bits of parent data ≈ L2/3
k+1 > N

2/3
k >> Nk−1 ≈ length of child tape.

Idea: Each child nondeterministically chooses what parental information to
share with each of its neighbors, and hopes to receive parental reassurance
about each of its own recorded sizes.

Left: sharing everything

Right: selective sharing

Use a counter to certify the
information is genuinely
from the parent.
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The question

So far our algorithm achieves:

If the parent tape does not contain a record which some child needs, there
will be no legal message chain to that child, so the tiling cannot be made.

If the parent has all the needed records, and IF there is some way to
simultaneously connect each record on the parent tape with the
individual children who need it without overloading any child by
passing too many records through it, the children will
nondeterministically find this way.

So, is there always a way?
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A cooperative game of Ticket to Ride

There are ∼ N2
k vertices (cities, child tiles), arranged in a square grid.

There are ∼ L2/3
k+1 players (train companies, parental records).

Each vertical or horizontal edge (connector, child side color) has ∼ L2/3
k tracks.

In any N ×N subgrid of vertices, at most ∼ (NLk)2/3 players have a city in
that grid.

The players cooperatively win if there is a way to divvy up the tracks so that
every player can connect all their cities together.

The S-square algorithm works if and only if the players can always win.

The players won.
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Necessity of the N ×N subgrid condition

There are ∼ N2
k vertices (cities, child tiles), arranged in a square grid.

There are ∼ L2/3
k+1 players (train companies, parental records).

Each vertical or horizontal edge (connector, child side color) has ∼ L2/3
k tracks.

At most ∼ L2/3
k players care about any given city.

Counterexample:

Consider a square subgrid of cities where each city has the full ∼ L2/3
k

number of players, but each player has at most once city.

Side length of this subgrid is N
1/3
k

Fill the whole board with N
4/3
k such subgrids.

Each player must connect N
4/3
k cities, each at distance N

1/3
k from each

other: N
5/3
k connections needed

Multplying by all players, total connections needed: L
2/3
k+1N

5/3
k .

Total connections available: ∼ L2/3
k N2

k .
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Multiscale plaid concept

The players can win the game with a multiscale plaid track pattern:

All players take turns laying vertical tracks, top-to-bottom, as tightly as

reasonable (L
2/3
k players per vertical track.)

All players lay horizontal tracks in the same fashion. (1st layer of plaid).

This makes natural square subregions, in which each player has a vertical
and horizontal track.

Within each N ×N subregion, N(Lk)2/3 players have tracks, but only
(NLk)2/3 players have cities there.

Make another layer of tight plaid, within that subregion only, using only
the players that have cities in that subregion.

This tighter plaid makes smaller subregions, more players drop out.

Recurse in all subregions until some fixed small size of subregion is
reached, then let the small number of remaining players connect directly
to their cities.
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Multiscale plaid analysis

All players make a single connected component that includes all their cities.

How many tracks per edge were used?

At each level of recursion, L
2/3
k tracks per edge.

Some fixed constant number of tracks per edge for the bottom step.

Using Nk = 22
2k

, there are ∼ 2k levels of recursion.

Relative to L
2/3
k , this 2k is an ignorable log factor.

Total (2k + C)L
2/3
k ∼ L2/3

k tracks per edge. Done.
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Runtime considerations

We need to make sure this algorithm runs in polynomial exponent-3/2 time.

Things to check:

Familiar operations which are fast on modern architectures are slow on
Turing machines. Turns out a multi-tape TM is necessary for our
algorithm to be subquadratic. (On an MTM, it is linear.)

Good news: MTM just as easy to implement in a tiling.

A given MTM can be simulated, with only constant overhead, by a
universal MTM.

The constant-overhead recursion theorem works.
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Questions

What bound on the growth rate of the number of N ×N patterns could
guarantee that a shift is sofic?

What properties of a shift guarantee that every effectively closed subshift
of it is sofic?

(Jeandel) It is immediate that if X is a 1D sofic shift, then the 2D shift of
configurations with rows belonging to X is sofic. Does the converse hold?

Thank you.
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