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Ultrafilter jumps

Definition

For X ⊆ ω — viewed as an array X = (Xi )i∈ω — and U an ultrafilter, let

lim
U

(X ) = {j : {i : 〈i , j〉 ∈ X} ∈ U}.

For a Turing degree a, let

δU (a) = {lim
U

(X ) : X ≤T a}.

Remark

Can also define δU (S) for arbitrary families of sets S.
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Closure properties

Perhaps surprisingly, ultralimits of Turing degrees have meaningful closure
properties!

Theorem

Let U be a nonprincipal ultrafilter, a a Turing degree. Then:

δU (a) contains ∆0
2(a).

δU (a) is a Turing ideal.

δU (a) is a countable Scott set.

This gives a new proof of a well-known result:

Corollary

WKL0 is strictly weaker than ACA0.

Standard proof: iterate the Low Basis Theorem.
Combinatorial proof: Let U be a nonprincipal ultrafilter such that
{e : We ∈ U} is (say) ∆0

17. Then δU (REC ) is a subset of ∆0
17.
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δU(a) is a Scott set containing a′, I/II

Let a be a degree, U an ultrafilter.

∆0
2(a) ⊆ δU (a): by limit lemma.

δU (a) closed under join: limU (〈Xi ⊕ Yi 〉) = limU (〈Xi 〉)⊕ limU (〈Yi 〉).

δU (a) is a Turing ideal: let S = limU (X ) ∈ δU (a), ΦS
e total. Define Y as

Yi (n) =

{
1 if ΦXi

e (n)[i ] ↓= 1,

0 otherwise.

ΦS
e = Φ

limU (Y )
e :

σ ≺ S implies σ ≺ Xi for U-many σ

Look at σ ≺ S such that Φσ
e (n)[|σ|] ↓.
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δU(a) is a Scott set containing a′, II/II

Why is δU (a) a Scott set?

Suppose T = limU (X ) ∈ δU (a) is an infinite tree.
Conflate ω and 2<ω, so each Xi is a subset of 2<ω.

Let Yi be the “tree part” of Xi : Yi = {σ ∈ 2<ω : ∀τ 4 σ(τ ∈ Xi )}. Since
T is a tree, limU (Y ) = T .
For i ∈ ω, can effectively-in-a find a maximal finite path of length at most
i through Yi — call this pi .

Then limU (pi ) is a path through T .
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Controlling δU(a), I/II

We proved that δU (a) is always a countable Scott set containing a′.
What about the converse?

Theorem

If a is a Turing degree and J is a countable Scott set containing a′, then
δU (a) = J for some U .

Remark

More generally, if I is a countable Turing ideal and J is a countable Scott
set containing the jump of every a′ ∈ I, then δU (I) = J for some U .

Given a and J appropriate, need to meet:

Image requirements: each Y ∈ J is limU (X ) for some X ≤T a.

Domain requirements: When we put sets into U , we never force
limU (X ) to be outside J for any X ≤T a.
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Controlling δU(a), II/II

Fix appropriate a and I.
An axiom is a pair (A,B) with A ∈ a and B ∈ I (meaning:
“limU (A) = B”). Set of axioms is consistent if satisfied by some
nonprincipal ultrafilter.

Equivalently: {(Ai ,Bi ) : i ∈ I} is satisfiable if for all F ⊂ I finite and
n ∈ ω,

[
⋂

j∈F ,m<n,Bj (m)=1

(Aj)
m] ∩ [

⋂
j∈F ,m<n,Bj (m)=0

(Aj)m] is infinite.

Enumerate a = {Xi : i ∈ ω}, I = {Yi : i ∈ ω}. We build set of axioms C
in stages:

C0 = ∅
For C2k+1, want to make sure Yk gets mapped to: pick X ∈ a
sufficiently free over already-used sets.

For C2k+2, want to make sure Xk gets mapped inside I:
a′-computable tree of consistent extensions.
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Some questions

Question

Is there a U such that δU (a) is always arithmetically closed? Or δU (J ), for
“sufficiently closed” Turing ideals J ?

Remark

By Theorem 2.5, if I is arithmetically closed then δU (I) = I for some U .

Remark

However, no ultrafilter satisfies δU (a) = ARITH(a) for every a: a′ can
diagonalize away from a.

Question

Are combinatorial properties of U (Ramsey, p-point, . . .) connected with
closure properties of δU (a)?
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Negative results

Question

For what a is there some U with δU (a) = δU (REC )?

Call such degrees/reals “ultrafilter-low.”
Nonexamples:

1 ≥T 0′.
2 DNR2-degrees.
3 High degrees.

Proof.

For (1), (2): can compute A such that Φe(〈i , e〉) 6= A(〈i , e〉) for each
e ∈ Tot and i ∈ ω.
For (3): any dominating function f computes an A such that
Φe(〈i , e〉) 6= A(〈i , e〉) for each e ∈ Tot and cofinitely many i ∈ ω.

Note that same proof shows that no δU is a 7→ ARITH(a).
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Positive results

Question

For what a is there some U with δU (a) = δU (REC )?

Call such degrees/reals “ultrafilter-low.”

Theorem

Degrees bounded by reals of the following types are ultrafilter-low:

2-generic.

Computably traceable.
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Some questions

In search of an exact characterization of ultrafilter-lowness:

Question

Are measure-1 many reals ultrafilter-low? (Are random reals
ultrafilter-low?)

Question

Are there ∆0
2 ultrafilter-low reals?

Even the following is open:

Question

Is there a degree a such that δU (a) = δU (REC ) for every U?

By Theorem 2.5, such an a would have to be ∆0
2 — in fact, low in the

usual sense.

Noah Schweber (with Uri Andrews, Mingzhong Cai, David Diamondstone)Ultralimits and computability
Computability, Randomness, and Applications, 23 June 2016 13

/ 21



Some questions

In search of an exact characterization of ultrafilter-lowness:

Question

Are measure-1 many reals ultrafilter-low? (Are random reals
ultrafilter-low?)

Question

Are there ∆0
2 ultrafilter-low reals?

Even the following is open:

Question

Is there a degree a such that δU (a) = δU (REC ) for every U?

By Theorem 2.5, such an a would have to be ∆0
2 — in fact, low in the

usual sense.

Noah Schweber (with Uri Andrews, Mingzhong Cai, David Diamondstone)Ultralimits and computability
Computability, Randomness, and Applications, 23 June 2016 13

/ 21



Some questions

In search of an exact characterization of ultrafilter-lowness:

Question

Are measure-1 many reals ultrafilter-low? (Are random reals
ultrafilter-low?)

Question

Are there ∆0
2 ultrafilter-low reals?

Even the following is open:

Question

Is there a degree a such that δU (a) = δU (REC ) for every U?

By Theorem 2.5, such an a would have to be ∆0
2 — in fact, low in the

usual sense.

Noah Schweber (with Uri Andrews, Mingzhong Cai, David Diamondstone)Ultralimits and computability
Computability, Randomness, and Applications, 23 June 2016 13

/ 21



Some questions

In search of an exact characterization of ultrafilter-lowness:

Question

Are measure-1 many reals ultrafilter-low? (Are random reals
ultrafilter-low?)

Question

Are there ∆0
2 ultrafilter-low reals?

Even the following is open:

Question

Is there a degree a such that δU (a) = δU (REC ) for every U?

By Theorem 2.5, such an a would have to be ∆0
2 — in fact, low in the

usual sense.

Noah Schweber (with Uri Andrews, Mingzhong Cai, David Diamondstone)Ultralimits and computability
Computability, Randomness, and Applications, 23 June 2016 13

/ 21



1 Basic properties

2 A lowness notion

3 What about ultrafilters?

4 Set-theoretic afterword

Noah Schweber (with Uri Andrews, Mingzhong Cai, David Diamondstone)Ultralimits and computability
Computability, Randomness, and Applications, 23 June 2016 14

/ 21



What sort of structure is induced on βN?

Degree structure: Set U ≤J V if δU (a) ⊆ δV(a) for a cone of degrees a.
Lightface version: U ≤j V if δU (a) ⊆ δV(a) for all degrees a.

Question

Are there U ,V with δU (a) ( δV(a) for all/cone many a?

Remark

For ideals, answer is no: ...δU ◦ δV ◦ δU ◦ δV ◦ δU ◦ δV(REC ).

Composition: U ∗ V = {X : {b : {a : 〈a, b〉 ∈ X} ∈ V} ∈ U}.

Remark

While δU∗V = δU ◦ δV , this is not true on the level of individual sets.

Remark

Unlike e.g. addition of ultrafilters, ∗ has no idempotents — we observed
before that δU (a) ) δU (a′).
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Basic properties of the boldface degree structure

Definition

U ≤J V if δU (a) ⊆ δV(a) for a cone of degrees a.

Proposition

Given {Uη : η < ω1}, there is an upper bound V >J Uη.

Proof.

Let h : R→ ω1 : r 7→ ωr
1. For r ∈ R, let r̂ be such that r̂ ≥T s for all

s ∈ δUη(deg(r)), η < h(r). Can construct V with δV(deg(r)) 3 r̂ .

Proposition

Modulo ≡J , there are more than continuum-many ultrafilters.
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RK-reductions

Definition

U ≤RK V if for some f : ω → ω, X ∈ U ⇐⇒ f −1(X ) ∈ V.

“Lightface”
version ≤rk : same but with computable f .

Proposition

≤J ,≤j refined by ≤RK ,≤rk respectively.

Proof.

Suppose U ≤RK V via f ∈ deg(a). For X ∈ a let Yi = {n : n ∈ Xf (i)}.
Then n ∈ limV(Y ) ⇐⇒ n ∈ limU (X ).

Question

Do ≤J (≤j) and ≤RK (≤rk) coincide?
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Question

Do ≤J (≤j) and ≤RK (≤rk) coincide?
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What about uncountable Turing ideals?

Recall the characterization theorem:

Theorem

For I,J countable Turing ideals, the following are equivalent:

J contains a′ for every a ∈ I, and is a Scott set.

J = δU (I) for some nonprincipal ultrafilter U .

What if we take ultrafilter jumps of uncountable Turing ideals?

Theorem (S.)

Consistently with ZFC + PD, the theorem fails to generalize badly.
Specifically: for V |= ZFC + PD, there is a forcing extension V [G ] and a
Turing ideal I ∈ V [G ] such that

I is an elementary submodel of P(ω);

but δU (I) 6= I for any ultrafilter U ∈ V [G ].
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Building an “unfixed” ideal

We want to force a projectively closed I with δU (I) 6= I for any U .

Conditions: pairs (M,A) with M a countable elementary submodel of
P(ω), and A a countable set of reals not in M. Ordered by extension in
both coordinates.

Forcing is countably closed, so no new reals. Also, for any name ν for an
ultrafilter, have dense set of (“good”) conditions p = (M,A) deciding
ν(X ) for each X ∈ M.

By PD, given condition p can find good q = (M,A) ≤ p such that
δν(M) 6∈ M — we just build a sufficiently generic nice condition below p.
Pass to (M,A ∪ {δν(M)}). I is union of left coordinates of generic.

Remark

In other direction, note that assuming V = L gives opposite answer for
sufficiently closed ideals (definable ultrafilters).
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Thanks!
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