Ultralimits and computability

Noah Schweber (with Uri Andrews, Mingzhong Cai, David Diamondstone)

Computability, Randomness, and Applications, 23 June 2016

2 A lowness notion

3 What about ultrafilters?

Definition

For $X \subseteq \omega$ — viewed as an array $X = (X_i)_{i \in \omega}$ — and \mathcal{U} an ultrafilter, let $\lim_{\mathcal{U}} (X) = \{j : \{i : \langle i, j \rangle \in X\} \in \mathcal{U}\}.$

・聞き ・ ヨキ・ ・ ヨキー

Definition

For $X \subseteq \omega$ — viewed as an array $X = (X_i)_{i \in \omega}$ — and \mathcal{U} an ultrafilter, let $\lim_{\mathcal{U}} (X) = \{j : \{i : \langle i, j \rangle \in X\} \in \mathcal{U}\}.$

For a Turing degree \mathbf{a} , let

$$\delta_{\mathcal{U}}(\mathbf{a}) = \{\lim_{\mathcal{U}} (X) : X \leq_{\mathcal{T}} \mathbf{a}\}.$$

★個 ▶ ★ 国 ▶ ★ 国 ▶ …

Definition

For $X \subseteq \omega$ — viewed as an array $X = (X_i)_{i \in \omega}$ — and \mathcal{U} an ultrafilter, let $\lim_{\mathcal{U}} (X) = \{j : \{i : \langle i, j \rangle \in X\} \in \mathcal{U}\}.$

For a Turing degree \mathbf{a} , let

$$\delta_{\mathcal{U}}(\mathbf{a}) = \{\lim_{\mathcal{U}} (X) : X \leq_{\mathcal{T}} \mathbf{a}\}.$$

Remark

Can also define $\delta_{\mathcal{U}}(\mathcal{S})$ for arbitrary families of sets \mathcal{S} .

(本部) ・ モト・モト 三臣

Perhaps surprisingly, ultralimits of Turing degrees have meaningful closure properties!

Theorem

Let \mathcal{U} be a nonprincipal ultrafilter, **a** a Turing degree. Then:

Perhaps surprisingly, ultralimits of Turing degrees have meaningful closure properties!

Theorem

Let \mathcal{U} be a nonprincipal ultrafilter, **a** a Turing degree. Then:

• $\delta_{\mathcal{U}}(\mathbf{a})$ contains $\Delta_2^0(\mathbf{a})$.

Perhaps surprisingly, ultralimits of Turing degrees have meaningful closure properties!

Theorem

Let \mathcal{U} be a nonprincipal ultrafilter, **a** a Turing degree. Then:

- $\delta_{\mathcal{U}}(\mathbf{a})$ contains $\Delta_2^0(\mathbf{a})$.
- $\delta_{\mathcal{U}}(\mathbf{a})$ is a Turing ideal.

Perhaps surprisingly, ultralimits of Turing degrees have meaningful closure properties!

Theorem

Let \mathcal{U} be a nonprincipal ultrafilter, **a** a Turing degree. Then:

- $\delta_{\mathcal{U}}(\mathbf{a})$ contains $\Delta_2^0(\mathbf{a})$.
- $\delta_{\mathcal{U}}(\mathbf{a})$ is a Turing ideal.
- $\delta_{\mathcal{U}}(\mathbf{a})$ is a countable Scott set.

Perhaps surprisingly, ultralimits of Turing degrees have meaningful closure properties!

Theorem

Let \mathcal{U} be a nonprincipal ultrafilter, **a** a Turing degree. Then:

- $\delta_{\mathcal{U}}(\mathbf{a})$ contains $\Delta_2^0(\mathbf{a})$.
- $\delta_{\mathcal{U}}(\mathbf{a})$ is a Turing ideal.
- $\delta_{\mathcal{U}}(\mathbf{a})$ is a countable Scott set.

This gives a new proof of a well-known result:

Corollary

WKL₀ is strictly weaker than ACA₀.

Perhaps surprisingly, ultralimits of Turing degrees have meaningful closure properties!

Theorem

Let \mathcal{U} be a nonprincipal ultrafilter, **a** a Turing degree. Then:

- $\delta_{\mathcal{U}}(\mathbf{a})$ contains $\Delta_2^0(\mathbf{a})$.
- $\delta_{\mathcal{U}}(\mathbf{a})$ is a Turing ideal.
- $\delta_{\mathcal{U}}(\mathbf{a})$ is a countable Scott set.

This gives a new proof of a well-known result:

Corollary

 WKL_0 is strictly weaker than ACA_0 .

Standard proof: iterate the Low Basis Theorem.

Perhaps surprisingly, ultralimits of Turing degrees have meaningful closure properties!

Theorem

Let \mathcal{U} be a nonprincipal ultrafilter, **a** a Turing degree. Then:

- $\delta_{\mathcal{U}}(\mathbf{a})$ contains $\Delta_2^0(\mathbf{a})$.
- $\delta_{\mathcal{U}}(\mathbf{a})$ is a Turing ideal.
- $\delta_{\mathcal{U}}(\mathbf{a})$ is a countable Scott set.

This gives a new proof of a well-known result:

Corollary

 WKL_0 is strictly weaker than ACA_0 .

Standard proof: iterate the Low Basis Theorem. Combinatorial proof: Let \mathcal{U} be a nonprincipal ultrafilter such that $\{e: W_e \in \mathcal{U}\}$ is (say) Δ^0_{17} . Then $\delta_{\mathcal{U}}(REC)$ is a subset of Δ^0_{17} .

Noah Schweber (with Uri Andrews, Mingzhor

Let **a** be a degree, \mathcal{U} an ultrafilter.

- 22

イロン 不聞と 不良と 不良とう

Let **a** be a degree, \mathcal{U} an ultrafilter.

 $\Delta_2^0(\mathbf{a}) \subseteq \delta_{\mathcal{U}}(\mathbf{a})$: by limit lemma.

(本部) (本語) (本語) (二語

Let **a** be a degree, \mathcal{U} an ultrafilter.

 $\Delta_2^0(\mathbf{a}) \subseteq \delta_{\mathcal{U}}(\mathbf{a})$: by limit lemma.

 $\delta_{\mathcal{U}}(\mathbf{a})$ closed under join: $\lim_{\mathcal{U}}(\langle X_i \oplus Y_i \rangle) = \lim_{\mathcal{U}}(\langle X_i \rangle) \oplus \lim_{\mathcal{U}}(\langle Y_i \rangle).$

▲口 > ▲圖 > ▲ 国 > ▲ 国 > ― 国

Let \mathbf{a} be a degree, \mathcal{U} an ultrafilter.

 $\Delta_2^0(\mathbf{a}) \subseteq \delta_{\mathcal{U}}(\mathbf{a})$: by limit lemma.

 $\delta_{\mathcal{U}}(\mathbf{a})$ closed under join: $\lim_{\mathcal{U}}(\langle X_i \oplus Y_i \rangle) = \lim_{\mathcal{U}}(\langle X_i \rangle) \oplus \lim_{\mathcal{U}}(\langle Y_i \rangle).$

 $\delta_{\mathcal{U}}(\mathbf{a})$ is a Turing ideal: let $S = \lim_{\mathcal{U}} (X) \in \delta_{\mathcal{U}}(\mathbf{a})$, Φ_e^S total. Define Y as

$$Y_i(n) = egin{cases} 1 & ext{ if } \Phi_{ extsf{e}}^{X_i}(n)[i] \downarrow = 1, \ 0 & ext{ otherwise.} \end{cases}$$

 $\Phi_e^S = \Phi_e^{\lim_{\mathcal{U}}(Y)}:$ • $\sigma \prec S$ implies $\sigma \prec X_i$ for \mathcal{U} -many σ • Look at $\sigma \prec S$ such that $\Phi_e^{\sigma}(n)[|\sigma|] \downarrow$.

▲圖 ▶ ▲ 周 ▶ ▲ 周 ▶ 二 周

Why is $\delta_{\mathcal{U}}(\mathbf{a})$ a Scott set?

イロト イ団ト イヨト イヨト 三臣

Why is $\delta_{\mathcal{U}}(\mathbf{a})$ a Scott set? Suppose $T = \lim_{\mathcal{U}} (X) \in \delta_{\mathcal{U}}(\mathbf{a})$ is an infinite tree.

イロト イ団ト イヨト イヨト 三臣

Why is $\delta_{\mathcal{U}}(\mathbf{a})$ a Scott set? Suppose $\mathcal{T} = \lim_{\mathcal{U}} (X) \in \delta_{\mathcal{U}}(\mathbf{a})$ is an infinite tree. Conflate ω and $2^{<\omega}$, so each X_i is a subset of $2^{<\omega}$. Why is $\delta_{\mathcal{U}}(\mathbf{a})$ a Scott set? Suppose $T = \lim_{\mathcal{U}} (X) \in \delta_{\mathcal{U}}(\mathbf{a})$ is an infinite tree. Conflate ω and $2^{<\omega}$, so each X_i is a subset of $2^{<\omega}$.

Let Y_i be the "tree part" of X_i : $Y_i = \{ \sigma \in 2^{<\omega} : \forall \tau \preccurlyeq \sigma(\tau \in X_i) \}$. Since T is a tree, $\lim_{\mathcal{U}} (Y) = T$.

Why is $\delta_{\mathcal{U}}(\mathbf{a})$ a Scott set? Suppose $T = \lim_{\mathcal{U}} (X) \in \delta_{\mathcal{U}}(\mathbf{a})$ is an infinite tree. Conflate ω and $2^{<\omega}$, so each X_i is a subset of $2^{<\omega}$.

Let Y_i be the "tree part" of X_i : $Y_i = \{\sigma \in 2^{<\omega} : \forall \tau \preccurlyeq \sigma(\tau \in X_i)\}$. Since T is a tree, $\lim_{\omega \in U} (Y) = T$.

For $i \in \omega$, can effectively-in-**a** find a maximal finite path of length at most *i* through Y_i — call this p_i .

- 米田 ト 米国 ト 米国 ト 三国

Why is $\delta_{\mathcal{U}}(\mathbf{a})$ a Scott set? Suppose $T = \lim_{\mathcal{U}} (X) \in \delta_{\mathcal{U}}(\mathbf{a})$ is an infinite tree. Conflate ω and $2^{<\omega}$, so each X_i is a subset of $2^{<\omega}$.

Let Y_i be the "tree part" of X_i : $Y_i = \{\sigma \in 2^{<\omega} : \forall \tau \preccurlyeq \sigma(\tau \in X_i)\}$. Since T is a tree, $\lim_{\mathcal{U}} (Y) = T$. For $i \in \omega$, can effectively-in-**a** find a maximal finite path of length at most i through Y_i — call this p_i .

Then $\lim_{\mathcal{U}}(p_i)$ is a path through T.

イロト イ団ト イヨト イヨト 三臣

We proved that $\delta_{\mathcal{U}}(\mathbf{a})$ is always a countable Scott set containing \mathbf{a}' . What about the converse?

We proved that $\delta_{\mathcal{U}}(\mathbf{a})$ is always a countable Scott set containing \mathbf{a}' . What about the converse?

Theorem

If **a** is a Turing degree and \mathcal{J} is a countable Scott set containing **a**', then $\delta_{\mathcal{U}}(\mathbf{a}) = \mathcal{J}$ for some \mathcal{U} .

We proved that $\delta_{\mathcal{U}}(\mathbf{a})$ is always a countable Scott set containing \mathbf{a}' . What about the converse?

Theorem

If **a** is a Turing degree and \mathcal{J} is a countable Scott set containing **a**', then $\delta_{\mathcal{U}}(\mathbf{a}) = \mathcal{J}$ for some \mathcal{U} .

Remark

More generally, if \mathcal{I} is a countable Turing ideal and \mathcal{J} is a countable Scott set containing the jump of every $\mathbf{a}' \in \mathcal{I}$, then $\delta_{\mathcal{U}}(\mathcal{I}) = \mathcal{J}$ for some \mathcal{U} .

We proved that $\delta_{\mathcal{U}}(\mathbf{a})$ is always a countable Scott set containing \mathbf{a}' . What about the converse?

Theorem

If **a** is a Turing degree and \mathcal{J} is a countable Scott set containing **a**', then $\delta_{\mathcal{U}}(\mathbf{a}) = \mathcal{J}$ for some \mathcal{U} .

Remark

More generally, if \mathcal{I} is a countable Turing ideal and \mathcal{J} is a countable Scott set containing the jump of every $\mathbf{a}' \in \mathcal{I}$, then $\delta_{\mathcal{U}}(\mathcal{I}) = \mathcal{J}$ for some \mathcal{U} .

Given \mathbf{a} and $\mathcal J$ appropriate, need to meet:

- Image requirements: each $Y \in \mathcal{J}$ is $\lim_{\mathcal{U}} (X)$ for some $X \leq_T \mathbf{a}$.
- Domain requirements: When we put sets into \mathcal{U} , we never force $\lim_{\mathcal{U}} (X)$ to be outside \mathcal{J} for any $X \leq_{\mathcal{T}} \mathbf{a}$.

イロン 不聞と 不良と 不良とう

Fix appropriate **a** and \mathcal{I} . An **axiom** is a pair (A, B) with $A \in \mathbf{a}$ and $B \in \mathcal{I}$ (meaning: " $\lim_{\mathcal{U}}(A) = B$ "). Set of axioms is *consistent* if satisfied by some nonprincipal ultrafilter.

- 4 同 6 4 日 6 4 日 6

Fix appropriate **a** and \mathcal{I} .

An **axiom** is a pair (A, B) with $A \in \mathbf{a}$ and $B \in \mathcal{I}$ (meaning:

" $\lim_{\mathcal{U}}(A) = B$ "). Set of axioms is *consistent* if satisfied by some nonprincipal ultrafilter.

Equivalently: $\{(A_i, B_i) : i \in I\}$ is satisfiable if for all $F \subset I$ finite and $n \in \omega$,

$$[\bigcap_{j\in F,m< n,B_j(m)=1} (A_j)^m] \cap [\bigcap_{j\in F,m< n,B_j(m)=0} \overline{(A_j)^m}] \text{ is infinite.}$$

|御 と |注 と |注 と 一

Fix appropriate **a** and \mathcal{I} .

An **axiom** is a pair (A, B) with $A \in \mathbf{a}$ and $B \in \mathcal{I}$ (meaning:

" $\lim_{\mathcal{U}}(A) = B$ "). Set of axioms is *consistent* if satisfied by some nonprincipal ultrafilter.

Equivalently: $\{(A_i, B_i) : i \in I\}$ is satisfiable if for all $F \subset I$ finite and $n \in \omega$,

$$[\bigcap_{j\in F, m < n, B_j(m)=1} (A_j)^m] \cap [\bigcap_{j\in F, m < n, B_j(m)=0} \overline{(A_j)^m}] \text{ is infinite.}$$

Enumerate $\mathbf{a} = \{X_i : i \in \omega\}$, $\mathcal{I} = \{Y_i : i \in \omega\}$. We build set of axioms C in stages:

・ロト ・聞 と ・ 思 と ・ 思 と … 思

Fix appropriate **a** and \mathcal{I} .

An **axiom** is a pair (A, B) with $A \in \mathbf{a}$ and $B \in \mathcal{I}$ (meaning:

" $\lim_{\mathcal{U}}(A) = B$ "). Set of axioms is *consistent* if satisfied by some nonprincipal ultrafilter.

Equivalently: $\{(A_i, B_i) : i \in I\}$ is satisfiable if for all $F \subset I$ finite and $n \in \omega$,

$$[\bigcap_{j\in F, m < n, B_j(m)=1} (A_j)^m] \cap [\bigcap_{j\in F, m < n, B_j(m)=0} \overline{(A_j)^m}] \text{ is infinite.}$$

Enumerate $\mathbf{a} = \{X_i : i \in \omega\}$, $\mathcal{I} = \{Y_i : i \in \omega\}$. We build set of axioms \mathcal{C} in stages:

•
$$\mathcal{C}_0 = \emptyset$$

・ロト ・聞 と ・ 思 と ・ 思 と … 思

Fix appropriate \mathbf{a} and \mathcal{I} .

An **axiom** is a pair (A, B) with $A \in \mathbf{a}$ and $B \in \mathcal{I}$ (meaning:

" $\lim_{\mathcal{U}}(A) = B$ "). Set of axioms is *consistent* if satisfied by some nonprincipal ultrafilter.

Equivalently: $\{(A_i, B_i) : i \in I\}$ is satisfiable if for all $F \subset I$ finite and $n \in \omega$,

$$[\bigcap_{j\in F, m < n, B_j(m)=1} (A_j)^m] \cap [\bigcap_{j\in F, m < n, B_j(m)=0} \overline{(A_j)^m}] \text{ is infinite.}$$

Enumerate $\mathbf{a} = \{X_i : i \in \omega\}$, $\mathcal{I} = \{Y_i : i \in \omega\}$. We build set of axioms \mathcal{C} in stages:

- $\mathcal{C}_0 = \emptyset$
- For C_{2k+1} , want to make sure Y_k gets mapped to: pick $X \in \mathbf{a}$ sufficiently free over already-used sets.

Fix appropriate \mathbf{a} and \mathcal{I} .

An **axiom** is a pair (A, B) with $A \in \mathbf{a}$ and $B \in \mathcal{I}$ (meaning:

" $\lim_{\mathcal{U}}(A) = B$ "). Set of axioms is *consistent* if satisfied by some nonprincipal ultrafilter.

Equivalently: $\{(A_i, B_i) : i \in I\}$ is satisfiable if for all $F \subset I$ finite and $n \in \omega$,

$$[\bigcap_{j\in F, m < n, B_j(m)=1} (A_j)^m] \cap [\bigcap_{j\in F, m < n, B_j(m)=0} \overline{(A_j)^m}] \text{ is infinite.}$$

Enumerate $\mathbf{a} = \{X_i : i \in \omega\}$, $\mathcal{I} = \{Y_i : i \in \omega\}$. We build set of axioms \mathcal{C} in stages:

- $\mathcal{C}_0 = \emptyset$
- For C_{2k+1}, want to make sure Y_k gets mapped to: pick X ∈ a sufficiently free over already-used sets.
- For C_{2k+2}, want to make sure X_k gets mapped inside I:
 a'-computable tree of consistent extensions.

Is there a \mathcal{U} such that $\delta_{\mathcal{U}}(\mathbf{a})$ is always arithmetically closed? Or $\delta_{\mathcal{U}}(\mathcal{J})$, for "sufficiently closed" Turing ideals \mathcal{J} ?

Is there a \mathcal{U} such that $\delta_{\mathcal{U}}(\mathbf{a})$ is always arithmetically closed? Or $\delta_{\mathcal{U}}(\mathcal{J})$, for "sufficiently closed" Turing ideals \mathcal{J} ?

Remark

By Theorem 2.5, if \mathcal{I} is arithmetically closed then $\delta_{\mathcal{U}}(\mathcal{I}) = \mathcal{I}$ for some \mathcal{U} .

・ 何 ト ・ ヨ ト ・ ヨ ト

Is there a \mathcal{U} such that $\delta_{\mathcal{U}}(\mathbf{a})$ is always arithmetically closed? Or $\delta_{\mathcal{U}}(\mathcal{J})$, for "sufficiently closed" Turing ideals \mathcal{J} ?

Remark

By Theorem 2.5, if \mathcal{I} is arithmetically closed then $\delta_{\mathcal{U}}(\mathcal{I}) = \mathcal{I}$ for some \mathcal{U} .

Remark

However, no ultrafilter satisfies $\delta_{\mathcal{U}}(\mathbf{a}) = ARITH(\mathbf{a})$ for every \mathbf{a} :

Is there a \mathcal{U} such that $\delta_{\mathcal{U}}(\mathbf{a})$ is always arithmetically closed? Or $\delta_{\mathcal{U}}(\mathcal{J})$, for "sufficiently closed" Turing ideals \mathcal{J} ?

Remark

By Theorem 2.5, if \mathcal{I} is arithmetically closed then $\delta_{\mathcal{U}}(\mathcal{I}) = \mathcal{I}$ for some \mathcal{U} .

Remark

However, no ultrafilter satisfies $\delta_{\mathcal{U}}(\mathbf{a}) = ARITH(\mathbf{a})$ for every \mathbf{a} : \mathbf{a}' can diagonalize away from \mathbf{a} .
Is there a \mathcal{U} such that $\delta_{\mathcal{U}}(\mathbf{a})$ is always arithmetically closed? Or $\delta_{\mathcal{U}}(\mathcal{J})$, for "sufficiently closed" Turing ideals \mathcal{J} ?

Remark

By Theorem 2.5, if \mathcal{I} is arithmetically closed then $\delta_{\mathcal{U}}(\mathcal{I}) = \mathcal{I}$ for some \mathcal{U} .

Remark

However, no ultrafilter satisfies $\delta_{\mathcal{U}}(\mathbf{a}) = ARITH(\mathbf{a})$ for every \mathbf{a} : \mathbf{a}' can diagonalize away from \mathbf{a} .

Question

Are combinatorial properties of \mathcal{U} (Ramsey, *p*-point, . . .) connected with closure properties of $\delta_{\mathcal{U}}(\mathbf{a})$?

2 A lowness notion

3 What about ultrafilters?

▲口▶ ▲圖▶ ▲園▶ ▲園▶ 三連

Question

For what **a** is there some \mathcal{U} with $\delta_{\mathcal{U}}(\mathbf{a}) = \delta_{\mathcal{U}}(REC)$?

Call such degrees/reals "ultrafilter-low."

Question

For what **a** is there some \mathcal{U} with $\delta_{\mathcal{U}}(\mathbf{a}) = \delta_{\mathcal{U}}(REC)$?

Call such degrees/reals "ultrafilter-low." Nonexamples:

Question

For what **a** is there some \mathcal{U} with $\delta_{\mathcal{U}}(\mathbf{a}) = \delta_{\mathcal{U}}(REC)$?

Call such degrees/reals "ultrafilter-low." Nonexamples:

$$\mathbf{0} \geq_T \mathbf{0}'.$$

· · · · · · · · ·

Question

For what **a** is there some \mathcal{U} with $\delta_{\mathcal{U}}(\mathbf{a}) = \delta_{\mathcal{U}}(REC)$?

Call such degrees/reals "ultrafilter-low." Nonexamples:

- $\mathbf{0} \geq_T \mathbf{0}'.$
- ONR2-degrees.

Question

For what **a** is there some \mathcal{U} with $\delta_{\mathcal{U}}(\mathbf{a}) = \delta_{\mathcal{U}}(REC)$?

Call such degrees/reals "ultrafilter-low." Nonexamples:

- $\mathbf{0} \geq_T \mathbf{0}'.$
- ONR2-degrees.
- I High degrees.

Question

For what **a** is there some \mathcal{U} with $\delta_{\mathcal{U}}(\mathbf{a}) = \delta_{\mathcal{U}}(REC)$?

Call such degrees/reals "ultrafilter-low." Nonexamples:

- $\mathbf{0} \geq_T \mathbf{0}'.$
- ONR2-degrees.
- I High degrees.

Proof.

For (1), (2): can compute A such that $\Phi_e(\langle i, e \rangle) \neq A(\langle i, e \rangle)$ for each $e \in Tot$ and $i \in \omega$.

Question

For what **a** is there some \mathcal{U} with $\delta_{\mathcal{U}}(\mathbf{a}) = \delta_{\mathcal{U}}(REC)$?

Call such degrees/reals "ultrafilter-low." Nonexamples:

- $\mathbf{0} \geq_T \mathbf{0}'.$
- ONR2-degrees.
- I High degrees.

Proof.

For (1), (2): can compute A such that $\Phi_e(\langle i, e \rangle) \neq A(\langle i, e \rangle)$ for each $e \in Tot$ and $i \in \omega$. For (3): any dominating function f computes an A such that $\Phi_e(\langle i, e \rangle) \neq A(\langle i, e \rangle)$ for each $e \in Tot$ and cofinitely many $i \in \omega$.

Question

For what **a** is there some \mathcal{U} with $\delta_{\mathcal{U}}(\mathbf{a}) = \delta_{\mathcal{U}}(REC)$?

Call such degrees/reals "ultrafilter-low." Nonexamples:

- $\mathbf{0} \geq_T \mathbf{0}'.$
- ONR2-degrees.
- I High degrees.

Proof.

For (1), (2): can compute A such that $\Phi_e(\langle i, e \rangle) \neq A(\langle i, e \rangle)$ for each $e \in Tot$ and $i \in \omega$. For (3): any dominating function f computes an A such that $\Phi_e(\langle i, e \rangle) \neq A(\langle i, e \rangle)$ for each $e \in Tot$ and cofinitely many $i \in \omega$.

Note that same proof shows that no $\delta_{\mathcal{U}}$ is $\mathbf{a} \mapsto ARITH(\mathbf{a})$.

For what **a** is there some \mathcal{U} with $\delta_{\mathcal{U}}(\mathbf{a}) = \delta_{\mathcal{U}}(REC)$?

Call such degrees/reals "ultrafilter-low."

For what **a** is there some \mathcal{U} with $\delta_{\mathcal{U}}(\mathbf{a}) = \delta_{\mathcal{U}}(REC)$?

Call such degrees/reals "ultrafilter-low."

Theorem

Degrees bounded by reals of the following types are ultrafilter-low:

For what **a** is there some \mathcal{U} with $\delta_{\mathcal{U}}(\mathbf{a}) = \delta_{\mathcal{U}}(REC)$?

Call such degrees/reals "ultrafilter-low."

Theorem

Degrees bounded by reals of the following types are ultrafilter-low:

2-generic.

For what **a** is there some \mathcal{U} with $\delta_{\mathcal{U}}(\mathbf{a}) = \delta_{\mathcal{U}}(REC)$?

Call such degrees/reals "ultrafilter-low."

Theorem

Degrees bounded by reals of the following types are ultrafilter-low:

- 2-generic.
- Computably traceable.

▲日 → ▲圖 → ▲ 恵 → ▲ 恵 → ― 恵

Question

Are measure-1 many reals ultrafilter-low? (Are random reals ultrafilter-low?)

Question

Are measure-1 many reals ultrafilter-low? (Are random reals ultrafilter-low?)

Question

Are there Δ_2^0 ultrafilter-low reals?

Question

Are measure-1 many reals ultrafilter-low? (Are random reals ultrafilter-low?)

Question

Are there Δ_2^0 ultrafilter-low reals?

Even the following is open:

Question

Is there a degree **a** such that $\delta_{\mathcal{U}}(\mathbf{a}) = \delta_{\mathcal{U}}(REC)$ for **every** \mathcal{U} ?

By Theorem 2.5, such an **a** would have to be Δ_2^0 — in fact, low in the usual sense.

2 A lowness notion

3 What about ultrafilters?

臣

イロン 不聞と 不良と 不良とう

Degree structure: Set $\mathcal{U} \leq_J \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for a cone of degrees \mathbf{a} .

▶ < 토▶ < 토▶

Degree structure: Set $\mathcal{U} \leq_J \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for a cone of degrees \mathbf{a} . Lightface version: $\mathcal{U} \leq_j \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for all degrees \mathbf{a} .

Degree structure: Set $\mathcal{U} \leq_J \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for a cone of degrees \mathbf{a} . Lightface version: $\mathcal{U} \leq_j \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for all degrees \mathbf{a} .

Question

Are there \mathcal{U}, \mathcal{V} with $\delta_{\mathcal{U}}(\mathbf{a}) \subsetneq \delta_{\mathcal{V}}(\mathbf{a})$ for all/cone many \mathbf{a} ?

Degree structure: Set $\mathcal{U} \leq_J \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for a cone of degrees \mathbf{a} . Lightface version: $\mathcal{U} \leq_j \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for all degrees \mathbf{a} .

Question

Are there \mathcal{U}, \mathcal{V} with $\delta_{\mathcal{U}}(\mathbf{a}) \subsetneq \delta_{\mathcal{V}}(\mathbf{a})$ for all/cone many \mathbf{a} ?

Remark

For *ideals*, answer is no: $...\delta_{\mathcal{U}} \circ \delta_{\mathcal{V}} \circ \delta_{\mathcal{U}} \circ \delta_{\mathcal{V}} \circ \delta_{\mathcal{U}} \circ \delta_{\mathcal{V}}(REC)$.

Degree structure: Set $\mathcal{U} \leq_J \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for a cone of degrees \mathbf{a} . Lightface version: $\mathcal{U} \leq_j \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for all degrees \mathbf{a} .

Question

Are there \mathcal{U}, \mathcal{V} with $\delta_{\mathcal{U}}(\mathbf{a}) \subsetneq \delta_{\mathcal{V}}(\mathbf{a})$ for all/cone many \mathbf{a} ?

Remark

For *ideals*, answer is no: $...\delta_{\mathcal{U}} \circ \delta_{\mathcal{V}} \circ \delta_{\mathcal{U}} \circ \delta_{\mathcal{U}} \circ \delta_{\mathcal{V}} (REC)$.

Composition: $\mathcal{U} * \mathcal{V} = \{X : \{b : \{a : \langle a, b \rangle \in X\} \in \mathcal{V}\} \in \mathcal{U}\}.$

Degree structure: Set $\mathcal{U} \leq_J \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for a cone of degrees \mathbf{a} . Lightface version: $\mathcal{U} \leq_j \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for all degrees \mathbf{a} .

Question

Are there \mathcal{U}, \mathcal{V} with $\delta_{\mathcal{U}}(\mathbf{a}) \subsetneq \delta_{\mathcal{V}}(\mathbf{a})$ for all/cone many \mathbf{a} ?

Remark

For *ideals*, answer is no: $...\delta_{\mathcal{U}} \circ \delta_{\mathcal{V}} \circ \delta_{\mathcal{U}} \circ \delta_{\mathcal{V}} \circ \delta_{\mathcal{U}} \circ \delta_{\mathcal{V}}(REC)$.

Composition: $\mathcal{U} * \mathcal{V} = \{X : \{b : \{a : \langle a, b \rangle \in X\} \in \mathcal{V}\} \in \mathcal{U}\}.$

Remark

While $\delta_{\mathcal{U}*\mathcal{V}} = \delta_{\mathcal{U}} \circ \delta_{\mathcal{V}}$, this is *not* true on the level of individual sets.

Degree structure: Set $\mathcal{U} \leq_J \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for a cone of degrees \mathbf{a} . Lightface version: $\mathcal{U} \leq_j \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for all degrees \mathbf{a} .

Question

Are there \mathcal{U}, \mathcal{V} with $\delta_{\mathcal{U}}(\mathbf{a}) \subsetneq \delta_{\mathcal{V}}(\mathbf{a})$ for all/cone many \mathbf{a} ?

Remark

For *ideals*, answer is no: $...\delta_{\mathcal{U}} \circ \delta_{\mathcal{V}} \circ \delta_{\mathcal{U}} \circ \delta_{\mathcal{V}} \circ \delta_{\mathcal{U}} \circ \delta_{\mathcal{V}}(REC)$.

Composition:
$$\mathcal{U} * \mathcal{V} = \{X : \{b : \{a : \langle a, b \rangle \in X\} \in \mathcal{V}\} \in \mathcal{U}\}.$$

Remark

While $\delta_{\mathcal{U}*\mathcal{V}} = \delta_{\mathcal{U}} \circ \delta_{\mathcal{V}}$, this is *not* true on the level of individual sets.

Remark

Unlike e.g. addition of ultrafilters, * has no idempotents — we observed before that $\delta_{\mathcal{U}}(\mathbf{a}) \supseteq \delta_{\mathcal{U}}(\mathbf{a}')$.

Basic properties of the boldface degree structure

Definition

 $\mathcal{U} \leq_J \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for a cone of degrees \mathbf{a} .

Basic properties of the boldface degree structure

Definition

 $\mathcal{U} \leq_J \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for a cone of degrees \mathbf{a} .

Proposition

Given $\{U_{\eta} : \eta < \omega_1\}$, there is an upper bound $\mathcal{V} >_J \mathcal{U}_{\eta}$.

Basic properties of the boldface degree structure

Definition

 $\mathcal{U} \leq_J \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for a cone of degrees \mathbf{a} .

Proposition

Given $\{U_{\eta} : \eta < \omega_1\}$, there is an upper bound $\mathcal{V} >_J \mathcal{U}_{\eta}$.

Proof.

Let $h : \mathbb{R} \to \omega_1 : r \mapsto \omega_1^r$. For $r \in \mathbb{R}$, let \hat{r} be such that $\hat{r} \ge_T s$ for all $s \in \delta_{\mathcal{U}_\eta}(\deg(r)), \eta < h(r)$. Can construct \mathcal{V} with $\delta_{\mathcal{V}}(\deg(r)) \ni \hat{r}$.

 $\mathcal{U} \leq_J \mathcal{V}$ if $\delta_{\mathcal{U}}(\mathbf{a}) \subseteq \delta_{\mathcal{V}}(\mathbf{a})$ for a cone of degrees \mathbf{a} .

Proposition

Given $\{U_{\eta} : \eta < \omega_1\}$, there is an upper bound $\mathcal{V} >_J \mathcal{U}_{\eta}$.

Proof.

Let $h : \mathbb{R} \to \omega_1 : r \mapsto \omega_1^r$. For $r \in \mathbb{R}$, let \hat{r} be such that $\hat{r} \ge_T s$ for all $s \in \delta_{\mathcal{U}_\eta}(\deg(r)), \eta < h(r)$. Can construct \mathcal{V} with $\delta_{\mathcal{V}}(\deg(r)) \ni \hat{r}$.

Proposition

Modulo \equiv_J , there are more than continuum-many ultrafilters.

$\mathcal{U} \leq_{RK} \mathcal{V} \text{ if for some } f : \omega \to \omega, \ X \in \mathcal{U} \iff f^{-1}(X) \in \mathcal{V}.$

イロト イヨト イヨト イヨト

 $\mathcal{U} \leq_{RK} \mathcal{V}$ if for some $f : \omega \to \omega$, $X \in \mathcal{U} \iff f^{-1}(X) \in \mathcal{V}$. "Lightface" version \leq_{rk} : same but with computable f.

伺下 イヨト イヨト

 $\mathcal{U} \leq_{RK} \mathcal{V}$ if for some $f : \omega \to \omega$, $X \in \mathcal{U} \iff f^{-1}(X) \in \mathcal{V}$. "Lightface" version \leq_{rk} : same but with computable f.

Proposition

 \leq_J, \leq_j refined by \leq_{RK}, \leq_{rk} respectively.

 $\mathcal{U} \leq_{RK} \mathcal{V}$ if for some $f : \omega \to \omega$, $X \in \mathcal{U} \iff f^{-1}(X) \in \mathcal{V}$. "Lightface" version \leq_{rk} : same but with computable f.

Proposition

$$\leq_J, \leq_j$$
 refined by \leq_{RK}, \leq_{rk} respectively.

Proof.

Suppose $\mathcal{U} \leq_{RK} \mathcal{V}$ via $f \in deg(\mathbf{a})$. For $X \in \mathbf{a}$ let $Y_i = \{n : n \in X_{f(i)}\}$. Then $n \in \lim_{\mathcal{V}} (Y) \iff n \in \lim_{\mathcal{U}} (X)$.
Definition

 $\mathcal{U} \leq_{RK} \mathcal{V}$ if for some $f : \omega \to \omega$, $X \in \mathcal{U} \iff f^{-1}(X) \in \mathcal{V}$. "Lightface" version \leq_{rk} : same but with computable f.

Proposition

$$\leq_J, \leq_j$$
 refined by \leq_{RK}, \leq_{rk} respectively.

Proof.

Suppose
$$\mathcal{U} \leq_{RK} \mathcal{V}$$
 via $f \in deg(\mathbf{a})$. For $X \in \mathbf{a}$ let $Y_i = \{n : n \in X_{f(i)}\}$.
Then $n \in \lim_{\mathcal{V}}(Y) \iff n \in \lim_{\mathcal{U}}(X)$.

Question

Do
$$\leq_J (\leq_j)$$
 and $\leq_{RK} (\leq_{rk})$ coincide?

(日) (周) (三) (三)

2 A lowness notion

3 What about ultrafilters?

What about uncountable Turing ideals?

Recall the characterization theorem:

Theorem

For \mathcal{I}, \mathcal{J} countable Turing ideals, the following are equivalent:

- \mathcal{J} contains \mathbf{a}' for every $\mathbf{a} \in \mathcal{I}$, and is a Scott set.
- $\mathcal{J} = \delta_{\mathcal{U}}(\mathcal{I})$ for some nonprincipal ultrafilter \mathcal{U} .

What about uncountable Turing ideals?

Recall the characterization theorem:

Theorem

For \mathcal{I}, \mathcal{J} countable Turing ideals, the following are equivalent:

- \mathcal{J} contains \mathbf{a}' for every $\mathbf{a} \in \mathcal{I}$, and is a Scott set.
- $\mathcal{J} = \delta_{\mathcal{U}}(\mathcal{I})$ for some nonprincipal ultrafilter \mathcal{U} .

What if we take ultrafilter jumps of uncountable Turing ideals?

What about uncountable Turing ideals?

Recall the characterization theorem:

Theorem

For \mathcal{I}, \mathcal{J} countable Turing ideals, the following are equivalent:

- ${\mathcal J}$ contains a' for every $a\in {\mathcal I},$ and is a Scott set.
- $\mathcal{J} = \delta_{\mathcal{U}}(\mathcal{I})$ for some nonprincipal ultrafilter \mathcal{U} .

What if we take ultrafilter jumps of uncountable Turing ideals?

Theorem (S.)

Consistently with ZFC + PD, the theorem fails to generalize badly. Specifically: for $V \models ZFC + PD$, there is a forcing extension V[G] and a Turing ideal $\mathcal{I} \in V[G]$ such that

- \mathcal{I} is an elementary submodel of $\mathcal{P}(\omega)$;
- but $\delta_{\mathcal{U}}(\mathcal{I}) \neq \mathcal{I}$ for any ultrafilter $\mathcal{U} \in V[G]$.

(日) (周) (三) (三)

We want to force a projectively closed \mathcal{I} with $\delta_{\mathcal{U}}(\mathcal{I}) \neq \mathcal{I}$ for any \mathcal{U} .

(本間) (本語) (本語) (二語

We want to force a projectively closed \mathcal{I} with $\delta_{\mathcal{U}}(\mathcal{I}) \neq \mathcal{I}$ for any \mathcal{U} . Conditions: pairs (M, A) with M a countable elementary submodel of $\mathcal{P}(\omega)$, and A a countable set of reals not in M. Ordered by extension in both coordinates.

We want to force a projectively closed \mathcal{I} with $\delta_{\mathcal{U}}(\mathcal{I}) \neq \mathcal{I}$ for any \mathcal{U} . Conditions: pairs (M, A) with M a countable elementary submodel of $\mathcal{P}(\omega)$, and A a countable set of reals not in M. Ordered by extension in both coordinates.

Forcing is countably closed, so no new reals. Also, for any name ν for an ultrafilter, have dense set of ("good") conditions p = (M, A) deciding $\nu(X)$ for each $X \in M$.

We want to force a projectively closed \mathcal{I} with $\delta_{\mathcal{U}}(\mathcal{I}) \neq \mathcal{I}$ for any \mathcal{U} . Conditions: pairs (M, A) with M a countable elementary submodel of $\mathcal{P}(\omega)$, and A a countable set of reals not in M. Ordered by extension in both coordinates.

Forcing is countably closed, so no new reals. Also, for any name ν for an ultrafilter, have dense set of ("good") conditions p = (M, A) deciding $\nu(X)$ for each $X \in M$.

By PD, given condition p can find good $q = (M, A) \le p$ such that $\delta_{\nu}(M) \notin M$ — we just build a sufficiently generic nice condition below p.

・ロト ・聞 ト ・ 国 ト ・ 国 ト 一 国

We want to force a projectively closed \mathcal{I} with $\delta_{\mathcal{U}}(\mathcal{I}) \neq \mathcal{I}$ for any \mathcal{U} . Conditions: pairs (M, A) with M a countable elementary submodel of $\mathcal{P}(\omega)$, and A a countable set of reals not in M. Ordered by extension in both coordinates.

Forcing is countably closed, so no new reals. Also, for any name ν for an ultrafilter, have dense set of ("good") conditions p = (M, A) deciding $\nu(X)$ for each $X \in M$.

By PD, given condition p can find good $q = (M, A) \le p$ such that $\delta_{\nu}(M) \notin M$ — we just build a sufficiently generic nice condition below p. Pass to $(M, A \cup \{\delta_{\nu}(M)\})$.

・ロト ・聞 ト ・ 国 ト ・ 国 ト 一 国

We want to force a projectively closed \mathcal{I} with $\delta_{\mathcal{U}}(\mathcal{I}) \neq \mathcal{I}$ for any \mathcal{U} . Conditions: pairs (M, A) with M a countable elementary submodel of $\mathcal{P}(\omega)$, and A a countable set of reals not in M. Ordered by extension in both coordinates.

Forcing is countably closed, so no new reals. Also, for any name ν for an ultrafilter, have dense set of ("**good**") conditions p = (M, A) deciding $\nu(X)$ for each $X \in M$.

By PD, given condition p can find good $q = (M, A) \le p$ such that $\delta_{\nu}(M) \notin M$ — we just build a sufficiently generic nice condition below p. Pass to $(M, A \cup \{\delta_{\nu}(M)\})$. \mathcal{I} is union of left coordinates of generic.

・ロト ・聞 ト ・ 国 ト ・ 国 ト 一 国

We want to force a projectively closed \mathcal{I} with $\delta_{\mathcal{U}}(\mathcal{I}) \neq \mathcal{I}$ for any \mathcal{U} . Conditions: pairs (M, A) with M a countable elementary submodel of $\mathcal{P}(\omega)$, and A a countable set of reals not in M. Ordered by extension in both coordinates.

Forcing is countably closed, so no new reals. Also, for any name ν for an ultrafilter, have dense set of ("good") conditions p = (M, A) deciding $\nu(X)$ for each $X \in M$.

By PD, given condition p can find good $q = (M, A) \le p$ such that $\delta_{\nu}(M) \notin M$ — we just build a sufficiently generic nice condition below p. Pass to $(M, A \cup \{\delta_{\nu}(M)\})$. \mathcal{I} is union of left coordinates of generic.

Remark

In other direction, note that assuming V = L gives opposite answer for sufficiently closed ideals (definable ultrafilters).

Thanks!

メロト メポト メヨト ノヨ